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SUMMARY

We propose a two scale asymptotic method to compute the effective effect of a free sur-

face topography varying much faster than the minimum wavelength for 2-D P-SV elastic

wave propagation. The topography variation is assumed to benon-periodic but with a de-

terministic description and, in the present paper, the elastic body below the topography is

assumed to be homogeneous. Two asymptotic expansions are used, one in the boundary

layer close to the free surface and one in the volume. Both expansions are matched ap-

propriately up to the order 1 to provide an effective topography and an effective boundary

condition. We show that the effective topography is not the averaged topography but it is

a smooth free surface lying below the fast variations of the real topography. Moreover,

the free boundary condition has to be modified to take accountof the inertial effects of

the fast variations of the topography above the effective topography. In other words, the

wave is not propagating in the fast topography but below it and is slowed down by the

weight of the fast topography. We present an iterative scheme allowing to find this effec-

tive topography for a given minimum wavelength. We do not attempt any mathematical

proof of the proposed scheme, nevertheless, numerical tests show good results.
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1 INTRODUCTION

Because it controls surface waves and because sources and receivers are often in its neighborhood,

the free surface is an important boundary for elastic wave propagation, especially for seismology. For

the forward problem, the free surface is a well known difficulty for strong form numerical methods

like the finite differences . For numerical methods based on the weak form of the wave equation, like,

for example, the Spectral Element Method (SEM, e.g. Komatitsch & Vilotte (1998) or Chaljubet al.

(2007) for a review), the free surface with its topography is not an issue as long as it can efficiently be

meshed. For the inverse problem, the topography of the free surface is most of the time ignored and

assumed to be flat (or spherical for the global earth). The impact of such an assumption is assumed to

be weak, but its effects have been little studied, even if some works exist (e.g. Köhleret al.2012). Most

of the time, in seismology and in almost any field involving acoustic or elastic waves,because it can

be measured directly with optical methods, the free surface topography is well known, and to a much

finer scale than the minimum wavelengthλm considered. A consequence of this detailed description

of the topography, is that, for both forward and inverse problems, it needs to be upscaled. Indeed, a

detailed topography to scales much finer than the minimum wavelength leads to a numerical over-cost.

To solve this problem, the topography is in most of the cases smoothed with a lowpathfilter, which

is a trivial upscaling method. To our knowledge, the impact of such a filtering onwave propagation

has not been studied. The objective of this paper is to develop a method to upscale rough topographies

compared to the minimum wavelength, in a consistent way with respect to the wave equation.

The problem of rough topography for elastic waves is very similar to the problem of small inclu-

sions or damages close to an interface which has been studied for long forthe static and periodic cases

with two scale approaches by the solid mechanics community (Sanchez-Palencia, 1986; Dumontet,

1990; Nevard & Keller, 1997; Marigo & Pideri, 2011; Davidet al., 2012). These works are the base of

the present paper. The non-periodic static case has been addressedmathematically by several authors

(Chechkinet al., 1996; Egeret al., 2000). If these works give an idea of the type of convergence we

can expect for an asymptotic method in such a case, they are not really helping to solve the problem in

practice for a given topography. For the dynamic case, periodic topographies and stochastic topogra-

phies have been studied by Huang & Maradudin (1987), Mayeret al. (1991) and Maradudinet al.

(1991). An example of a two scale approach for the dynamic case in a presence of a fast boundary

condition can be found in Boutin & Roussillon (2006) and the case of non-periodic fast variations, but

in a single direction, close to the free surface has been studied by Capdeville& Marigo (2008). To our

knowledge, no results can be found for the non-periodic deterministic case.

The outline of this paper is as follows. In Sec. 2, we present the asymptotic method for a periodic

fast topography above an homogeneous body, which is a classical development, following Marigo &
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Pideri (2011) and Davidet al. (2012). The idea is to use two asymptotic solutions, one valid in the

boundary layer close to the free surface and one valid in the volume. The boundary layer asymptotic

solution satisfies exactly the free surface condition with rapid variations, which isnot the case of the

asymptotic solution valid in the volume. The two asymptotic solutions are matched in the regionwhere

they are both valid and, once matched, the boundary layer asymptotic solution provides the boundary

condition for the free surface for the asymptotic solution in the volume. We show that, to the order 1,

the topography is equivalent to a flat effective topography and a dynamic boundary condition. We

then perform some validation and convergence tests that show that the wave isnot propagating into

the rapid variations of the topography but just below it and that only the weight of the rapid variation

of the fast topography is slowing down the surface wave. In Sec. 3, wepropose an extension of the

periodic development to the non-periodic case, following the principles proposed by Capdeville &

Marigo (2007), Capdevilleet al. (2010a), Guillotet al. (2010), and Capdevilleet al. (2010b), and we

propose an iterative algorithm to find an appropriate effective topography and boundary conditions.

We draw the same conclusion as for the periodic case that the surface wave is not propagating into the

rapid variations of the topography but just below it and is affected by its weight. We finally present

some validation tests using three different topographies.

2 PERIODIC CASE

In this section, we present the two scale approach for a periodic fast scale topography following Marigo

& Pideri (2011) and Davidet al. (2012). Some aspects of the employed notations are given in ap-

pendix A.

Before we start, let us give an handwaving introduction to what follows. Iftwo scale homogeniza-

tion approaches are well known in the solid mechanics community, they are relatively technical and

non trivial methods and not so well known in the geophysical community. Themain ideas of the two

scale method presented here are the following: for the periodic case, it is first assumed that the two

scales are present in the problem. One of the two scales, the microscopic scale, is the periodicity of the

topography and the other one, the macroscopic scale, is the wavelength ofthe propagating wavefield.

The two scale homogenization solution is an asymptotic solution controlled by a small parameter ε

which is the ratio of the small periodicity versus the large wavelength. Two points are unusual for

many of us with this kind of method.

First, it explicitly takes into account the small scales by introducing a new space variable (usu-

ally y), named the microscopic variable, which is a zoom by1/ε of the classical space variablex

also named the macroscopic variable. Assuming the two variables are independent, from the original

wave equations is built a new set of equations to be solved to find the coefficientsof the homoge-



4 Y. CAPDEVILLE

nized asymptotic expansion. These new equations depend upon the two space variables which can be

puzzling, but only one value of microscopic variable has a physical meaning: y = x/ε.

Second, even if the considered real case correspond to a fixed valueof ε (there is only one value for

the periodicity and for the minimum wavelength), sayε = εr, ε is made variable and the convergence

can only be achieved whenε goes to zero. Indeed, from the real problem are built a series of problem

by varying the periodicity size and keeping the minimum wavelength constant and therefore allowing

the value ofε to vary. The real case is only a particular case of the series and is obtained for ε = εr.

This can be disturbing to allowε to vary knowing the real case correspond to a fixed value ofε, but it is

the way two scale homogenization methods are built. Ifuε is the displacement solution to the classical

wave equation in the media containing the small scale andu0 the leading term of the homogenized

asymptotic solution, an important result of the two scale homogenization theory is to demonstrate the

convergence ofuε towardu0 whenε goes to zero. In a sense, becauseεr is different from zero, the real

case is an approximation of the homogenized solution. Of course, things can be presented differently

and the homogenized solution can be seen has an approximate solution of the realcase. A practical

consequence of this is that if it happens thatεr is not small enough,u0 might be significantly different

from uεr and little can be done to improve the solution in such a case (adding more term of the series

can help, but not very far). In other words, as the order 0 homogenized solution does not depend upon

ε, there is always a real topography for which the value ofεr is large enough so that the homogenized

solution doesn’t approximate correctly the real solution. We will neverthelesssee that non-periodic

homogenization can be a solution to that problem.

For the fast topography problem presented here, two asymptotic expansion are used. One valid

close to the free surface, in the boundary layer, and one valid far awayfrom the free surface, in

the volume. The two solutions are assumed to be both valid in a region between the volume and

the boundary layer where they are matched. The volume solution is the solution that will be used to

actually propagate waves in a medium with an approximate topography but the boundary layer solution

is the only one that exactly satisfies the boundary condition on the rapid topography. Through the

matching conditions, the boundary layer solution provides the missing consistentboundary condition

for the volume solution. The main result of this section is quite simple: the small scale problem can

be replaced by an approximate problem for which the topography is flat and lying below the real

topography. More over, the usual zero traction boundary condition is replaced by a dynamic boundary

condition to account for the mass of the material that is over the flat effectivetopography and that is

now missing
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Figure 1. Two examples of periodic boundariesΓε. Only the right one can be written asΓε = {x ∈ R
2 ; x1 =

Γε(x2)}. The grey line is thex2 axis andΓs. The dashed lines are the average interface height.

2.1 Settings

We consider a two-dimensional infinite elastic half spaceΩε with a rough boundaryΓε. In this paper,

the densityρ and fourth order elastic tensorc are assumed to be constant and we leave the inhomo-

geneous case for future works.Ωε is subject to an external source forcef = f(x, t) and we wish to

study the displacementuε(x, t) = uεi (x, t) x̂i, wherex̂i, i = 1, 2 are the unit vectors of the Cartesian

coordinate system, induced byf . We assume thatf(x, t) has a maximum frequencyfc which allows

to assume that, in the far field, it exists a minimum wavelengthλm to the wavefielduε. In this section,

Γε is assumed to be periodic of periodicityl and with a maximum amplitude variatione (see Fig. 1).

ε characterizesΓε periodicityl with respect toλm:

ε =
l

λm
. (1)

As mentioned in the previous section, the two scale homogenization method requires to make vary

the periodicity, and thereforeε, which explains why most of the quantities used here depends uponε.

In some cases,Γε can be written asΓε = {x ∈ R
2 ; x1 = Γε(x2)} and in such cases,Ωε = {x ∈

R
2 ; x1 ≥ Γε(x2)} (see Fig. 1, right plot). Even if this is not true in general (e.g. Fig. 1, leftplot), in

the following, for the sake of simplicity, we assume it is the case, without losing thegenerality of the

results. We define the generic functionΓ such that, for anyε,

εΓ(x2/ε) ≡ Γε(x2) . (2)

This definition ofΓ is important. Indeed, it meansthat the ratioe overl in independent ofε. Therefore,

when ε decreases, the periodicity of the topography is smaller as well as its amplitude. This is a

necessary condition to show a convergence of the asymptotic solution presented here, at least for the

order zero (Sanchez-Palencia, 1986; Egeret al., 2000)and, for example, we cannot ensure convergence

if only the periodicityl decreases withε while keeping the amplitudee constant.

The displacementuε in Ωε is driven by the elastic wave equation,

ρ∂ttu
ε −∇ · σε = f in Ωε ,

σε = c : ǫ(uε) in Ωε ,

σε · nε = 0 on Γε ,

(3)
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wherenε is the outward normal toΓε and where the componentij of the strain tensor is

[ǫ(uε)]ij ≡
1

2

(

∂uεi
∂xj

+
∂uεj
∂xi

)

. (4)

The initial conditions for the displacement and velocity inΩε at t = 0 are assumed to be zero.Note

that the infinite domain is in practice truncated thanks to absorbing boundary conditions.

2.2 Two scale asymptotic set up

We now assume thatε ≪ 1, which means that the scale of the topography variations is much smaller

that the minimum wavelength.As explained in the introduction section above, even if the real case

defines a uniqueε = εr, we allowε to vary and set up an asymptotic expansion that can be shown to

converge whenε → 0 (Sanchez-Palencia, 1986). The real case is therefore an approximation to the two

scale asymptotic solution presented here, whose accuracy depends on how small isεr. Whenε varies,

the displacementuε and the associate stressσε, solution to the wave equations (3), change, which is

reminded with theε superscript. We defineΓs, a flat interface parallel toΓε (see Fig. 1) and we then

set the origin of the coordinate system such that thex2 axis isΓs, that isΓs = {x ∈ R
2 ; x1 = 0}. If

a is the average high ofΓε, (a = 1/l
∫ l
0 Γ

ε(x2)dx2), we defineΓa = {x ∈ R
2 ; x1 = a} the average

interface ofΓε. If a is chosen to be zero, thenΓs = Γa. We finally defineΩs, the half plane below

Γs: Ωs = {x ∈ R
2 ; x1 ≥ 0}.

In order to explicitly take small-scale boundary topography into account when solving the wave

equation, the fast space variable is introduced:

y =
x

ε
. (5)

We define the periodic cell,Y (see Fig. 2), the vertical domain below one periodic cell of the topogra-

phy, zoomed by1/ε:

Y = {y ∈ R× Yw ; y1 ≥ Γ(y2)} , (6)

where the segment

Yw = {y2 ∈ [0, λm]} . (7)

The boundary of the periodic cell∂Y is built of its top boundaryΓ, its left and right boundariesY1 and

Y2 and its lower boundaryY3 ( ∂Y = Y1∪Y2∪Y3∪Γ ). TheY3 boundary is set to the infinity iny1.

We define a partial periodic cellY(b) = {y ∈ Y ; y1 < b} which is the same domain asY, but with a

lower boundaryY3(b) = {y ∈ R
2; y1 = b , y2 ∈ Yw} (we therefore haveY = limy1→∞Y(y1)). The

width of the periodic cell iny2 is |Yw| = λm.



2D non-periodic topography upscaling 7

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

Y1

Y2

Y3

Yw

Y

Γ

ŷ2
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Figure 2. The periodic cellY, built from one periodic pattern ofΓε and expended with the transformation

y = x/ε. The boundary of the periodic cell is∂Y = Y1 ∪Y2 ∪Y3 ∪ Γ where theY3 border is set to infinity

in y1.

Following a classical process (see e.g. Sanchez-Palencia 1986; Dumontet1990; Marigo & Pideri

2011) we consider two asymptotic expansions for the solutions(uε,σε),

• the volume expansion, validaway from Γε, in Ωs:

uε(x) = u0(x) + εu1(x) + ε2u2(x) + ...

σε(x) = σ0(x) + εσ1(x) + ε2σ2(x) + ...
(8)

• the boundary layer expansion, validclose toΓε, in R× Y

uε(x) = v0(x2,y) + εv1(x2,y) + ε2v2(x2,y) + ...

σε(x) =
1

ε
τ−1(x2,y) + τ 0(x2,y) + ετ 1(x2,y) + ε2τ 2(x2,y) + ...

(9)

The coefficientsvi andτ i are periodic iny2 but not iny1.

Whenε → 0, any change iny induces a very small change inx. This leads to the separation of scales:

y and x are treated as independent variables. This implies that partial derivatives with respect tox

become:

∇x → ∇x +
1

ε
∇y . (10)
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Similarly, we have, for the strain tensor:

ǫx → ǫx +
1

ε
ǫy . (11)

The last equation explains why the stress expansion in (9) starts ati = −1 while the displacement

expansion starts ati = 0. Indeed the relation between the stress and the displacement implies the

strain tensor which contains a1/ε factor. Consequently, the stress expansion starts one index earlier

than the displacement.

In order to be matched, we assume that it exits a region where the two asymptotic expansions are

valid. This region is close enough fromΓε so thatx1 can be considered as very small for the volume

expansion and at the same time far enough so thaty1 can be considered as very large for the boundary

layer expansion. Using that region where both expansions are valid, it is shownin appendix B that the

matching conditions are:

lim
y1→+∞



vi(x2,y)−
i
∑

j=0

yi−j
1

(i− j)!

∂i−juj

∂xi−j
1

(0, x2)



 = 0 , (12)

lim
y1→+∞



τ i(x2,y)−
i
∑

j=0

yi−j
1

(i− j)!

∂i−jσj

∂xi−j
1

(0, x2)



 = 0 . (13)

Following a classical development (e.g. Sanchez-Palencia 1986), introducing expansions (8) and (9)

in the wave equations (3), using (10) and (11),identifying terms of the same power ofε yields the

following coupled equations satisfied by the expansion coefficients of(uε,σε):

• equations in the volumeΩs, i ∈ N:

ρ∂ttu
i −∇x · σi = fδi0 in Ωs , (14)

σi = c : ǫx
(

ui
)

in Ωs (15)

lim
x1→∞

σi · x̂1 = 0 , (16)

whereδij is the Kronecker symbol.Note that the usual top boundary condition is replaced by the

matching conditions.

• equations in the boundary layer:for i ≥ −2

ρ∂ttv
i −∇x2

· τ i −∇y · τ i+1 = fδi0 in R× Y , i ≥ −2 , (17)

τ i = c :
(

ǫx2

(

vi
)

+ ǫy
(

vi+1
))

in R× Y , i ≥ −1 , (18)

τ i · n = 0 onR× Γ , i ≥ 0. (19)

wheren is the outward normal to∂Y.
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• Matching conditions, here for the two first orders : For(x2, y2) ∈ R× Yw

i = 0











lim
y1→+∞

(

v0(x2,y)− u0(0, x2)
)

= 0

lim
y1→+∞

(

τ 0(x2,y)− σ0(0, x2)
)

= 0
(20)

i = 1



















lim
y1→+∞

(

v1(x2,y)− u1(0, x2)− y1
∂u0

∂x1
(0, x2)

)

= 0

lim
y1→+∞

(

τ 1(x2,y)− σ1(0, x2)− y1
∂σ0

∂x1
(0, x2)

)

= 0

(21)

2.3 Iterative resolution of the asymptotic equations

In this section, the asymptotic equations for the order 0 for the first order corrector are solved. The

boundary conditions for the macroscopic equation in the volume are derived.

2.3.1 Order 0

We start by combining (17) fori = −2 and (18) fori = −1 to obtain:

∇y ·
(

c : ǫy(v
0)
)

= 0 . (22)

Taking the dot product of the last equation withv0, integrating over the periodic cell, then by parts

and using the symmetrycijkl = cklij , we obtain
∫

Y

v0 ·∇y ·
(

c : ǫy(v
0)
)

dy =

∫

∂Y
v0 · τ−1 · n dy −

∫

Y

ǫy(v
0) : c : ǫy(v

0) dy = 0 . (23)

The integral over∂Y in the last equation vanishes because the integral alongΓ is zero thanks to the

boundary conditions (19); the integrals overY1 andY2 (see Fig. 2) cancel themselves thanks to the

periodicity iny2; finally, the matching condition fori = −1 allows to find thatτ−1(x2,∞, y2) · x̂1 →
σ−1(0, x2) · x̂1 = 0 (indeedσi = 0 for i < 0) ) which implies that the integral overY3 is also zero.

Consequently, we have,
∫

Y

ǫy(v
0) : c : ǫy(v

0) dy = 0 , (24)

which, knowing thatc is a positive definite tensor, imposes thatv0 is a constant translation plus a

constant rotation iny. The periodicity imposes that the constant rotation is zeroand thatv0 is a

constant value for a fixedx2. We therefore have

v0(x2,y) = v0(x2) , (25)

τ−1 = 0 . (26)
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The order 0 matching condition for the displacement yields:

u0(0, x2) = v0(x2) . (27)

To find the boundary condition onσ0 on Γs, we use the order 0 matching condition on stress and

integrate it over the segmentYw to obtain

lim
y1→∞

∫

Yw

τ 0(x2, y1, y2) · x̂1 dy2 = λmσ0(0, x2) · x̂1 (28)

Integrating (17) fori = −1 onY and then, by parts, we find
∫

∂Y
τ 0 · n dy = 0 . (29)

In the last equation, the integrals over bordersY1 andY2 cancel themselves because of the periodicity

in y2, the one overΓ vanishes because of the free boundary conditions and therefore,
∫

Y3

τ 0 · x̂1 dy = 0 . (30)

Combining the last equation with (28), we find the order 0 boundary conditions for the volume problem

(the outward normal toΓs is ns = −x̂1)

σ0(0, x2) · ns = 0 . (31)

2.3.2 Order 1

(17) for i = −1 and (18) fori = 0 give:

∇y · τ 0 = 0 , (32)

τ 0 = c :
(

ǫx2
(v0) + ǫy(v

1)
)

. (33)

In order to find a simple form for the solutions to the last equations, we seek for

v1(x2,y) = y1
∂u0

∂x1
+ v̂(x2,y) , (34)

τ 0(x2,y) = σ0(0, x2) + τ̂ (x2,y) , (35)

wherev̂ andτ̂ are periodic iny2 . Using the fact thatσ0 does not depend ony, (32) easily gives us

∇y · τ̂ = 0 . (36)

Using (27), we have, onΓs

ǫy

(

y1
∂u0

∂x1

)

+ ǫx2
(v0) = ǫx(u

0) , (37)
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then, (33), (34) and the last equation,yield

τ 0 = c :
(

ǫx(u
0) + ǫy(v̂)

)

, (38)

= σ0 + c : ǫy(v̂) , (39)

and therefore,using (35), we find

τ̂ = c : ǫy(v̂) . (40)

Using the boundary condition (19), the order 1 asymptotic problem reduces tothe following prob-

lem:

τ̂ = c : ǫy(v̂) in R× Y , (41)

∇y · τ̂ = 0 in R× Y , (42)

τ̂ · n = −σ0(0, x2) · n on R× Γ , (43)

lim
y1→∞

τ̂ · x̂1 = 0 , (44)

v̂(x2,y) and τ̂ (x2,y) areλm-periodic in y2 . (45)

Based on the linearity of the last problemwith respect to the source termσ0, noting that, thanks to the

boundary condition (31), the only non zero component ofσ0(0, x2) is σ0
22, we seek for solutions to

the last problem under the following form:

v̂(x2,y) = σ0
22(0, x2)V(y) + 〈v̂〉 (x2) (46)

τ̂ (x2,y) = σ0
22(0, x2)T(y) , (47)

whereV andT are periodic iny2. From equations (41–45), we find thatV andT are solutions of the

following cell problem:


















































T = c : ǫy (V) in Y ,

∇y ·T = 0 in Y ,

T · n = −n2 x̂2 on Γ ,

lim
y1→∞

T · x̂1 = 0 .

T and V λm-periodic iny2.

(48)

In general, the last problem can only be solved with a numerical solver, likea finite elements solver.

At this stage, we are able to fully computeτ̂ and incompletelŷv (〈v̂〉 is not determined).

We now need to compute the order 1 boundary condition for the volume problem,σ1 · ns, onΓs.

At this point, we assume the external sourcef is not in the boundary layer area. If it is not the case,

the source is reintroduced after the resolution of the equations with an energyargument as shown in
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Sec. 2.4.1. Integrating the stress matching condition (13) fori = 1 over theYw segment, we find

λmσ1(0, x2) = lim
y1→∞

(∫

Yw

τ 1(x2,y) dy2 − y1λm
∂σ0

∂x1
(0, x2)

)

. (49)

(17) for i = 0 gives

∇y · τ 1 = ρv̈0 −∇x2
· τ 0 , (50)

and therefore,using (35),

∇y · τ 1 +∇x2
· σ0(0, x2) +∇x2

· τ̂ = ρv̈0 . (51)

Using (27), integrating the last equation overY(y1) and passing to the limit, we obtain

∇x2
·
∫

Y

τ̂dy = lim
y1→∞

(

−
∫

Y(y1)
∇y · τ 1dy′ + |Y(y1)|

(

−∇x2
· σ0 + ρü0

)

)

. (52)

Using an integration by parts, the free boundary condition alongΓ and the periodicity iny2, we find
∫

Y(y1)

(

∇y · τ 1
)

(x2,y
′) dy′ =

∫

∂Y(y1)

(

τ 1 · n
)

(x2,y
′) dy′ (53)

=

∫

Yw

τ 1(x2, y1, y2) · x̂1 dy2 . (54)

Combining (49) and (54) in (52), we have

∇x2
·
(∫

Y

τ̂dy

)

= −λmσ1 · x̂1 + lim
y1→∞

(

−y1λm
∂σ0

∂x1
· x̂1 + |Y(y1)|

(

−∇x2
· σ0 + ρü0

)

)

. (55)

Eq. (14) fori = 0 yields

∂σ0

∂x1
· x̂1 = −∇x2

· σ0 + ρü0 , (56)

which, combined with (55), gives

∇x2
·
(∫

Y

τ̂dy

)

= −λmσ1 · x̂1 + lim
y1→∞

(|Y(y1)| − y1λm)
(

−∇x2
· σ0 + ρü0

)

. (57)

Finally, based on the last equation, the order 1 volume boundary condition onΓs can be written as

εσ1(0, x2) · x̂1 = −b
∂σ0

22

∂x2
+ h

(

−∇x2
· σ0 + ρü0

)

, (58)

where

b =
ε

λm

∫

Y

T · x̂2 dy , (59)

h = ε lim
y1→∞

|Y(y1)| − y1λm

λm
. (60)

It can be seen thath is finite and equal toa, the height difference betweenΓs andΓa. It can be shown

that onlyb2 = b · ŷ2 component is non-zero. Indeed, integrating∇y ·T = 0 overY3(y1) and using
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the periodicity iny2, we find, for anyy1
∫

Y3(y1)
[∇y ·T]i dy =

∂

∂y1

∫ λm

0
T1i dy2 = 0 . (61)

∫ λm

0 T1i dy2 is therefore constant iny1, and, using the fact thatlimy1→∞ Ti1 = 0, we find, for anyy1:

∫ λm

0
T1i(y1, y2) dy2 =

∫ λm

0
Ti1(y1, y2) dy2 = 0 , (62)

which allows to conclude thatb1 = 0.

Using again the fact that onlyσ0
22 is non zero onΓs, we can rewrite the order 1 boundary condition

onΓs as:

εσ1(0, x2) · ns = (b2 + h)
∂σ0

22

∂x2
x̂2 − hρü0 . (63)

From the last equation, it can be seen that thex1 position of the effective free surfaceΓs can be chosen

such thatb2 + h = 0 and, in such a case, the order 1 boundary condition reduces to

εσ1(0, x2) · ns = −hρü0 . (64)

2.4 Practical resolution of the effective equations

Practically, we need to use the above results with a classical wave equation solver like SEM. The

idea is to use this solver only inΩs, which meshing is simple compared to the one ofΩε. To take

into account the order 0 and 1 boundary conditions (equations 31 and 64),the different orders are

combined together, as it often done in such a case (e.g. Fish & Chen 2004, Capdeville & Marigo 2007,

Capdeville & Marigo 2008, Capdevilleet al.2010a):

ũε,i(x) = u0(x) + εu1(x) + ...+ εiui(x) , (65)

σ̃ε,i(x) = σ0(x) + εσ1(x) + ...+ εiσi(x) , (66)

and we have

uε(x) = ũε,i(x) +O(εi+1) . (67)

From (14) and (15), it can be seen thatũε,1 andσ̃ε,1 are driven by the same wave equation as for the

original problem, but the boundary condition onΓs is different:

σ̃ε,1 · ns = −hρ¨̃uε,1 on Γs . (68)

So, in practice, solving the original problem inΩε is replaced by solving the same wave equation

problem but inΩs and replacing the free boundary condition onΓε by the dynamic boundary condition
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(68), where theh andb1 coefficients are computed solving the cell problem (48) with an effective

interfaceΓs vertical position such thatb2 + h = 0.

If a receiver is close to the free surface (within two or threeλm), the solution can be corrected to

the order 1 with:

ṽε,1/2(x) = ũε,1(0, x2) + x1
∂ũε,1

∂x1
(0, x2) + εV

(x

ε

)

σ̃ε,1
22 (0, x2) . (69)

or, to the same order, by

ṽε,1/2(x) = ũε,1(x) + εV
(x

ε

)

σ̃ε,1
22 (0, x2) . (70)

Note that we have used an half order (“1/2”) because it is only a partial order 1 solution as〈ṽ〉 hasn’t

been computed. Both expressions are valid, but (70) is useful if the receiver is located inΩs, whereas

(69) is useful when a receiver is outside ofΩs (but still inΩε).

In practice, for the examples presented in the present paper, including for the non-periodic case,

the receiver corrector effects are small.

2.4.1 External source in the boundary layer

If the external sourcef is within two or threeλm from Γε, a correction might be necessary. To do

so, we follow the same argument as the one used in our previous works (Capdeville et al., 2010a;

Capdevilleet al., 2010b).

For a moment tensor located inx0, the external force is

f(x, t) = g(t)M ·∇δ(x− x0) (71)

whereg(t) is the source time wavelet andM the symmetric moment tensor. As shown by Capdeville

et al. (2010a), to ensure the conservation of the energy released by the source in the original model,

we need to find a moment tensorMε,0 such that

(uε,f) =
(

ũε,0,f ε,0
)

+O(ε) , (72)

where( . , . ) is theL2 inner product and

f ε,0(x, t) = g(t)Mε,0 ·∇δ(x− x0) . (73)

Using an integration by parts and the symmetry of the moment tensor, (72) becomes

M : ǫ (uε) |x0
= Mε,0 : ǫx

(

ũε,0
)

|x0
+O(ε) . (74)

Using (11), expansion (9) and property (37), after some calculus, wefind, to the order 0

Mε,0 = Gε(x0/ε) : M , (75)
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where

Gε
ijkl(y) =

1

2
(δikδjl + δjkδil) + cij22ǫy,kl (V) (y) (76)

2.5 Numerical considerations

2.5.1 Numerical resolution of the cell problem

In general, solving the cell problem (48) cannot be done analytically anda finite element solver is

required. The periodic cellY is not bounded iny1 which could be a problem. Practically it is not: the

solutionT exponentially decays to zero (Sanchez-Palencia, 1986; Dumontet, 1990), and therefore,

a boundedY with the Y3 boundary placed at a depth of3λm with a free boundary condition at

the bottom, is enough to obtain a good solution. We use the same solver as the one developed for the

volume homogenization (Capdevilleet al., 2010b), a relatively high order finite element method based

on a triangular mesh to solve the weak (or variational) form of the cell problemequations. The finite

element interpolation is based on the Fekete points (Pasquetti & Rapetti, 2004; Merceratet al., 2006)

and we employ an high order integration quadrature (Rathodet al., 2004). Depending on the shape of

the topography, the solutions can present singularitiesfor topography kinks of angle (measured on the

solid side) greater than 180◦ (Grisvard, 1985). These singularities are not a problem for the accuracy

of theb coefficient, nevertheless, it can alter the accuracy of the correctorsV andT, which means

that these singularities may need some attentions (by using locally a denser mesh,for example) if a

source or a receiver are in the vicinity of such a singularity. Once (48) solved, theb2 andh coefficients

can easily be computed and theΓs vertical position such thatb2 + h = 0 yields.

2.5.2 Numerical resolution of the effective wave equation

For the wave equation solver, we use a spectral element tool. To implement the order 1 boundary cor-

rection (63), we need to modify the internal forces and the mass matrix. If the effective topographyΓs

is chosen such thath is positive (that isΓs is below the average topographyΓa), then the mass matrix

modification always leads to a stable scheme. The internal forces modification on theother hand often

leads to an unstable scheme. ChoosingΓs vertical position such thath = −b2 solves the problem: in

such a case, as already mentioned at the end of Sec. 2.3, the internal forces modification is zero and

therefore always stable. Furthermore, we will see thatb2 is always negative, which leads to a positive

h and close to be equal to half of the average height of the interface topography amplitude variation

e/2. With such a choice, we see that the wave somehow propagates below the fast topography, and

that only the inertial effect of the topography affects the wave.
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Γε
▲ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏ ❏

❏ ❏

❏

▲

▲ A

B

Figure 3. Configuration for the periodic test. The white squares represent the receiver locations and the triangle

A and B the two source locations used for the tests.

ε 0.2 0.1 0.05

e 100 m 50 m 25 m

b2 -46.4 m -23.2 m -11.6 m

error order 0 1.2 1.3 1.1

error order 1 1.2 0.27 0.05

Table 1.Values of computedb2 andE(ũ0,ε) andE(ũ1,ε) L2 norm error (see (77)) for 3 values ofε.

2.6 Validation tests

We carry out a validation test in a simple configuration presented on Fig. 3. The actual domain size

is 80×20 km2 surrounded wih a Perfectly Matched Layer (PML, in the version proposed by Festa

et al. (2005)), but for the top. The source is either located 200 m below the freesurface (triangle

A on Fig. 3) or in the topography (triangle B on Fig. 3). The receivers are located 100 m below

the free surface (white squares on Fig. 3). The density, S wave velocityand P wave velocity are,

respectively, 3000 kg/m3, 3.2 km/s and 5 km/s. The source time wavelet is a Ricker (second derivative

of a Gaussian). Its maximum frequency is 3.2 Hz, such that the minimum wavelengthλm is about

1 km. Three values ofε are tested, 0.2, 0.1 and 0.05, corresponding respectively toe =100 m, 50 m

and 25 m andl =200 m, 100 m and 50 m. A reference solution is computed for the three cases with a

SEM mesh based on degree 5 elements. Knowing that, for an homogeneous body, 1 km width elements

would be enough for an accurate result, forε =0.05 the mesh is oversampling the wavefield by a factor

40, leading to an over-cost of a factor 1600 for a structured mesh. Forthe asymptotic solution, we

use a flat interfaceΓs location such thatb2 + h = 0. Solving the cell problem, the obtained values

for b2 are given in Tab. 1. It is interesting to note that, in each case,b2 has a value close toe/2. This

means that the effective interfaceΓs is almost located at the bottom of the interface topography. For
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Figure 4. Vertical (right graphs) and horizontal components (left graphs) for the reference solution (black line),

order 0 solution (green line) and order 1 solution (red line)for three values ofε (ε =0.2 top graphs,ε =0.1

middle graphs,ε =0.05 bottom graphs) and for an epicentral distance of 35 km.

the order 0 solution, we just perform regular spectral element simulations inΩs for each value of

ε (Ωs changes for eachε value becauseΓs changes withε). For the order 1, we perform the same

spectral element simulations as for the order 0, but this time taking into account the order 1 boundary

condition (that is just an extra weight). A sample of the obtained seismograms for both components is

presented on Fig. 4 for a receiver located 35 km away from the source. It can be seen that the order 0

solution is not accurate, even for such small values ofε. To more precisely investigate the accuracy of

the method, we use the followingL2 norm error:

E(u) =
1

N

N
∑

i=1

√

∫ tmax

0 (u̇− u̇ref )2(xi, t)dt
√

∫ tmax

0 (u̇ref )
2
(xi, t)dt

, (77)

whereN is the number of receivers. For the order 0, even if no convergence for the L2 norm is

observed in the presented range ofε (see Tab. 1), it can be seen, observing the traces on Fig. 4, that the

phase is roughly getting better inε and we can therefore guess that, at some point, for very smallε, a
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L2 error convergence inε would be observed. For the order 1, first, the accuracy of the results,is much

better than for the order 0 for all the tested values ofε, and second, the convergence is roughly inε2

betweenε = 0.2 and0.1 (see Tab. 1). The inertial effect of the order 1 boundary condition is therefore

important and we can conclude by a physical interpretation: the elastic wavesare not propagating

in the fast topography, but they are propagating below it and the fast topography is just acting as a

incompressible infinitely thin layer of material loading the free surface. As expected, the extra weight

due to the fast topography is slowing down the apparent velocity of the surface wave.

We haven’t shown any seismograms computed using the average topographyΓa as an effective

topography, which is the solution commonly adopted. This is because they are very similar to the one

obtained usingΓs, just a small amplitude difference would be seen.

Finally a test for a source within the boundary layer (triangle B on Fig. 3) is performed. On

Fig. 5 are shown the vertical component seismograms for an epicentral distance of 35 km for three

cases: order 1 without the source correction (75), the order 1 with the source correction (75) and,

for comparison, the order 0 with the source correction (75). It can be noted that the amplitude of the

signal without the source correction is way too large compared to the reference seismogram, and once

corrected, the signal amplitudes have a good match. For a more accurate result,a smallerε would

be required. Finally, let us mention that obtaining the reference with SEM is nottrivial in such a

case. Indeed, the mesh has needed to be designed far finer than the usual sampling of the wavefield

to converge, leading to an impressive numerical over-cost. This is unusual because even for highly

inhomogeneous medium, no serious oversampling around the source is most of the timerequired.

For a source embedded within a fast topography, this is different and a serious oversampling has

been necessary to obtain a converged solution. This shows how useful can be the present asymptotic

method in such case (the mesh for the effective solution does not need any oversampling, even around

the source).

3 NON-PERIODIC CASE

In this section, the boundary variations are not assumed to be periodic anymore. We consider a gen-

eral deterministic boundaryΓ0 on the top of our infinite half spaceΩ0. We seek for an approximate

solution to the displacementuref solution of the wave equation:

ρ∂ttu
ref −∇ · σref = f in Ω0 ,

σref = c : ǫ(uref ) in Ω0 ,

σref · n = 0 on Γ0 ,

(78)

wheren is the outward normal toΓ0.
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10 15
time (s)

0

reference
order 1, no source correction
order 1, source correction
order 0, source correction

Figure 5. Horizontal component seismograms for the source within theboundary layer (triangle B on Fig. 3)

for a receiver 35 km away from the source. The reference solution (black line), the order 1 solution without the

source correction (75) (blue line) the order 1 with the source correction (75) (red line) and order 0 solution with

the source correction (red line) for values ofε = 0.1 are plotted.

Before we start, let us summarize the ideas of the following development.For the non periodic

case, the periodicity is not there anymore to allow to separate naturally the microscopic from the

macroscopic scales and to build a series of problem depending on a small parameterε. The main idea

of the non-periodic homogenization is to introduce manually a scale separation. Todo so, the Fourier

domain in the “horizontal direction” is used and a user defined wave numberk0 is set to be the limit

between the slow variations (k < k0) and the fast ones (k > k0). Thek0 allows to define a small

parameterε0 = 1/(k0λm). The “horizontal direction” mentioned above needs to be precised: the

effective surface waves are propagating along an effective free surface that is not necessarily flat and

the “horizontal direction” means here “along the effective topography”.Following this idea, we build

the microscopic variabley = ζ−1
ε0 (x)/ε whereζε0 is a transformation built such that the effective

topography is the image of the flaty2 axis. Therefore, in they domain, the effective topography is flat.

ε is a small parameter meant to play the same role as theε of the periodic case is introduced. It is in

general different fromε0. Onceε0 is set and fixed, the fast variabley defined, a series of two scale

topographyΓε0,ε is built, leading to a series ofε-indexed series of problem. This series of problem is

equal to the original problem only whenε0 = ε and whenx = ζε0(ε0y). Once the construction of

the series of problem is done, even if some complications due to the transformationζε0 appear, the

resolution of the homogenization problem is essentially the same as for the periodic case as well as

the form of the solution up to the order 1. As for the periodic case, we find that the leading term of the

asymptotic solutionuε0,0 does not depend uponε but depends onε0. In other words, for each fixed

value ofε0, we have a two scale homogenization problem leading to particular homogenized solution
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Figure 6. The non-periodic domains and transformation

and therefore the homogenized solution depends on the initial choice of thek0 in the Fourier domain.

Once the two scale problem is solved, the effective topography still needsto be found. Indeed, we have

so far assumed that the effective topography is known, which is not the case at the initial stage. The

solution adopted here is iterative and based on the following criteria: a smooth topography is thought

to be the effective topography if the fast variable part (y part) of the the correctors, solutions to the

cell problem (T andV), computed with such an effective topography, present only fast variations in

the horizontal direction, i.e. their Fourier spectrum is zero fork < k0 in they domain.

3.1 Settings

For the non-periodic case, the small parameterε is not as clearly defined as for the periodic case:

ε =
λ

λm
, (79)

whereλ is a spatial wavelength or a scale. In the non-periodic case, another parameter is required

ε0 =
λ0

λm
, (80)

whereλ0 = 1/k0 is the user-defined scale below which a wavelength is considered as belonging

to the small scale (microscopic) domain. Reciprocally, a wavelength larger than λ0 is considered as

belonging to the large scale (macroscopic) domain. The parameterλ0 is user-defined, but it makes

sense to assume that the wavefield interacts with scales smaller thanλm. Therefore, choosing an

ε0 ≪ 1, which means considering as microscopic boundary topography scales whose size is much

smaller than the minimum wavelength, is probably a good guess.ε is a once again purely formal

parameter which value has a physical meaning only whenε = ε0. We need to define a way to separate

scales and we cannot count on a periodicity for this anymore. To this end, we introduce a procedure

summarized on Fig. 6. We first assume that we are able to build a smooth “effective” interfaceΓε0
s ,
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where its quality of being “effective” will be precised later in the paper.Γε0
s depends upon theε0 in

a way that will also be precised later on, butε0 somehow gives the degree of smoothness ofΓε0
s (the

largest isε0, the smoothest isΓε0
s ). Once again, for the sake of simplicity and without loosing the

generality of the results, we assume thatΓε0
s can be written asΓε0

s = {x ∈ R
2;x1 = Γε0

s (x2)}. We

defineΩε0
s , the part ofR2 belowΓε0

s (Ωε0
s = {x ∈ R

2;x1 ≥ Γε0
s (x2)}) . For a givenx belonging to

Γε0
s , we defineΩx, a sub-domain ofΩ0 centered aroundx (see Fig. 6). We define the transformation

x = ζε0(z), fromZx to Ωx (see Fig. 6), such thatΓε0
s = ζε0(Γsz), whereΓsz = {z ∈ Zx ; z1 = 0}

and such thatZz sides are alongz2 = constante lines.Zz is a rectangular domain with the rough

topographyΓε0
z on the top, whereΓε0

z is such thatΓ0 = ζε0 (Γ
ε0
z ).

Thex dependency ofZx needs to be discussed. If in general, one transformationζε0 perx may

be required, in 2D it is possible to define a single transformation for allx, or at least a piecewise trans-

formation for different topography segments. Consequently, theZ can be considered as independent

of x.

The transformationζε0 defines a curvilinear coordinate system such that a position vectorx in Ωx

can be written as:

x = xix̂i = zαgα , (81)

wherex = ζε0(z) and

gα =
∂
[

ζε0

]

i

∂zα
x̂i (82)

is the covariant basis vectors andzα the contravariant components. Note that thegα vectors depend

onε0. We also define theZ normalized covariant basis vector

ẑi = ĝi =
gi√
gii

(no sum) , (83)

wheregij is the metric tensor of the curvilinear coordinate system. Furthermore, we assumethat in the

neighborhood ofΓε0
s , this curvilinear coordinate system is locally orthogonal, such that

gi · gj = giiδij (no sum) forz close toΓsz . (84)

Thanks to this orthogonality of the curvilinear coordinate system in the neighborhood of the effective

interface, we can assume that outward normaln to Γ0 is also normal toΓε0
z , the top boundary ofZ.

For the sake of simplicity, we also assume that no length deformation occurs in thethe neighborhood

of the effective interface with the transformationζε0 and thereforegi · gj = δij (the metric tensor is

the identity). This last assumption is not really necessary, but it avoids to have totake the metric tensor

into account in the following development, especially for the spatial filtering operations. With such an
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assumption, we simply have

ẑi = ĝi = gi , (85)

and thêzi basis vectors are orthonormal.

We once again define the fast variabley, but this time with respect toz:

y =
z

ε
, (86)

and therefore

y =
ζ−1
ε0 (x)

ε
. (87)

y takes values inY which unit basis vectorŝyi are the same aŝzi. Note that the unit vectorŝyi do not

depend upony, nevertheless, they depend uponx. Zx is the image ofYx through the transformation

(86). The domainYx in general, depends uponx, nevertheless, as mentioned earlier, we can define a

single transformationζε0 for the whole domainΩ0 which allows to drop theY dependency onx.

Whenε → 0, we considerz andy (and thereforex andy) as independent variables.

Similarly to the periodic case, thisx andy independence implies that partial derivatives with

respect tox become

∇x → ∇x +
1

ε
∇y , (88)

and

ǫx → ǫx +
1

ε
ǫy , (89)

where it is necessary to detail the action of∇y. They divergence of a second rank tensord is

∇y · d =
∂dαβ

∂yα
ŷβ , (90)

wheredαβ are the contravariant components ofd in the curvilinear coordinate system. Similarly, for

any vectorh,

ǫy(h) =
1

2

(

∂hα

∂yβ
+

∂hβ

∂yα

)

ŷα ⊗ ŷβ , (91)

where⊗ is the tensor product.Note that no partial derivative of thegα basis vector are involved as it

would be the case for ax divergence or gradient expressed in the curvilinear coordinate system.For

example, the contravariant component of thex divergence ofd is

[∇x · d]α =
∂dαβ

∂zα
+ Cα

αγ d
γβ + Cβ

αγ d
αγ , (92)

whereCγ
αβ are the Cristoffel symbols of the second kind and[·]α theα contravariant component.

We define the waveletwm(y2) = wkm(y2) wherewkm is the lowpass filter wavelet with a
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wavenumber cutoff aroundkm = 1/λm. We assume that the support ofwm is contained in[−αλm,+αλm]

whereα is a positive number that depends upon the specific design ofw. We assume that the transfor-

mationζε0 is such the width of the periodic cellYw = [0, 2βλm] whereβ is a positive number greater

thanα. We also define,Yz a boxcar limited version ofY centered onz:

Yz = {y ∈ Y; y2 ∈ [εz2 − βλm, εz2 + βλm]} . (93)

We defineT = {t(z2,y) : R × Yz → R , Yw-periodic iny2} the set of functions or tensors

defined iny onYz and periodically extended toR in y2. We define the lowpass filtering operator, for

any tensor of functiont ∈ T :

F (t) (z2,y) =

∫

R

t(z2, y1, y
′
2)wm(y2 − y′2)dy

′
2 . (94)

F (t) is a lowpass filtered version oft, but only the horizontal (y2) direction. Finally letV be the set

of tensors of functionst(z2,y) such that, for a givenz2, they2 part ofh is periodic and contains only

spatial frequencies higher thankm, plus a constant value iny2:

V = {t ∈ T ;F (t) (z2, y1, y2) =≪ t ≫ (z2, y1) for y1 > 0 } , (95)

where

≪ t ≫ (z2, y1) =
1

|Yw|

∫

Yw

t(z2, y1, y2)dy2 , (96)

where|Yw| = 2βλm. In other words,V is the set of functions that vary rapidly iny2 and, as mentioned

at the beginning of the non-periodic case section, whose Fourier spectraalongz2 is zero fork < k0

plus a constant value. It is the equivalent of the set ofy2 periodic function in the periodic case.

To build the asymptotic problem, we first define a topographyΓε0 = {(x,y) ∈ R
4;Γε0

f (x,y) =

0} with Γε0
f Yw-periodic iny2 and such thatΓε0 andΓ0 are the same alongy =

ζ−1
ε0

(x)

ε0
. If we define

Pε0,ε the subspace ofR4 of physical possibilities,

Pε0,ε =

{

(x,y) ∈ R
4;y =

ζ−1
ε0 (x)

ε

}

(97)

then this condition can be written as

Γε0 ∩Pε0,ε0 = Γ0 . (98)

We assume that, with such a definition, we can find a smooth effective topographyΓε0
s (on which

dependsζε0) such that a solution to the problem described below exists. This assumption is by far not

obvious and the construction of such aΓε0
s from Γ0, which is a critical point of this article, is left for

Sec. 3.4. We defineΓε0,ε, a sequence ofε-indexed topography inR2,

Γε0,ε ≡ Γε0 ∩Pε0,ε (99)
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leading to aε-indexed set of wave equation problems

ρ∂ttu
ε0,ε −∇ · σε0,ε = f in Ωε0,ε ,

σε0,ε = c : ǫ(uε0,ε) in Ωε0,ε ,

σε0,ε · nε0,ε = 0 on Γε0,ε ,

(100)

whereΩε0,ε is the half space belowΓε0,ε andnε0,ε its outward normal. Thisε-indexed set of prob-

lems is purely formal and designed to set up an asymptotic problem for which most of the properties

obtained for the periodic case are still valid.It is the equivalent of the problem (3) for the periodic

case. Its solutionsuε0,ε can be related to the solution of the original problem only whenε0 = ε as

discussed in Sec. 3.5.

We still consider two asymptotic expansions for the solutions(uε0,ε,σε0,ε),

• one validaway from Γε0,ε, x ∈ Ωε0
s :

uε0,ε(x) = uε0,0(x) + εuε0,1(x) + ε2uε0,2(x) + ... (101)

σε0,ε(x) = σε0,0(x) + εσε0,1(x) + ε2σε0,2(x) + ... (102)

• one validclose toΓε0,ε, for (z2,y) ∈ R× Yz,

uε0,ε(x) = vε0,0(z2,y) + εvε0,1(z2,y) + ε2vε0,2(z2,y) + ... (103)

σε0,ε(x) =
1

ε
τ ε0,−1(z2,y) + τ ε0,0(z2,y) + ετ ε0,1(z2,y) + ε2τ ε0,2(z2,y) + ... (104)

where the loose notationvε0,i(z2,y) ≡ vε0,i(ζε0((0, z2),y) is used (and similarly forτ i) and where

vε0,i andτ ε0,i are sought inV , i.e. they must contain only fast variations iny2.

We work atε0 fixed and, to ease the notations, theε0 dependency ofuε0,i , vε0,i, σε0,i andτ ε0,i

is dropped in the following. Nevertheless, one must keep in mind that the whole solution, even the

leading term, depends on a particular choice ofε0.

Deriving the equation driving the asymptotic coefficients is very similar to the periodic case.

Nevertheless, thex divergence for tensors belonging toΓε
s in x needs to be clarify. First, let us remind

that, for the general case, the gradient of a vectorh(x) is defined as

∇xh ≡ ∂h

∂zα
⊗ gα , (105)

wheregα is the contravariant curvilinear basis vectors. Thanks to the orthonormality of the curvilinear

basis vectors in the vicinity ofΓε0
s , we havegα = gα. The gradient along a curvilinear vector basis,
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can be written

gα ·∇xh ≡ (∇xh) · gα , (106)

=
∂h

∂zβ
(gβ · gα) , (107)

=
∂h

∂zα
. (108)

We can now define thex divergence for any tensord(z2) belonging toΓε
s (i.e. doesn’t depend onz1),

∇g2
· d ≡ (g2 ·∇xd) · g2 =

∂d

∂z2
· g2 = ∇x · d . (109)

Similarly, for any vectorh(z2) belonging toΓε
s in x,

ǫg2
(h) ≡ 1

2

(

∂h

∂z2
⊗ g2 + g2 ⊗

∂h

∂z2

)

= ǫx(h) . (110)

Following the same classical procedure as for the periodic case,we easily obtain the asymptotic equa-

tions:

• equations in the volumeΩε0
s , for i ≥ −2:

ρ∂ttu
i −∇x · σi = fδi0 in Ωε0

s , (111)

σi = c : ǫx
(

ui
)

in Ωε0
s (112)

lim
x1→∞

σi · x̂1 = 0 . (113)

• equation in the boundary layer:

ρ∂ttv
i −∇g2

· τ i −∇y · τ i+1 = fδi0 in R× Yz , i ≥ −2 , (114)

τ i = c :
(

ǫg2

(

vi
)

+ ǫy
(

vi+1
))

in R× Yz , i ≥ −1 (115)

τ i · n = 0 onR× Γε0 i ≥ 0. (116)

The matching conditions need a special care and their development is given inappendix B. The

two first orders are

• order 0:

lim
y1→∞

(

v0(z2, y1, y2)− u0(x)
)

= 0 ,

lim
y1→∞

(

τ 0(z2, y1, y2)− σ0(x)
)

= 0 ;
(117)

• order 1:

lim
y1→∞

(

v1(z2, y1, y2)− u1(x)− y1 (g1 ·∇x)u
0(x)

)

= 0 ,

lim
y1→∞

(

τ 1(z2, y1, y2)− σ1(x)− y1 (g1 ·∇x)σ
0(x)

)

= 0 ;
(118)

with x = ζε0((0, z2)) in (117) and (118).
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3.2 Iterative resolution of the asymptotic equations

We now solve the asymptotic equations for the order 0 and for the first order corrector.

3.2.1 Order 0

At this stage, the periodic-case and non-periodic case equations are the same and therefore, the res-

olution can be followed identically. The only point that needs some attention is whenan integration

by part is used over the cell domainYz. Indeed, for a general transformationζε0 the outward normal

ny to ∂Yz is not the same asn the outward normal toΩx. Nevertheless, as mentioned in Sec. 3.1,

the transformationζε0 is built such that the curvilinear coordinate system is orthogonal around the

effective free surface. As the free surface is in the neighborhood of the effective free surface,ny and

n are collinear and the boundary conditionτ i · ny = 0 onΓε(x,y) is valid. Knowing this, we easily

find

v0(z2,y) = v0(z2) , (119)

τ−1 = 0 . (120)

The order 0 matching condition for the displacement yields:

u0(0, z2) = v0(z2) . (121)

For the order 0 boundary condition, by the same token as for the periodic case and knowing that

ŷ1 = g1 for x on the effective interface, we find (g1 is the inward normal toΓε0
s ),

σ0(x) · g1 = 0 for x ∈ Γε0
s . (122)

3.2.2 Order 1

The order 1 development is very similar to the periodic case, but for the details very little of the

development can be avoided. Eq. (111) fori = −1 and Eq. (112) fori = 0 yield:

∇y · τ 0 = 0 , (123)

τ 0 = c :
(

ǫg2
(v0) + ǫy(v

1)
)

. (124)

We seek for solutions to the last equations as

v1(z2,y) = y1(g1 ·∇x)u
0 + v̂(z2,y) = y1

∂u0

∂z1
(0, z2) + v̂(z2,y) , (125)

τ 0(z2,y) = σ0(0, z2) + τ̂ (z2,y) , (126)
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wherev̂ andτ̂ belongs toV . Using the fact thatσ0 does not depend ony, (123) easily gives us

∇y · τ̂ = 0 . (127)

Using (121), (110) and the fact that∇yy1 = ŷ1 = g1, we have, onΓs

ǫy
(

y1(g1 ·∇x)u
0
)

+ ǫg2
(v0) = ǫx(u

0) , (128)

then, (125) and the last equation yield

τ 0 = c :
(

ǫx(u
0) + ǫy(v̂)

)

, (129)

= σ0 + c : ǫy(v̂) . (130)

Using the boundary condition (116), the order 1 asymptotic problem reducesto the following problem:

τ̂ = c : ǫy(v̂) in R× Yz , (131)

∇y · τ̂ = 0 in R× Yz , (132)

τ̂ · n = −σ0(0, z2) · n on R× Γε0 , (133)

lim
y1→∞

τ̂ · ŷ1 = 0 , (134)

v̂(z2,y) and τ̂ (z2,y) are inV . (135)

Based on the linearity of the last problem and noting that the only non zero component of σ0 is

σ0
g2g2

(0, z2) ≡ g2 · σ0 · g2, we seek for solutions under the following form:

v̂(z2,y) = σ0
g2g2(0, z2)V(z2,y) + 〈v̂〉 (z2) (136)

τ̂ (z2,y) = σ0
g2g2(0, z2)T(z2,y) , (137)

whereV andT are inV . From equations (131–135), we show thatV andT are solutions of the

following cell problems:


















































T = c : ǫy (V) in R× Yz ,

∇y ·T = 0 in R× Yz ,

T · n = −(n · ŷ2) ŷ2 on R× Γε0 ,

lim
y1→∞

T · ŷ1 = 0 .

T and V in V .

(138)

The last problem can be solved based on the same finite elements solver as for the periodic case. It

is actually the same problem as for the periodic case but in a deformed geometry resulting of theζε0

transformation. We are now able to computeτ̂ and incompletelŷv (〈v̂〉 is not determined).

We now need to compute the order 1 boundary for the volume. This developmentis very similar to
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the periodic case, nevertheless, we need to go through it again to account for the deformed geometry.

The external sourcef is once again assumed to be in the volume domain, and is reintroduced later if

this is not the case. Integrating the stress matching condition fori = 1 overYw, we find

|Yw|σ1(0, z2) = lim
y1→∞

(∫

Yw

τ 1(z2,y) dy2 − y1|Yw|(g1 ·∇x)σ
0(0, z2)

)

. (139)

Eq. (114) fori = 0 gives

∇y · τ 1 = ρv̈0 −∇g2
· τ 0 , (140)

and therefore,

∇y · τ 1 +∇g2
· σ0(0, z2) +∇g2

· τ̂ = ρv̈0 . (141)

Using the definition (93) ofYz, we have∂z2Yz = O(ε) and therefore,

∇g2
·
∫

Yz

τ̂dy =

∫

Yz

∇g2
· τ̂dy +O(ε) . (142)

Using (121), integrating (141) overYz(y1) and passing to the limit and using the last equation, we

obtain, to the first order,

∇g2
·
∫

Yz

τ̂dy = lim
y1→∞

(

−
∫

Yz(y1)
∇y · τ 1dy′ + |Yz(y1)|

(

−∇g2
· σ0 + ρü0

)

)

. (143)

Using an integration by parts, the free boundary condition alongΓ and the periodicity iny2, we find

∫

Yz(y1)
∇y · τ 1(z2,y

′) dy′ =

∫

Yw

τ 1(z2, y1, y2) · g1 dy2 . (144)

Using (144) and (139) in (143), we have

∇g2
·
∫

Yz

τ̂dy = −|Yw|σ1 ·g1+ lim
y1→∞

(

−y1|Yw|(g1 ·∇x)σ
0 · g1 + |Yz(y1)|

(

−∇g2
· σ0 + ρü0

))

,

(145)

where|Yz(y1)| =
∫

Yz(y1)
dy′. Using (111) fori = 0 and(g1 · ∇x)σ

0 · g1 = ∇g1
· σ0 in the last

equation, we get

∇g2
·
∫

Yz

τ̂dy = −|Yw|σ1 · g1 + lim
y1→∞

(|Yz(y1)| − y1|Yw|)
(

−∇g2
· σ0 + ρü0

)

, (146)

which finally leads to the order 1 volume boundary condition onΓε0
s ,

εσ1(0, z2) · g1 = − ∂

∂z2
(σ0

g2g2
b(z2)) + h(z2)

(

−∇g2 · σ0 + ρü0
)

, (147)
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where

b(z2) =
ε

|Yw|

∫

Yz

T · ŷ2 dy , (148)

h(z2) = ε lim
y1→∞

|Yz(y1)| − y1|Yw|
|Yw|

. (149)

Based on the same demonstration as for the periodic case, we show thatb · ŷ1 = 0. Using again the

fact that onlyσ0
g2g2

is non zero onΓs, we can rewrite the order 1 boundary condition onΓs as:

εσ1(0, z2) · g1 =
{

− ∂

∂z2

(

(b · ŷ2 + h)σ0
g2g2

g2
)

+
∂h

∂z2
σ0 · g2 + hρü0

}

z=(0,z2)

. (150)

Using the fact that∂z2h = O(ε), the last equation can also be written, to the first order:

εσ1(0, z2) · g1 =
{

− (g2 ·∇x)
((

(b(z2) · ŷ2 + h)g2 · σ0 · g2
)

g2
)

+ h(z2)ρü
0
}

z=(0,z2)
. (151)

3.3 Construction ofζε0

AssumingΓε0
s is known, following Fletcher (1991) and Komatitschet al. (1996), we use a simple

algebraic method based on third degree Hermite polynomials allowing to obtain an orthonormal curvi-

linear basis vector in the neighborhood ofΓε0
s . This allows to build a parametric transformationζε0 .

The inverse transformationζ−1
ε0 is not known analytically, but can be built numerically.

3.4 FindingΓε0
s and consequences

Now that we have shown how to write and solve the matched asymptotic problem for the non-periodic

case, the main point of this paper is to find a smooth effective topographyΓε0
s that will define the

transformationζε0 such thatT andV indeed belong toV . We will not try to show that such a smooth

effective topographyΓε0
s exits in general or that there is some kind of uniqueness up to a constant of

the solution, if any. We just show that it is possible to find a solution in some cases and that those

cases include all the examples we have tried. A solution to findΓε0
s could be to set up optimization

algorithm, but that would be probably difficult. Instead, we propose an intuitive iterative approach for

which we need to define, for any tensort(y) in Yz and extended toR2 with zeros,

F̄ (t) (y2) ≡
∫

Yz

wm(y2 − y′2)t(y
′
1, y

′
2) dy

′ . (152)

=

∫

R

F (t) (y1, y2) dy1 . (153)

F̄ (t) (y2) is the sum alongy1 of all t lowpass filtered cross sections alongy2. Moreover, we define

F̄a (t) (y2) =

∫

Yz,y1≥0
wm(y2 − y′2)t(y

′
1, y

′
2) dy

′ , (154)
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and

F̄b (t) (y2) =

∫

Yz,y1<0
wm(y2 − y′2)t(y

′
1, y

′
2) dy

′ , (155)

suchF̄ (t) = F̄a (t) + F̄b (t).

We propose to take advantage of the following property (see appendix C):

F̄ (T22) = F̄a (T22) + F̄b (T22) = F (Γε0) . (156)

Note thatF (Γε0) is simply the lowpass filtered topography. The last equation therefore means that

the lowpass filtered topography is equal tōF (T22). The idea is the following: ifT belongs toV ,

thenF (T22) (y1, y2) = cst for y1 ≥ 0, wherecst is a constant value iny2. Assuming, for the

sake of simplicity, that
∫

cst dy1 = 0, T belongs toV therefore implies that̄Fb (T22) = 0. Even if

F̄b (T22) = 0 is not a warranty thatT belongs toV , we at least need to find an effective topography

such thatF̄b (T22) = 0. For a wrong effective topography,̄Fb (T22) is not zero and, based on (156),

we make the assumption, that we just need to removeF̄b (T22) fromF (Γε0) and to iterate this process

to obtain the wanted results. With such an idea, we propose the following scheme:

(i) iteration iter = 0; We assume a flat effective free surface at start. Therefore, we build a flat

Γε0,iter=0
s interface and build the associate transformationζiter=0

ε0 as well as its inverse
[

ζiter=0
ε0

]−1

(see Sec. 3.3).

(ii) build Y
iter
z = [ζiterε0 ]−1(Ω0)∩⊓z finite element mesh, where⊓z =

{

y ∈ R
2; y2 ∈ [εz2 − βλm,

εz2 + βλm]}
(iii) solve the cell problem (138) forTiter;

(iv) computeF̄b

(

T iter
22

)

and deduceΓε0,iter+1
s (x) = F̄b (T22) (ζ

iter
ε0 (εy))

(v) if F̄b

(

T iter
22

)

is small enough, the process is over; if not, buildζiter+1
ε0 from Γε0,iter+1

s (x) and

go to (ii).

As we will show for an example in Sec. 3.7, and for all the examples we have tried, following this

scheme, we find̄Fb (T22) = 0, but alsoT in V .

Once an appropriate effective topography is found, the problem is notsolved yet. Indeed, depend-

ing on the chosen width ofYz and on the topography, the coefficientsb(z2) andh(z2) are not really

smooth and can contain order 1 discontinuities. For a direct solver this can be aproblem and smoother

coefficients would be appropriate. This problem is another matched asymptoticproblem. Its resolution

is simple and leads to a cell problem similar to (138). The difference is that we have a smooth topog-

raphy with an independent fast boundary condition (and not a fast topography and boundary condition

that depends on this topography as it is the case for (138) ). The homogenization problem is therefore

linear with respect to the coefficientb andh which means that homogenization problem is trivial.
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In such a case, the scale separation can be done with any king of linear filtering onb andh to find

effective coefficientsb∗ andh∗. The fact that this second homogenization has to be done to obtain

b∗ andh∗ is not very satisfactory and one could hope to obtain these effective coefficients form the

effective topography in a single step. Unfortunately, we haven’t any found alternative algorithm so far.

In practice, solving the cell problem (138) on a large number of small domainsYz is technically

not straightforward because it imposes to design a large number of small meshes. Meshing tool effi-

cient manipulations requires some skills that the authors don’t have and we prefer an alternate strategy

that is not fully equivalent and probably numerically less efficient but is easier to implement and that

gives good results. Instead of a large number of small domains, we use the above iterative scheme on

the whole domain at once, or on a few smaller domains (for parallel computing reasons for example).

Once the effective topography is found, we compute the effective coefficients as

h⋆ = Fm′ (h) , (157)

b⋆ = Fm′ (b) , (158)

where, for anyt

Fm′ (t) (z2) =
1

ε0

∫

R

t(z′2)wm′

(

z2 − z′2
ε0

)

dz′2 , (159)

andwm′ is a lowpass filter with akm′ wave number cutoff that can be different from the cutoffkm

used in Sec. 3.1. Property (156) is still valid, which means thath⋆ + b⋆2 = 0. Therefore, finally, the

order 1 boundary condition onΓε0
s reduces to

εσ1(0, z2) · g1 = h⋆(z2)ρü
0|z=(0,z2) . (160)

km′ could be used to define another small parameterε1, but we do not investigate this possibility

and setkm′ = km and, in this paper, we therefore haveε1 = ε0. To conclude, let us say that, if

the calculus for the non-periodic case is more difficult than for the periodic case, the result for the

boundary condition is the same. The new aspect is that the effective topography needs to be evaluate

which is not as simple as for the periodic case.

3.5 Practical resolution of the effective equations

The different orders of the asymptotic expansion are combined together as it isdone for the periodic

case in Sec. 2.4. The order one correction for the receiver can be done as for the periodic case, and

the external source, if within the boundary layer, is corrected using an energy principle as proposed in

Sec. 2.4.1.

The only value ofε that has a physical meaning isε = ε0 as it is the only case for which the
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Figure 7. Graphs 0, 1 and 2: the three tested topographiesΓ0. In graph 3 is plotted the module of the spectrum

of each topography (black: topography 0; red: topography 1;green: topography 2)

solution to theε-indexed set of solutionsuε0,ε is equal to the solution of the original problemuref . We

therefore in practice always haveε0 = ε. This has a practical consequence on the type of topography

for which we can have a warranted convergence of the asymptotic solution toward uref with ε0.

Indeed, depending of the spectrum of the topography, the amplitude ofΓε0 decreases or not withε0. If

the topography spectrum is such that the amplitude ofΓε0 does not decrease withε0, we do not expect

any convergence. This is a notable difference with the non-periodic homogenization in the volume

(Capdevilleet al., 2010b) for which the convergence withε0 is independent on the property of the

elastic media as long as a minimum wavelength can be defined.

We finally replace the original problem by solving the wave equation in the domainΩε0
s with the

dynamic boundary condition (160), which is simple to implement in a spectral element program. The

effective topographyΓε0
s nevertheless needs to be meshed, which is not as simple as for the periodic

case, but a much simpler problem than meshing the original topographyΓ0. The effective solutions

depend onε0 and we expect the accuracy to increase whenε0 decreases.
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3.6 Validation tests

In this section, we test the non-periodic algorithm on three topographies shown on Fig. 7, graph 0,

1 and 2. Each of these three topographies have a low frequency component, and a high frequency

component with the following type of spectrum:

• topography 0: flat high frequency spectrum;

• topography 1:k−1 high frequency spectrum;

• topography 2:k−2 high frequency spectrum.

The spectrum of each topography is plotted on Fig. 7, graph 3. It can benoted that the spectrum of

topography 0 is flat for high wavenumber, which implies that there is little chancethat the amplitude of

Γε0 decreases withε0 and therefore, as mentioned in Sec. 3.5, we expect, in that case, some difficulties

for the convergence. Even if the earth large scale topography spectrum is more ink−2, none of the

tested topographies is supposed to be realistic, but they provide good testsfor our method.

Before going further, let us define the average interface:

Γε0
a =

1

ε0

∫

R

wm

(

x2 − x′2
ε0

)

Γε0(x′2) dx
′
2 . (161)

Note that, if the average interfaceΓε0
a is in general different from the effective interfaceΓε0

s , wave

equation solutions computed using both topographies (with free boundary condition) are both order 0

solution. Aε0 convergence can therefore be expected for both smooth interfaces if theoriginal topog-

raphy spectrum allows it.

3.7 Iterative algorithm to find the effective topography example

Before addressing the accuracy and convergence of the effectivesolution, we illustrate the algo-

rithm proposed in Sec. 3.4. We choose the topography 0 (Fig. 7. graph 0) and run our algorithm for

λ0 =1 km. On Fig. 8, left graph, is shown̄Fb

(

T iter
22

)

for three iterations and, as expected its amplitude

decreases toward zero with the number of iterations. At the end of the process, we indeed have found

a smooth effective topography for which̄Fb

(

T iter
22

)

≃ 0. For each iteration, the new topographyΓε0

needs to be meshed. For that purpose, we use the toolgmsh(Geuzaine & Remacle, 2009) (see Fig. 9).

On Fig. 8, right graph, are plotted the correspondingΓε0
s for the last iteration and, for comparison, the

average interfaceΓε0
a . It can be clearly seen that the effective interface is below the averageinterface

and looks like a kind of lower envelope on the original topography. On Fig.10, right plot, is shown a

cut along they2 axis fory1 = 100m of T iter
22 (y) for the first and the last iterations and on the right

plot the corresponding spectrum. If theT iter=1
22 doesn’t belong toV (a significant amplitude signal can

be seen on its Fourier spectrum fork < 0.001m−1), T iter=5
22 is clearly inV (The same observation
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Figure 8. Left plot: F̄b

(

T iter
22

)

for iter = 1 (black line),iter = 3 (red line) anditer = 5 (green line). Right

plot: original topographyΓ0 (black line), the effective topographyΓε0
s for λ0 =1 km after 5 iterations (red line)

and, for comparison, the lowpass filtered topography for thesameλ0, Γε0
a (green line).

19 km
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Figure 9.Finite element mesh sample used to solve the cell problem (138), for the first iteration of the algorithm

described in Sec. 3.4, used to find the effective topography

could be made forT12, if plotted). This shows the proposed algorithm can find an effective topography

for which F̄b (T) = 0 and, moreover, it can find an effective topography for whichT is in V . The

convergence of this example and the fact thatT numerically belongs toV is representative of all the

other tested topographies.

3.8 Accuracy and convergence of the effective solution

In this section, we use reference solutions computed with SEM, meshing the three original topogra-

phies, once again usinggmsh, for an explosion located 200 m below the free surface. We then compute

the average topographiesΓε0
a and effective topographiesΓε0

s for five values ofε0. Samples of each of
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Figure 10. Left plot: T22(y1, y2) as a function ofy2 for a fixed y1, 100 m below the effective topography

for iterations 1 (black line) and 5 (red line). Right plot: corresponding module of the Fourier transform of

T22(y1, y2) alongy2 for iterations 1 (black line) and 5 (red line).The grey line corresponds tok0 = 0.001
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Figure 11.Sample of the three effective topographies (red lines) to compare with the original topography (black

line) and the lowpass filtered topography (green line) forε0 = 0.5 and for the three tested topographies, 0 (left

graph) 1 (center graph) and 2 (right graph).

the three effective topographies and average topographies are shown on Fig. 11 forε0 = 0.5. It can be

observed that, if the fact that the effective topography is similar to a lower bound envelope of the orig-

inal topography when the high frequencies dominate (which is the case fortopography 0), it is not that

obvious when the low frequency topography is significant (which is the case for topographies 1 and 2).

It can nevertheless be observed that the effective topography is most of the time significantly deeper

than the average topographies. Once the effective topography computed, synthetic seismograms are

computed with SEM in a domain withΓε0
a as free boundary (“average solution”) and withΓε0

s taking

into account the order 1 DtN operator (160) (“order 1 solution”). An example of the obtained seis-

mograms for a receiver located 28.5 km away from the source, for two values ofε0 and for the three
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Figure 12.Examples of vertical traces computed for a receiver locatedat 28.5 km from the source. The reference

solution (black line), the effective solution (red line) and the solution computed using the average topography

Γε0
a (green line) are plotted for the three tested topography (topography 0: first line of graphs; topography 1:

second line; topography 3: third line) and two values ofε0 ( ε0 = 1: left column of graphs;ε0 = 0.5: right

column of graphs)

topographies is presented on Fig. 12. For the topography 0 (Fig. 12, to graphs), as expected, the aver-

age solution (an order 0 solution) doesn’t seem to converge withε. This is confirmed on Fig. 13, left

graph, with theL2 error (see (77)) as a function ofε0 that shows little improvement with smallerε0.

The order 1 solution significantly improves the accuracy compared to the solution computed with the

average topography, but it seems that, similarly to the “average solution”, little improvement of the

accuracy comes with lowerε0. Nevertheless, on theL2 error (Fig. 13, left graph), it can be seen that,

after a slow decrease forε0 < 0.5, the error of the order 1 solution decreases as fast asε0. This result

is surprising but shows that the order 1 solution can converge in a flat Fourier spectrum topography,

at least for some examples. For topography 1, both on traces (Fig. 12, middle graphs) and on theL2
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Figure 13. Graphs a,b and c: L2 errors computed following (77) as a function of ε0 for topography 0, 1 and

2 respectively. The black circles are the errors for the effective solution developed in the present paperũε0,1

and the black triangles, the error obtained in a lowpass filtered topography (with the same filter as the one

used to find the effective topography).The dotted and dashed lines display, respectively,ε0 andε2
0

curves for

comparison.

error (Fig. 13, center graph) a steady convergence withε0 of the solution computed in the average

topography can be observed, which was expected. The order 1 solutionshows a more accurate solu-

tion than the average solution and aε20 solution, at least forε0 < 0.5. The fact that the error doesn’t

continue to decrease for lowerε0 is due to the error of the SEM itself, and to the fact that we can’t

use exactly the same mesh for both reference and asymptotic solutions. A solution to that problem

would be to significantly decrease the element size, which we haven’t doneknowing the excellent

accuracy already reached. For topography 2, both on traces (Fig. 12, bottom graphs) and on theL2

error (Fig. 13, right graph), a steady convergence inε20 can be observed for the solutions computed in

the average topography. For the order 1 solution, a convergence faster thatε20 is observed forε0 < 0.5

and then a converge inε0. The change in the rate of convergence is once again probably due to the

SEM error itself.

Finally, the traces presented Fig. 14 show that the difference between solutions obtained inΓε0
a

andΓε0
s but with a free boundary condition (“order 0 solution”) is weak. Both solutionsare order 0

solutions and show the same convergence rate withε0. Nevertheless, the solution obtained withΓε0
s

has a slightly better accuracy than the solution computed in the averaged topographyΓε0
a .

To conclude these tests, it can be said that the rate of convergence depends on the Fourier spectrum
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Figure 14. Example of vertical traces computed for a receiver located at 20.5 km from the source for the

topography 0. The reference solution (black line), order 1 the effective solution (red line) and the solution

computed using the average topographyΓε0
a (green line) as well as the order 0 solution (blue line) are plotted

for ε0 =0.5.

of the topography, which is rather intuitive as the smallest is the amplitude of the fast scale topography

the littlest effect of the fast topography is expected. Of both order 0 solutions (average topography,

order 0 effective topography), the effective topography gives thebest results, nevertheless, the differ-

ence is small. The order 1 solution brings a significant improvement in the accuracy of the solution

and one order inε0 for the convergence rate.

4 DISCUSSION AND CONCLUSIONS

We have shown a two scale asymptotic method able to take into account non-periodic fast scales to-

pography for 2D elastic waves in homogeneous media. To the order 1, the fast scale topography can be

replaced by a smooth effective topography and the dynamic boundary condition. We have shown that

the effective topography is approximately similar to a lower envelope of the fast topography and the

dynamic boundary condition account for the inertial effect of the fast topography above the effective

topography. Its overall effect is to slow down the elastic waves propagatingalong the topography. It

can approximately said that the waves are propagating almost below the fast topography but are slowed

down by the inertial effect of the weight of the fast topography above the effective free surface. We

have shown that the convergence rate of the asymptotic method depends upon the Fourier spectrum of

the topography: the faster it decreases with the wavenumber, the faster themethod converges. A flat

Fourier spectrum topography shows a poor convergence. The asymptotic method allows to build first

order correctors for receivers and sources located within the fast topography. The corrector effect can

be particularly large for moment tensor sources. If the algorithm proposed here to find the effective
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interface allows to find an effective topography, it is not fully satisfactory. Indeed, it is iterative and

implies multiple meshes. It is therefore not straightforward to implement and moreover, if the conver-

gence is fast for the first iterations, it is then slow to achieve a more precise results. One can hope to

find a more direct and effective algorithm in future.

With respect to the work of Huang & Maradudin (1987) and Mayeret al. (1991), which, among

other results, shows that the fast topography behaves like a shallow slowlayer, we can say that we

find a similar result. Indeed the inertial effect of the fast topography locally increases the density in

the neighborhood of the effective free surface, which decreases the elastic wave velocities. Neverthe-

less, this is not exactly the effect of a slow layer. Indeed, a slow thin layerhas also an elastic effect

(Capdeville & Marigo, 2008), which is not present here. The effect ofthe fast topography is therefore

more a high density layer effect rather than a slow layer effect.

About Köhleret al. (2012)’s work, their idea is that the phase of surface waves is affected by the

longer propagation path in the topography than in a flat earth. This is true fora smooth topography

but not for a fast topography. Indeed, we have shown that for topographies varying faster than the

minimum wavelength, the effect of the topography is dominated by the order one effect (high density

layer) and not by the shape of the effective topography (see Fig. 14). Depending on the Fourier spec-

trum characteristic of the actual topography, the bias introduced by the fast topography is important

or negligible. A systematic study of the fast topography effect remains to be done for the real earth,

nevertheless, this effect is expected to be small for large or regional scale (let say 10000 km to 10 km),

but maybe not at small scales (surface waves propagating through in a city with large buildings for

example).

The general 2-D case, i.e. fast topography and fast elastic and density property variations as well

as the 3-D case still need to be treated. The relevance of our iterative algorithm to find the effective

topography in the inhomogeneous 3-D case will have to be demonstrated and probably adapted.

Homogenization and upscaling in general have a lot to do with the inverse problem(tomography)

in seismology. The result of an elastic inversion of seismic data is closely related tothe homogenized

version of the real earth. In general, the present work should impact inversion technique and the inter-

pretation of tomographic images. Indeed, for a given frequency band, theknown fine scale topography

should be upscaled to the actual scale of the inversion and the boundary condition modified in order

to avoid miss-interpretation of a slow layer in the near surface. In practice, even if this remains to be

closely studied, for most of the earth locations, the topography spectrum andamplitude is probably

such that these effects are small.
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APPENDIX A: SOME NOTATIONS USED THROUGHOUT THE PAPER

For any 4th-order tensorA and second order tensorb , we note

[A : b]ij ≡ Aijklbkl , (A1)

where the sum over repeated subscripts is assumed. For any 4th-ordertensorsA andB , we note

[A : B]ijkl ≡ AijmnBmnkl . (A2)

We will sometimes use the following compact notation for partial derivatives with respect to any

variablex of a given functionu:

∂xu ≡ ∂u

∂x
, (A3)

and the classical notation for time partial derivative: for anyu

u̇ ≡ ∂u

∂t
. (A4)

We define the gradient, for any vectoru,

∇u ≡ ∂ui
∂xj

x̂i ⊗ x̂j , (A5)

wherex̂i, i = 1, 2 are the unit vector of the Cartesian coordinate system and⊗ the tensor product. We

define the divergence, for any tensorτ ,

∇ · τ ≡ ∂τij
∂xj

x̂i , (A6)

the gradient along a single component

∇xα
u ≡ ∂ui

∂xα
x̂α ⊗ x̂i (no sum onα), (A7)

as well as the divergence along a single component

∇xα
· τ ≡ ∂ταi

∂xα
x̂i (no sum onα). (A8)

We define the strain tensor,

ǫ(u) ≡ 1

2

(

∂ui
∂xj

+
∂uj
∂xi

)

x̂i ⊗ x̂j , (A9)

as well as the strain tensor with respect to a single component

ǫxα
(u) ≡ 1

2

(

∂ui
∂xα

x̂α ⊗ x̂i +
∂uj
∂xα

x̂j ⊗ x̂α

)

(no sum onα). (A10)
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APPENDIX B: MATCHING CONDITIONS FOR THE NON-PERIODIC CASE

To establish the matching conditions between the two asymptotic expansions, we assume that it exists

an area where both are valid: for a givenx ∈ Γε0
s , we assume it exits a large enoughy1 such that both

expansion are valid forx+ ζε0(εy):

lim
y1→∞

vε(z2, y1, y2) = uε(x+ ζε0(εy)) ,

lim
y1→∞

τ ε(z2, y1, y2) = σε(x+ ζε0(εy)) ,
(B1)

wherez2 is thex curvilinear position alongΓε0
s . Whenε goes toward zero, even ify1 is large,εy is

small and, for anyi, a Taylor expansion can be done:

ζε0(εy) =
∞
∑

i=1

εi

i!
yi1∂

i
z1ζε0(0, y2) . (B2)

Knowing thatg1(x) = ∂z1ζε0 |z=ε(0,y2) for x = ζε0(ε(0, y2)), we have

ζε0(εy) =
∞
∑

i=1

εi

i!
yi1g

i
1 , (B3)

wheregi
1 = ∂i−1

z1 g1. For any small vectora, we have

ui(x+ a,y) =
∞
∑

j=0

[

1

j!
(a ·∇x)

jui(x,y)

]

. (B4)

Combining (B3) and (B4), at the order 2, we find

ui(x+ ζε0(εy)) = ui(x)+εy1 (g1 ·∇x)u
i(x)

+
1

2
ε2y21

(

(∂z1g1 ·∇x) + (g1 ·∇x)
2
)

ui(x) +O(ε3)
(B5)

Applying the same taylor expansion toσi, combining the last equation with B1, identifying terms by

power ofε yields:

• order 0:

lim
y1→∞

v0(z2, y1, y2) = u0(x) ,

lim
y1→∞

τ 0(z2, y1, y2) = σ0(x) ;
(B6)

• order 1:

lim
y1→∞

v1(z2, y1, y2) = u1(x) + y1 (g1 ·∇x)u
0(x) ,

lim
y1→∞

τ 1(z2, y1, y2) = σ1(x) + y1 (g1 ·∇x)σ
0(x) ;

(B7)
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• order 2:

lim
y1→∞

v2(z2, y1, y2) = u2(x) + y1 (g1 ·∇x)u
1(x)

+
1

2
y21

(

(∂y1g1 ·∇x) + (g1 ·∇x)
2
)

u0(x) ,

lim
y1→∞

τ 2(z2, y1, y2) = σ2(x) + y1 (g1 ·∇x)σ
1(x)

+
1

2
y21

(

(∂y1g1 ·∇x) + (g1 ·∇x)
2
)

σ0(x) .

(B8)

We obtain the periodic case matching asymptotic conditions by usingζε0(z) = z.

APPENDIX C: RELATION BETWEEN FILTERED T22 AND Γε0

We first define the scalar function

W (y2) =

∫ y2

0
wm(y′2) dy

′
2 , (C1)

such

wm(y2)ŷ2 = ∇yW . (C2)

Using an integration by parts and the equilibrium equation of the cell problem (138), we have
∫

Y

W∇y ·T dy =

∫

∂Y
WT · n dy −

∫

Y

wm ŷ2 ·T dy = 0 . (C3)

Taking advantage of the periodicity iny2, of the boundary condition iny1 → ∞ and onΓε0 , we have
∫

Y

wmT21 dy = 0 , (C4)

∫

Γε0

Wn2 dy +

∫

Y

wmT22 dy = 0 . (C5)

Reminding thatΓε0 = {y ∈ Y; y1 = Γε0(y2)}, we have

n2 = −∂Γε

∂s
, (C6)

wheres(y2) =
∫ y2
0 Γε0(y′2) dy

′
2. Therefore,

∫

Γε0

Wn2 dy = −
∫ sm

0
W

∂Γε

∂s
ds , (C7)

= −
∫ Yw

0
W

∂Γε

∂y2
dy2 , (C8)

=

∫ Yw

0
wmΓε dy2 . (C9)
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Finally, we have, usingwm(y′2 − y2) instead ofwm(y2) in the above development

F̄ (T22) = −F (Γε0) , (C10)

F̄ (T21) = 0 , (C11)

where, for any scalart(y),

F̄ (t) (y2) =

∫

Y

wm(y2 − y′2)t(y
′
1, y

′
2) dy

′ . (C12)


