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SUMMARY

We propose a two scale asymptotic method to compute thetigéezffect of a free sur-

face topography varying much faster than the minimum waygtefor 2-D P-SV elastic

wave propagation. The topography variation is assumed tmbeperiodic but with a de-

terministic description and, in the present paper, thetielasdy below the topography is
assumed to be homogeneous. Two asymptotic expansionseateame in the boundary
layer close to the free surface and one in the volume. Bothresipas are matched ap-
propriately up to the order 1 to provide an effective topobsegnd an effective boundary
condition. We show that the effective topography is not theraged topography but it is
a smooth free surface lying below the fast variations of s topography. Moreover,
the free boundary condition has to be modified to take accolitte inertial effects of

the fast variations of the topography above the effectipogoaphy. In other words, the
wave is not propagating in the fast topography but below @ @nslowed down by the

weight of the fast topography. We present an iterative sehallowing to find this effec-

tive topography for a given minimum wavelength. We do nagragt any mathematical

proof of the proposed scheme, nevertheless, numericalgkstv good results.
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1 INTRODUCTION

Because it controls surface waves and because sources angreeee often in its neighborhood,
the free surface is an important boundary for elastic wave propagasipecially for seismology. For
the forward problem, the free surface is a well known difficulty for sgréorm numerical methods
like the finite differences . For numerical methods based on the weak fidime @vave equation, like,
for example, the Spectral Element Method (SEM, e.g. Komatitsch & Vilotte (1998haljubet al.
(2007) for a review), the free surface with its topography is not areiasuong as it can efficiently be
meshed. For the inverse problem, the topography of the free surface tisfitbe time ignored and
assumed to be flat (or spherical for the global earth). The impact bf&uassumption is assumed to
be weak, but its effects have been little studied, even if some works exisK(lgret al.2012). Most

of the time, in seismology and in almost any field involving acoustic or elastic wheeause it can
be measured directly with optical methods, the free surface topographyl kne@en, and to a much
finer scale than the minimum wavelength considered. A consequence of this detailed description
of the topography, is that, for both forward and inverse problems, ds&®be upscaled. Indeed, a
detailed topography to scales much finer than the minimum wavelength leads to oalioner-cost.
To solve this problem, the topography is in most of the cases smoothed with a Idfilggatiwhich

is a trivial upscaling method. To our knowledge, the impact of such a filteringaye propagation
has not been studied. The objective of this paper is to develop a methosidaleipough topographies
compared to the minimum wavelength, in a consistent way with respect to the gaaton.

The problem of rough topography for elastic waves is very similar to thielg@no of small inclu-
sions or damages close to an interface which has been studied for Iadhg Biatic and periodic cases
with two scale approaches by the solid mechanics community (Sanchez-Pal&f&6a Dumontet,
1990; Nevard & Keller, 1997; Marigo & Pideri, 2011; Dawtlal,, 2012). These works are the base of
the present paper. The non-periodic static case has been addresbedhatically by several authors
(Chechkinet al, 1996; Egeet al, 2000). If these works give an idea of the type of convergence we
can expect for an asymptotic method in such a case, they are not reallyghelgiolve the problem in
practice for a given topography. For the dynamic case, periodic tapbgs and stochastic topogra-
phies have been studied by Huang & Maradudin (1987), Mayed. (1991) and Maradudiet al.
(1991). An example of a two scale approach for the dynamic case in anpeeséa fast boundary
condition can be found in Boutin & Roussillon (2006) and the case of naoegierfast variations, but
in a single direction, close to the free surface has been studied by Capdevilieigo (2008). To our
knowledge, no results can be found for the non-periodic deterministic cas

The outline of this paper is as follows. In Sec. 2, we present the asymptotic anfetha periodic

fast topography above an homogeneous body, which is a classicébpieent, following Marigo &
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Pideri (2011) and Daviet al. (2012). The idea is to use two asymptotic solutions, one valid in the
boundary layer close to the free surface and one valid in the volume. duredhry layer asymptotic
solution satisfies exactly the free surface condition with rapid variations, whiuoft ihe case of the
asymptotic solution valid in the volume. The two asymptotic solutions are matched in the wdwomn
they are both valid and, once matched, the boundary layer asymptotic soluiodgs the boundary
condition for the free surface for the asymptotic solution in the volume. We shawadithe order 1,
the topography is equivalent to a flat effective topography and andignboundary condition. We
then perform some validation and convergence tests that show that the wetepi®pagating into
the rapid variations of the topography but just below it and that only the weighe rapid variation
of the fast topography is slowing down the surface wave. In Sec. ragose an extension of the
periodic development to the non-periodic case, following the principleggsed by Capdeville &
Marigo (2007), Capdevillet al. (2010a), Guillotet al. (2010), and Capdevillet al. (2010b), and we
propose an iterative algorithm to find an appropriate effective topograpti boundary conditions.
We draw the same conclusion as for the periodic case that the surfaeéswvent propagating into the
rapid variations of the topography but just below it and is affected by itsiweilje finally present

some validation tests using three different topographies.

2 PERIODIC CASE

In this section, we present the two scale approach for a periodic fdstspagraphy following Marigo
& Pideri (2011) and Davicet al. (2012). Some aspects of the employed notations are given in ap-
pendix A.

Before we start, let us give an handwaving introduction to what followsvdfscale homogeniza-
tion approaches are well known in the solid mechanics community, they areeblagchnical and
non trivial methods and not so well known in the geophysical community.nifdie ideas of the two
scale method presented here are the following: for the periodic case ritiagsumed that the two
scales are present in the problem. One of the two scales, the microscdejdéssttee periodicity of the
topography and the other one, the macroscopic scale, is the wavelerigthppbpagating wavefield.
The two scale homogenization solution is an asymptotic solution controlled by a small parame
which is the ratio of the small periodicity versus the large wavelength. Twatgaie unusual for
many of us with this kind of method.

First, it explicitly takes into account the small scales by introducing a newesyatable (usu-
ally y), named the microscopic variable, which is a zoomlBy of the classical space variale
also named the macroscopic variable. Assuming the two variables are in@epeinom the original

wave equations is built a new set of equations to be solved to find the coeffiofetits homoge-
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nized asymptotic expansion. These new equations depend upon the two apalokes which can be

puzzling, but only one value of microscopic variable has a physical meayiagx/c.

Second, even if the considered real case correspond to a fixedb¥al(teere is only one value for
the periodicity and for the minimum wavelength), say .., € is made variable and the convergence
can only be achieved whengoes to zero. Indeed, from the real problem are built a series ofgmnob
by varying the periodicity size and keeping the minimum wavelength constdritharefore allowing
the value of:= to vary. The real case is only a particular case of the series and is abfame= «¢,.
This can be disturbing to allowto vary knowing the real case correspond to a fixed valug lodit it is
the way two scale homogenization methods are builif lis the displacement solution to the classical
wave equation in the media containing the small scalewththe leading term of the homogenized
asymptotic solution, an important result of the two scale homogenization theory is to steateithe
convergence ofi towardu whene goes to zero. In a sense, becagsis different from zero, the real
case is an approximation of the homogenized solution. Of course, things caeseated differently
and the homogenized solution can be seen has an approximate solution of tteseea practical
consequence of this is that if it happens thais not small enoughy® might be significantly different
from u® and little can be done to improve the solution in such a case (adding more term efidge s
can help, but not very far). In other words, as the order 0 homogesaetion does not depend upon
g, there is always a real topography for which the value,d§ large enough so that the homogenized
solution doesn’t approximate correctly the real solution. We will neverthelesghat non-periodic

homogenization can be a solution to that problem.

For the fast topography problem presented here, two asymptotic exparsiaused. One valid
close to the free surface, in the boundary layer, and one valid far &way the free surface, in
the volume. The two solutions are assumed to be both valid in a region betweeoluhgevand
the boundary layer where they are matched. The volume solution is the solutiomilthze used to
actually propagate waves in a medium with an approximate topography buiithddry layer solution
is the only one that exactly satisfies the boundary condition on the rapid sqgogrThrough the
matching conditions, the boundary layer solution provides the missing condistemiary condition
for the volume solution. The main result of this section is quite simple: the small sad&epr can
be replaced by an approximate problem for which the topography is ftatyamy below the real
topography. More over, the usual zero traction boundary condition liaaeg by a dynamic boundary
condition to account for the mass of the material that is over the flat effecipegraphy and that is

now missing
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Figure 1. Two examples of periodic boundari€s. Only the right one can be written & = {x € R? ; x; =

I'“(z2)}. The grey line is the:, axis andl';. The dashed lines are the average interface height.

2.1 Settings

We consider a two-dimensional infinite elastic half sp@cawvith a rough boundar¥*. In this paper,

the densityp and fourth order elastic tensorare assumed to be constant and we leave the inhomo-
geneous case for future work? is subject to an external source forfe= f(x,t) and we wish to
study the displacemeni (x,t) = u;(x,t) x;, wherex;, i = 1, 2 are the unit vectors of the Cartesian
coordinate systeminduced byf. We assume thaf(x, t) has a maximum frequengfy which allows

to assume that, in the far field, it exists a minimum wavelengtto the wavefields®. In this section,

I'® is assumed to be periodic of periodicitand with a maximum amplitude variatien(see Fig. 1).

¢ characterize¥*® periodicity! with respect to\,,,:

5:)\Zm. D

As mentioned in the previous section, the two scale homogenization method requirdsstoana
the periodicity, and thereforeg which explains why most of the quantities used here dependsaipon
In some cased;¢ can be written a¥® = {x € R?; x; = I'*(x5)} and in such case$)® = {x ¢
R?; 21 > T'°(x2)} (see Fig. 1, right plot). Even if this is not true in general (e.g. Fig. 1 dleft), in
the following, for the sake of simplicity, we assume it is the case, without losingeherality of the

results. We define the generic functibrsuch that, for any,
el(xe/e) =T (x2). (2)

This definition ofl" is important. Indeed, it mearisat the ratice over/ in independent of. Therefore,
when e decreases, the periodicity of the topography is smaller as well as its amplituideisTdn
necessary condition to show a convergence of the asymptotic solution prekerge at least for the
order zero (Sanchez-Palencia, 1986; Egel., 2000)and, for example, we cannot ensure convergence
if only the periodicityl decreases with while keeping the amplitude constant.

The displacemeni® in Q° is driven by the elastic wave equation,
poyu® —V -0 = f in Q°F,
o =c:€e(u”) in Q°, 3)

of-n° =0 on I'",
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wheren?® is the outward normal t&* and where the componeijt of the strain tensor is

out ous
(w9l = 5 (ax} * a;é) ' @)

The initial conditions for the displacement and velocity¥ att = 0 are assumed to be zefgote

that the infinite domain is in practice truncated thanks to absorbing boundiadjtions.

2.2 Two scale asymptotic set up

We now assume that< 1, which means that the scale of the topography variations is much smaller
that the minimum wavelengtiAs explained in the introduction section abpesen if the real case
defines a unique = ¢,, we allowe to vary and set up an asymptotic expansion that can be shown to
converge whea — 0 (Sanchez-Palencia, 1986). The real case is therefore an apptimxittethe two
scale asymptotic solution presented here, whose accuracy depends andibis s.. Whene varies,
the displacemeni® and the associate strag$, solution to the wave equations (3), change, which is
reminded with the superscript. We definE;, a flat interface parallel tb** (see Fig. 1) and we then
set the origin of the coordinate system such thatthexis isT';, that isT; = {x € R?; z; = 0}. If
a is the average high df¢, (a = 1/1 f(f [¢(x2)dz2), we definel’, = {x € R? ; x; = a} the average
interface ofl™®. If a is chosen to be zero, thdh, = T',. We finally defineQ2,, the half plane below
Iy Q= {xeR?; 2 >0}.

In order to explicitly take small-scale boundary topography into accoustvgiolving the wave

equation, the fast space variable is introduced:

X
&g

y = )

We define the periodic cell (see Fig. 2), the vertical domain below one periodic cell of the topogra-

phy, zoomed byl /e:

Y={y e RxYy;y>T(y2)}, (6)

where the segment
Y = {y2 € [0, \n]} @)

The boundary of the periodic céllY is built of its top boundar¥’, its left and right boundari€¥; and
Y, and its lower boundarYs (0Y = Y, UY,UY3sUT'). TheY3 boundary is set to the infinity i, .
We define a partial periodic celi(b) = {y € Y ; y1 < b} which is the same domain &5 but with a
lower boundaryY (b)) = {y € R%y; = b,y € Y, } (we therefore hav& = limy, oo Y(y1)). The
width of the periodic cell inys is |Yy,| = Am.
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Figure 2. The periodic cellY, built from one periodic pattern di** and expended with the transformation
y = x/e. The boundary of the periodic cell&& = Y; U Y, U Y3 UT where theY; border is set to infinity

in Y1.

Following a classical process (see e.g. Sanchez-Palencia 1986; Dud@®letMarigo & Pideri

2011) we consider two asymptotic expansions for the solutiafso®),

¢ the volume expansion, valaway from I'*, in Q:

u®(x) = u’(x u 2u?
(x) (x) + eu' (x) + *u’(x) + @®

o°(x) = 0%(x) + eol(x) + 20?(x) + ...

e the boundary layer expansion, vatithse toI’*, in R x Y

u€<X) = Vo(x27y) + gvl(x2’y) + 62V2<x2aY) +

1 _
ot (x) = E’T l(azg,y) + To(xg,y) + 67’1(582,}/) + 527'2(332,y) + ...

9)

The coefficients/’ andr? are periodic iny, but not iny;.

Whene — 0, any change ity induces a very small changexn This leads to the separation of scales:
y and x are treated as independent variablesThis implies that partial derivatives with respecixio
become:

1
Vx— Vx+ gVy . (10)
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Similarly, we have, for the strain tensor:
1

€Ex — Ex + —€y. (11)
3

The last equation explains why the stress expansion in (9) staits-at-1 while the displacement
expansion starts at = 0. Indeed the relation between the stress and the displacement implies the
strain tensor which containslge factor. Consequently, the stress expansion starts one index earlier
than the displacement.

In order to be matched, we assume that it exits a region where the two asymppatics®ns are
valid. This region is close enough frobY so thatz; can be considered as very small for the volume
expansion and at the same time far enough sojthe&n be considered as very large for the boundary
layer expansion. Using that region where both expansions are validhitwesn appendix B that the

matching conditions are:

Ly iy

. i _ Z Y1 —
yllgfrloo Vi@ ) =0 (i =) ol (O] | =0, 2
LT pitigi
. ; Y1 o
1 ' - —(0 =0. 13
e | T2 Y) S (i) o0at (0:2) )

Following a classical development (e.g. Sanchez-Palencia 1986), ustngdexpansions (8) and (9)
in the wave equations (3), using (10) and (litientifying terms of the same power ofyields the

following coupled equations satisfied by the expansion coefficients®ob®):

e equations in the volum&;, i € N:

pouu’ — Vy - o' = foo in Q;, (14)
ol =c:ex (ul) in Qg (15)

lim o' -%; =0, (16)
Tr1—00

whered;; is the Kronecker symboNote that the usual top boundary condition is replaced by the
matching conditions.

e equations in the boundary layéor i > —2

POV’ — Vo T = V-7 = 60 in Rx Y, i> -2, (17)
r=c: (€xs (vl) + €y (Vi'H)) in RxY,i>-1, (18)
".n=00nRxT,i>0. (19)

wheren is the outward normal t6Y.
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e Matching conditions, here for the two first orders : Fo§, y2) € R x Yy,

1=0
1 =1
2.3

lim (vo(xg,y) —u’(0, z2)) =0

Yy1—>+0o0

lim (TO(xQ,y) — UO(O,xg)) =0

Yy1—>+00

(20)

ou'

0
lim <7'1(902,Y) — o' (0,29) — y1%(0,$2)>
8%1

Yy1—>+00

(21)
0

Iterative resolution of the asymptotic equations

In this section, the asymptotic equations for the order O for the first ordeeatorrare solved. The

boundary conditions for the macroscopic equation in the volume are derived.

2.3.1 Order0

We start by combining (17) far= —2 and (18) fori = —1 to obtain:

Vy - (c: ey(vo)) =0. (22)

Taking the dot product of the last equation with, integrating over the periodic cell, then by parts

and using the symmetey;,; = cx;5, we obtain

/ vl v, (c: ey(v")) dy = / v0.r ™l ndy - / ey(V?) :c:ey(v0)dy = 0. (23)
Y oY Y

The integral ovepY in the last equation vanishes because the integral dlbisgzero thanks to the

boundary conditions (19); the integrals ot andY, (see Fig. 2) cancel themselves thanks to the

periodicity inys; finally, the matching condition far = —1 allows to find that-—! (2, 00, yo) - X1 —

o~ 1(0,z2) - X1 = 0 (indeedo’ = 0 for i < 0) ) which implies that the integral ovérs is also zero.

Consequently, we have,

/ ey(vV') i c:ey(v0)dy =0, (24)
Y

which, knowing thatc is a positive definite tensor, imposes thdtis a constant translation plus a

constant rotation iny. The periodicity imposes that the constant rotation is zerd thatv' is a

constant value for a fixed,. We therefore have

vO(za,y) = v'(z2), (25)

l—o. (26)
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The order 0 matching condition for the displacement yields:
(0, z2) = v¥(z2) . (27)

To find the boundary condition oa® on Iy, we use the order 0 matching condition on stress and

integrate it over the segmekhi, to obtain

lim 70(z9, y1,2) - X1 dy2 = A\no®(0, 22) - X3 (28)

Yy1—00 Yo,

Integrating (17) for = —1 onY and then, by parts, we find

/ . ndy=0. (29)
oY

In the last equation, the integrals over bordgrsandY ; cancel themselves because of the periodicity

in y2, the one over vanishes because of the free boundary conditions and therefore,

/ 0. %1 dy =0. (30)
Y3

Combining the last equation with (28), we find the order O boundary conditiotisd@olume problem

(the outward normal t&'; isn; = —%1)

%(0,25) -n, =0. (31)

2.3.2 Order1
(17) fori = —1 and (18) fori = 0 give:

vy -t’=0, (32)

™ =c: (e, (V") + & (v!)) . (33)

In order to find a simple form for the solutions to the last equatiomsseek for

o’
vi(z2,y) = w1 7611 +v(x2,y), (34)
X1
TO($2ay) = UO(Ova) +7A-(5L12,Y) ) (35)

wherev and+ are periodic iny, . Using the fact that-" does not depend o, (32) easily gives us
Vy - 7=0. (36)
Using (27), we have, of,

ou’ o 0
& <ya> T en(v) = ex(u), @37)
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then, (33), (34) and the last equatigield

0 =c: (x(’) + €y (¥)) , (38)
=o' +c:e(V), (39)

and thereforeysing (35), we find
T=c:e(V). (40)

Using the boundary condition (19), the order 1 asymptotic problem reduties tollowing prob-

lem:

F=c:e (V) in RxY, (41)
Vy-#=0 in RxY, (42)
#-n=-0%0,22)-n on RxT, (43)
Jim 7% =0, (44)
V(zg,y) and 7(xza,y) arel,-periodicin ys,. (45)

Based on the linearity of the last problemth respect to the source tem?, noting that, thanks to the
boundary condition (31), the only non zero componentf0, z2) is 03,, we seek for solutions to

the last problem under the following form:

V(22,y) = 035(0,22) V(y) + (V) (22) (46)
(22,y) = 09(0,22) T(y) (47)
whereV andT are periodic inys. From equations (41-45), we find thidtand T are solutions of the
following cell problem:

(T=c:e, (V) in VY,

Vy-T=0 in Y,

T -n=-noxy on I', (48)
Y1—00

T and V \,-periodic inys.
In general, the last problem can only be solved with a numerical solvea fiikkéte elements solver.
At this stage, we are able to fully computeand incompletelyr ((v) is not determined).
We now need to compute the order 1 boundary condition for the volume problenm,, onT,.
At this point, we assume the external soujte not in the boundary layer area. If it is not the case,

the source is reintroduced after the resolution of the equations with an esmgrgyent as shown in



12 Y. CAPDEVILLE

Sec. 2.4.1. Integrating the stress matching condition (13) fed over theY,, segment, we find

0

)\mal(oax2) = lim </ T1($27y) dyQ - yl)\mao.(ovx2)> . (49)
Y1—>00 Yo 8.%'1

(17) fori = 0 gives

Vy 1l =pi’ =V, 77, (50)

and thereforeysing (35)

Vy '+ Vo, - 0%0,22) + V,, -7 = p¥°. (51)

Using (27), integrating the last equation o¥&fy; ) and passing to the limit, we obtain

Vi, [ Tdy = lim (— Vy -ty + Y1) (=Va, -0 + pﬁ0)> : (52)
Y yL=ree Y(y1)
Using an integration by parts, the free boundary condition aldbagd the periodicity iny,, we find
/ (Vy -7 (z2,y") dy’ =/ (v' ) (z2,y") dy’ (53)
Y(y1) Y (y1)
2/ T (22, Y1, y2) - X1 dya - (54)
Yu

Combining (49) and (54) in (52), we have

A 1 & . oo A 0 .0
Vi, Tdy | = —Apo’ - X1+ lim —yl)\m% X1+ [Y(y1)| (=Vay - 0”4+ pit’) | . (55)
Y 1

Y1—00

Eq. (14) fori = 0 yields

80'0 ~ 0 ..0
871~x1f—vz2~0 + pu’, (56)
which, combined with (55), gives
Vo, - (/ +dy> = —Ano' X+ Jim (1Y)l = y1Am) (= Vs -0 + pi’) . (57)
Y 1700
Finally, based on the last equation, the order 1 volume boundary conditibp can be written as
1 o 6082 0 -0
eo (0,22) - X1 = — aT—i—h(—Vm‘a +pu), (58)
2
where
€ ;
Am Jy
. ’Y(yl)‘ B y1>\m

h=¢ lim —————

6y11£noo A, (60)

It can be seen thdtis finite and equal ta, the height difference betwedh, andT’,,. It can be shown

that onlyb, = b - y» component is non-zero. Indeed, integrat¥Mg - T = 0 over Y3(y:) and using
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the periodicity iny,, we find, for anyy;
9 [Am
/ [Vy . T]z dy = 87 / Th‘ dyQ = 0 . (61)
Y3(y1) Y1 Jo
Am T1; dys is therefore constant iy, and, using the fact théitm,,, .., 731 = 0, we find, for anyy; :
0 Y1

Am Am
/ Tii(y1,y2) dy2 = / Ti1(y1,y2) dy2 = 0, (62)
0 0

which allows to conclude that = 0.
Using again the fact that onby, is non zero o, we can rewrite the order 1 boundary condition

onT, as:

0

Jdogy ., .
eo'(0,22) - ng = (by + h)aUTQ;xQ — hpit. (63)

From the last equation, it can be seen thatthposition of the effective free surfadg can be chosen

such thabs + h = 0 and, in such a case, the order 1 boundary condition reduces to

eo'(0,22) - ng = —hpit®. (64)

2.4 Practical resolution of the effective equations

Practically, we need to use the above results with a classical wave equdiien lg@ SEM. The

idea is to use this solver only if2,, which meshing is simple compared to the one&®f To take

into account the order 0 and 1 boundary conditions (equations 31 anthé4jifferent orders are
combined together, as it often done in such a case (e.g. Fish & Chen 2&@fdedlle & Marigo 2007,

Capdeville & Marigo 2008, Capdevillet al. 2010a):

17 (x) = u’(x) + eut (x) + ... +eui(x), (65)

75'(x) = 0%(x) +eol(x) + ... + o' (x), (66)
and we have
u®(x) = a7 (x) + Oy . (67)

From (14) and (15), it can be seen tligt' andé*! are driven by the same wave equation as for the

original problem, but the boundary condition By is different:
&5 - ng = —hpu™! on T,. (68)

So, in practice, solving the original problem $&f is replaced by solving the same wave equation

problem but irQ2,; and replacing the free boundary conditionldnby the dynamic boundary condition
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(68), where theh and b, coefficients are computed solving the cell problem (48) with an effective
interfacel’ vertical position such that + h = 0.

If a receiver is close to the free surface (within two or thkgg, the solution can be corrected to
the order 1 with:

~e,1
T2 (00) = 8 (0,0) 4+ 55— (0,3) + €V (Z) 55 (0,). (69)
1
or, to the same order, by
512 (x) = @ (x) + eV G) 550, z2) . (70)

Note that we have used an half order (“1/2") because it is only a partlerd solution agv) hasn'’t
been computed. Both expressions are valid, but (70) is useful if the ezégiocated i}, whereas
(69) is useful when a receiver is outside$df (but still in 2°).

In practice, for the examples presented in the present paper, includitigefaon-periodic case,

the receiver corrector effects are small.

2.4.1 External source in the boundary layer

If the external sourceg is within two or three),,, from T'®, a correction might be necessary. To do
so, we follow the same argument as the one used in our previous workdd@Gle et al, 2010a;
Capdevilleet al,, 2010b).

For a moment tensor locatedxn, the external force is
f(x,t) =g(t)M - Vi(x —x0) (71)

whereg(t) is the source time wavelet ad the symmetric moment tensor. As shown by Capdeville
et al. (2010a), to ensure the conservation of the energy released by thee $odhe original model,

we need to find a moment tensf*-¥ such that

(v, f) = (8% f°) + O(e) (72)
where( . , .) is the L? inner product and

F(x,t) = g()M=" - V§(x — x0) . (73)
Using an integration by parts and the symmetry of the moment tensor, (72) becomes

M : €(u) |, = M : ¢, (ﬁg’o) lxo + O(e) . (74)
Using (11), expansion (9) and property (37), after some calculufinggeto the order 0

M= = G%(xp/e) : M, (75)
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where

1
= (0051 + dj10a) + cijooey 1 (V) () (76)

fjk;z(}’) = 5

2.5 Numerical considerations
2.5.1 Numerical resolution of the cell problem

In general, solving the cell problem (48) cannot be done analyticallyaafinite element solver is
required. The periodic cel is not bounded in; which could be a problem. Practically it is not: the
solution T exponentially decays to zero (Sanchez-Palencia, 1986; Dumontet,, E8f@D}herefore,

a boundedY with the Y3 boundary placed at a depth 8#,, with a free boundary condition at
the bottom, is enough to obtain a good solution. We use the same solver as the@opeatbfor the
volume homogenization (Capdevik¢ al, 2010b), a relatively high order finite element method based
on a triangular mesh to solve the weak (or variational) form of the cell problpmations. The finite
element interpolation is based on the Fekete points (Pasquetti & Rapetti, 20f@&ritet al, 2006)
and we employ an high order integration quadrature (Ragad, 2004). Depending on the shape of
the topography, the solutions can present singulaffitietopography kinks of angle (measured on the
solid side) greater than 18@QGrisvard, 1985). These singularities are not a problem for the acgur
of the b coefficient, nevertheless, it can alter the accuracy of the corre®t@sd T, which means
that these singularities may need some attentions (by using locally a densefonestample) if a
source or a receiver are in the vicinity of such a singularity. Once @I8gd, theb, andh coefficients

can easily be computed and thg vertical position such thdt + 4 = 0 yields.

2.5.2 Numerical resolution of the effective wave equation

For the wave equation solver, we use a spectral element tool. To implememtéreldoundary cor-
rection (63), we need to modify the internal forces and the mass matrix. Ifféntieé topography',

is chosen such thétis positive (that id"; is below the average topography), then the mass matrix
modification always leads to a stable scheme. The internal forces modificationathé¢inéand often
leads to an unstable scheme. Choodigertical position such thdt = —b, solves the problem: in
such a case, as already mentioned at the end of Sec. 2.3, the interealfuodification is zero and
therefore always stable. Furthermore, we will see thag always negative, which leads to a positive
h and close to be equal to half of the average height of the interface gogamplitude variation
e/2. With such a choice, we see that the wave somehow propagates belowttiepfagraphy, and

that only the inertial effect of the topography affects the wave.
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*A

Figure 3. Configuration for the periodic test. The white squares regmethe receiver locations and the triangle

A and B the two source locations used for the tests.

€ 0.2 0.1 0.05

e 100 m 50m 25m
ba -464m -232m -11.6m
error order O 1.2 1.3 11
error order 1 1.2 0.27 0.05

Table 1. Values of computed, and E(1%¢) and E(a!?) Ly norm error (see (77)) for 3 values of

2.6 Validation tests

We carry out a validation test in a simple configuration presented on Fig. 3.cIhal @omain size

is 80x20 kn¥ surrounded wih a Perfectly Matched Layer (PML, in the version pregds/ Festa

et al. (2005)), but for the top. The source is either located 200 m below thesfrdace (triangle

A on Fig. 3) or in the topography (triangle B on Fig. 3). The receiveeslacated 100 m below

the free surface (white squares on Fig. 3). The density, S wave velmuityP wave velocity are,
respectively, 3000 kg/f 3.2 km/s and 5 km/s. The source time wavelet is a Ricker (second derivative
of a Gaussian). Its maximum frequency is 3.2 Buch that the minimum wavelengh, is about

1 km. Three values of are tested, 0.2, 0.1 and 0.05, corresponding respectively=tH00 m, 50 m

and 25 m and =200 m, 100 m and 50 m. A reference solution is computed for the three cases with a
SEM mesh based on degree 5 elements. Knowing that, for an homogendgus bm width elements
would be enough for an accurate result,d6£0.05 the mesh is oversampling the wavefield by a factor
40, leading to an over-cost of a factor 1600 for a structured meshthEBasymptotic solution, we
use a flat interfac&; location such thaby + h = 0. Solving the cell problem, the obtained values
for by are given in Tab. 1. It is interesting to note that, in each daskas a value close t©/2. This

means that the effective interfafy is almost located at the bottom of the interface topography. For
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Figure 4. Vertical (right graphs) and horizontal components (leétdrs) for the reference solution (black line),
order O solution (green line) and order 1 solution (red lifoe)three values of (¢ =0.2 top graphss =0.1
middle graphss =0.05 bottom graphs) and for an epicentral distance of 35 km.

the order 0 solution, we just perform regular spectral element simulatiof¥ ifor each value of
¢ (25 changes for each value becaus®'; changes witte). For the order 1, we perform the same
spectral element simulations as for the order 0, but this time taking into acceumtdér 1 boundary
condition (that is just an extra weight). A sample of the obtained seismogramstfocdrmponents is
presented on Fig. 4 for a receiver located 35 km away from the sdticzn be seen that the order 0
solution is not accurate, even for such small values @b more precisely investigate the accuracy of

the method, we use the following, norm error:

N \/fom‘“” —urel)2(x;, t)dt
P 1 Ve ared)? (xq, t)dt

where N is the number of receivers. For the order 0, even if no convergencthdéa., norm is

E(u) = (77)

)

observed in the presented range ¢éee Tab. 1), it can be seen, observing the traces on Fig. 4, that the

phase is roughly getting betterirand we can therefore guess that, at some point, for very sl
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L4 error convergence inwould be observed. For the order 1, first, the accuracy of the resuttsich
better than for the order O for all the tested values,aind second, the convergence is roughlyin
betweere = 0.2 and0.1 (see Tab. 1). The inertial effect of the order 1 boundary condition retbiee
important and we can conclude by a physical interpretation: the elastic aa&asot propagating
in the fast topography, but they are propagating below it and the fastjtayploy is just acting as a
incompressible infinitely thin layer of material loading the free surface. Aseegl, the extra weight
due to the fast topography is slowing down the apparent velocity of thecsauwave.

We haven’t shown any seismograms computed using the average topo@tapkyan effective
topography, which is the solution commonly adopted. This is because thegrgrsimilar to the one
obtained usind’, just a small amplitude difference would be seen.

Finally a test for a source within the boundary layer (triangle B on Fig. 3) ifopaed. On
Fig. 5 are shown the vertical component seismograms for an epicentralcgisih85 km for three
cases: order 1 without the source correction (75), the order 1 with theescorrection (75) and,
for comparison, the order 0 with the source correction (75). It can bel &t the amplitude of the
signal without the source correction is way too large compared to the reéeseimmogram, and once
corrected, the signal amplitudes have a good match. For a more accurateaesuodllers would
be required. Finally, let us mention that obtaining the reference with SEM i¢rimi@l in such a
case. Indeed, the mesh has needed to be designed far finer thandahsamspling of the wavefield
to converge, leading to an impressive numerical over-cost. This is ahbsaause even for highly
inhomogeneous medium, no serious oversampling around the source is most of thecgiinned.
For a source embedded within a fast topography, this is different andaus@versampling has
been necessary to obtain a converged solution. This shows how uaefoedhe present asymptotic
method in such case (the mesh for the effective solution does not needeasgmpling, even around

the source).

3 NON-PERIODIC CASE

In this section, the boundary variations are not assumed to be periodic anyWeosnsider a gen-
eral deterministic bounda®® on the top of our infinite half spac®”. We seek for an approximate
solution to the displacement/ solution of the wave equation:
pdpu™ — V. o™ = f in Q°,
ol =c:e(u™) in Q°, (78)
o .n=0 on I,

wheren is the outward normal t&°.
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— reference
— order 1, no source correction
— order 1, source correction

order 0, source correction

. AW \

Vv 7 YT

time (s)

Figure 5. Horizontal component seismograms for the source withirbthendary layer (triangle B on Fig. 3)
for a receiver 35 km away from the source. The referenceisal(iblack line), the order 1 solution without the
source correction (75) (blue line) the order 1 with the sewarrection (75) (red line) and order 0 solution with

the source correction (red line) for valuessof 0.1 are plotted.

Before we start, let us summarize the ideas of the following developriRenthe non periodic
case, the periodicity is not there anymore to allow to separate naturally the aaprogrom the
macroscopic scales and to build a series of problem depending on a sraaligter. The main idea
of the non-periodic homogenization is to introduce manually a scale separatido.stp the Fourier
domain in the “horizontal direction” is used and a user defined wave nukghsrset to be the limit
between the slow variationg (< ky) and the fast ones:(> ky). The kg allows to define a small
parameter, = 1/(koAy,). The “horizontal direction” mentioned above needs to be precised: the
effective surface waves are propagating along an effective firégceuthat is not necessarily flat and
the “horizontal direction” means here “along the effective topographgllowing this idea, we build
the microscopic variablg = Cgol(x)/s where(_,  is a transformation built such that the effective
topography is the image of the flat axis. Therefore, in thg domain, the effective topography is flat.
¢ is a small parameter meant to play the same role as tighe periodic case is introduced. It is in
general different fronzy. Oncegg is set and fixed, the fast variabjedefined, a series of two scale
topographyl**°-© is built, leading to a series atindexed series of problem. This series of problem is
equal to the original problem only whe = ¢ and whenx = (. (coy). Once the construction of
the series of problem is done, even if some complications due to the transforjatiappear, the
resolution of the homogenization problem is essentially the same as for the peasdiag well as
the form of the solution up to the order 1. As for the periodic case, we findibdeading term of the
asymptotic solution1®2:’ does not depend upanbut depends ony. In other words, for each fixed

value ofeg, we have a two scale homogenization problem leading to particular homogeniagdrso
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Figure 6. The non-periodic domains and transformation

and therefore the homogenized solution depends on the initial choice kf theéhe Fourier domain.
Once the two scale problem is solved, the effective topography still neédsfound. Indeed, we have
so far assumed that the effective topography is known, which is notabe at the initial stage. The
solution adopted here is iterative and based on the following criteria: a smoaotirapmhy is thought
to be the effective topography if the fast variable parip@art) of the the correctors, solutions to the
cell problem ' and V), computed with such an effective topography, present only fasttvargin

the horizontal direction, i.e. their Fourier spectrum is zerdifer kg in they domain.

3.1 Settings

For the non-periodic case, the small parametisrnot as clearly defined as for the periodic case:

N 79
e= (79)
where) is a spatial wavelength or a scale. In the non-periodic case, anotlzengiar is required

Ao
_ 80
€0 )\m ; ( )

where\y = 1/kq is the user-defined scale below which a wavelength is considered agjingjon
to the small scale (microscopic) domain. Reciprocally, a wavelength larget\ths considered as
belonging to the large scale (macroscopic) domain. The pararkgteruser-defined, but it makes
sense to assume that the wavefield interacts with scales smalleithahherefore, choosing an
g0 < 1, which means considering as microscopic boundary topography scatee wslze is much
smaller than the minimum wavelength, is probably a good guessa once again purely formal
parameter which value has a physical meaning only wherey. We need to define a way to separate
scales and we cannot count on a periodicity for this anymore. To this enthtiwduce a procedure

summarized on Fig. 6. We first assume that we are able to build a smooth “effeoterfacels,
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where its quality of being “effective” will be precised later in the paf&f. depends upon the) in
a way that will also be precised later on, ytsomehow gives the degree of smoothnesEf(the
largest issq, the smoothest i§:°). Once again, for the sake of simplicity and without loosing the
generality of the results, we assume th4t can be written a¥®® = {x € R?;z; = I'°(z3)}. We
define22, the part ofR? belowI'<® (25° = {x € R?*;z; > I'%0(x3)}) . For a givenx belonging to
I, we definef2,, a sub-domain of2° centered arouns (see Fig. 6). We define the transformation
x = (., (z), from Zy to 2 (see Fig. 6), such that}® = ¢ (T.), wherel',, = {z € Zyx ; 21 = 0}
and such thaZ, sides are alongs = constante lines.Z, is a rectangular domain with the rough
topographyls® on the top, wher&<" is such thal'® = Cep (T'50).

Thex dependency 0% needs to be discussed. If in general, one transformatioperx may
be required, in 2D itis possible to define a single transformation for, at at least a piecewise trans-
formation for different topography segments. ConsequentlyZtban be considered as independent
of x.

The transformatioq ., defines a curvilinear coordinate system such that a position veabdi2,

can be written as:
X = r;X; = 2%€a , (81)

wherex = ¢, (z) and

_ 8 [Cgo]i X

8a = 020 7

(82)
is the covariant basis vectors aa®l the contravariant components. Note that ghevectors depend
oneg. We also define th& normalized covariant basis vector

Z; =8 = \/gL (no sum) | (83)

0

whereg;; is the metric tensor of the curvilinear coordinate system. Furthermore, we atizatrivethe

neighborhood o™, this curvilinear coordinate system is locally orthogonal, such that
g - g; = giid;; (nosum) forz close tol’,, . (84)

Thanks to this orthogonality of the curvilinear coordinate system in the neibbbd of the effective
interface, we can assume that outward normé&b T'° is also normal td™°, the top boundary of..

For the sake of simplicity, we also assume that no length deformation occursthetheighborhood
of the effective interface with the transformatigp and therefore; - g; = d;; (the metric tensor is
the identity). This last assumption is not really necessary, but it avoids to htaletthe metric tensor

into account in the following development, especially for the spatial filterirggatpns. With such an
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assumption, we simply have
2, =8 =8i, (85)

and thez; basis vectors are orthonormal.

We once again define the fast variaklebut this time with respect te:

y=-, (86)
e

and therefore
y takes values ifY which unit basis vectorg; are the same as. Note that the unit vectorg; do not
depend upoty, nevertheless, they depend uporiZy is the image ofY, through the transformation
(86). The domairlY, in general, depends upen nevertheless, as mentioned earlier, we can define a
single transformatiog for the whole domairf2® which allows to drop th& dependency oR.

Whene — 0, we consider andy (and thereforex andy) as independent variables.

Similarly to the periodic case, this andy independence implies that partial derivatives with

respect tax become

1
Vx— Vx+ gVy , (88)
and
1
€x — €x + gey , (89)

where it is necessary to detail the action\o§. They divergence of a second rank tensbis

o0d*?
Vy -d=—3% 90
Yy 8ya y,B b ( )
whered®? are the contravariant componentsdin the curvilinear coordinate system. Similarly, for
any vectorh,
1 (oh  OhP
h=-(—4+—-—) Ja®Y¥3, 91
eb) = (5t G ) Fo@ s (o1)

where® is the tensor produchiote that no partial derivative of thg, basis vector are involved as it
would be the case for & divergence or gradient expressed in the curvilinear coordinate system.
example, the contravariant component of théivergence otl is

o 0dP
02

Wherecgﬁ are the Cristoffel symbols of the second kind 4t the o contravariant component.

[V -d] +Cg, d’ 4+ 057 der, (92)

We define the wavelet,,(y2) = wy,, (y2) Wherewy,  is the lowpass filter wavelet with a
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wavenumber cutoff around,, = 1/\,,,. We assume that the supportof, is contained in—a\,, +a,]
wherea is a positive number that depends upon the specific design\dfe assume that the transfor-
mation(_ is such the width of the periodic céll, = [0, 25\,,] whereg is a positive number greater

thana. We also defineY, a boxcar limited version of centered orz:
Y, ={y € Y;y2 € [e22 — A, e22 + fAn]} - (93)

We define7T = {t(z2,y) : R x Y, — R,Y,-periodic iny,} the set of functions or tensors
defined iny on Y, and periodically extended f& in y». We define the lowpass filtering operator, for

any tensor of functiot € 7

F(t) (22,y) = /Rt(@,yl,yé)wm(m — Yp)dy . (94)

F (t) is a lowpass filtered version of but only the horizontaly,) direction. Finally lety be the set
of tensors of functions(z,,y) such that, for a givens, they, part of 1 is periodic and contains only

spatial frequencies higher thap,, plus a constant value ig:

V={teT;F(t)(22,y1,y2) =<t > (22,y1) fory; >0 }, (95)
where
1
<t> (’227y1) = T t(227y17y2)dy27 (96)
Yol Jy,

where|Y,,| = 26\,,. In other wordsy is the set of functions that vary rapidlyia and, as mentioned
at the beginning of the non-periodic case section, whose Fourier spdmtigz, is zero fork < kg
plus a constant value. It is the equivalent of the sekgderiodic function in the periodic case.

To build the asymptotic problem, we first define a topograPfy= {(x,y) € R*; Fj? (x,y) =

0} with I‘jP Y,,-periodic iny, and such thaF*® andT'" are the same along = %O(x) If we define
P20 the subspace d&* of physical possibilities,

Peos — {(va) eRYy = C;i(x)} (97)
then this condition can be written as

e npeoco =10, (98)

We assume that, with such a definition, we can find a smooth effective topogEgpt{gn which
dependg ) such that a solution to the problem described below exists. This assumptioreisrimt f
obvious and the construction of sucl'& from 'Y, which is a critical point of this article, is left for

Sec. 3.4. We definB®*¢, a sequence af-indexed topography iiR?,

¢ = [0 O Po< (99)
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leading to a&-indexed set of wave equation problems

pattu&‘(),é‘ _ V . 0_60,6 — f in 960,6’
%0 = ¢ e(uF) in QOF (100)

o . n° =0 on I,

where2°°- is the half space below*** andn®®-* its outward normal. This-indexed set of prob-
lems is purely formal and designed to set up an asymptotic problem for whichofibe properties
obtained for the periodic case are still valitis the equivalent of the problem (3) for the periodic
case Its solutionsu®:¢ can be related to the solution of the original problem only whgr= ¢ as
discussed in Sec. 3.5.

We still consider two asymptotic expansions for the solutiQifs©, o0%),
e one validaway from I'"*0-¢, x € Q%°:

0 (x) = u®0(x) 4+ eu!(x) + 2u?(x) + ... (101)

O'EO’E(X) — O'EO’O(X) + EO‘EO’l(X) + 820'80’2 (X) + ... (102)
e one validclose toI'*°, for (z2,y) € R x Yy,

U (x) = v (29, y) + vl (22,y) + e2vOE (20, y) + ... (103)

1
0% (x) = 2750’_1(22, y)+ 7'50’0(22, y)+ 67’50’1(22, y)+ 52750’2(,22, y)+ ... (104)

where the loose notation(z2,y) = v¥**({,,((0, 22),y) is used (and similarly for?) and where

veol andT0¢ are sought irV, i.e. they must contain only fast variationsyis

We work ateq fixed and, to ease the notations, thedependency ofi®0? |, veo, g0t and 70
is dropped in the following. Nevertheless, one must keep in mind that the wobloitos, even the
leading term, depends on a particular choicegof

Deriving the equation driving the asymptotic coefficients is very similar to the giericase.
Nevertheless, the divergence for tensors belonginglQ in x needs to be clarify. First, let us remind

that, for the general case, the gradient of a vehtor) is defined as

h
Vih= P g0 (105)
0z%

whereg® is the contravariant curvilinear basis vectors. Thanks to the orthonormétdfig curvilinear

basis vectors in the vicinity dfS°, we haveg® = g,. The gradient along a curvilinear vector basis,
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can be written

go - Vxh = (Vxh) - g,, (106)
oh
= 5.7 (&8, (107)
Jh
= 9. (108)
We can now define the divergence for any tensel(z2) belonging tol* (i.e. doesn't depend of),
od
ng'dE(gZ‘de)'g2:ai'gzzvx'd- (109)
22
Similarly, for any vectoth(z2) belonging tol: in x,
1/ 0h oh
€g,(h) = 5 (322 ®g2+ 82 ® P ) = ex(h). (110)

Following the same classical procedure as for the periodic vaseasily obtain the asymptotic equa-

tions:

e equations in the volum@2°, for i > —2:

p@ttui — Vx . O'i = f(szo in QZO R (111)
ol=c:e, (ul) in Q° (112)
m}igqoo ol % =0. (113)

e equation in the boundary layer:

POV’ — Vg, - T =V -7 = 60 in RxY,, i> -2, (114)
' =c:(eg (V) +ey (V) in RxY,,i>-1 (115)
7i.n=00nR x ' > 0. (116)

The matching conditions need a special care and their development is gigppéandix B. The

two first orders are
e order O:

I 0 _q° =0
. (V7 (22,91,52) —u’(x)) =0,

(117)
lim (To(zg,yl,yg) — O'O(X)) =0;

Yy1—00

e order 1;

y}i_l)"ﬂoo (v!(z2,y1,92) —u'(x) — y1 (g1 - Vx)u’(x)) =0,

(118)
Hm (7' (22,91, 92) — o' (x) — 41 (81 - Vx) 0°(x)) = 0;

Yy1—00

with x = ¢, ((0, 22)) in (117) and (118).
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3.2 lterative resolution of the asymptotic equations

We now solve the asymptotic equations for the order 0 and for the first codexctor.

3.2.1 Order0

At this stage, the periodic-case and non-periodic case equations awmibeasd therefore, the res-
olution can be followed identically. The only point that needs some attention is amantegration
by part is used over the cell domaify. Indeed, for a general transformatiqy), the outward normal
ny to Y, is not the same as the outward normal t62,. Nevertheless, as mentioned in Sec. 3.1,
the transformatiorg,, is built such that the curvilinear coordinate system is orthogonal around the
effective free surface. As the free surface is in the neighborhbtweeffective free surfacey, and
n are collinear and the boundary conditieh- ny, = 0 onI'*(x,y) is valid. Knowing this, we easily
find
vP(z2,y) = V(=) (119)

1 =0. (120)

The order 0 matching condition for the displacement yields:
u’(0,22) = v%(22). (121)

For the order 0 boundary condition, by the same token as for the periodicapasknowing that

y1 = g for x on the effective interface, we fing{( is the inward normal t@*°),

o'(x)-g1 =0 forx eI, (122)

3.2.2 Orderl

The order 1 development is very similar to the periodic case, but for thdsdetay little of the
development can be avoided. Eq. (111)fer —1 and Eq. (112) fog = 0 yield:
v, =0, (123)

O=c: (eg2 (VO) + ey(vl)) . (124)

We seek for solutions to the last equations as
0
. u .
V1(227 y) = (gl . Vx)uo + V(ZQ, Y) =Y 8251 (Oa 22) + V(ZQ) Y) ; (125)

7(22,y) = 0°(0, 22) + #(22,y) . (126)
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wherev and+ belongs toy. Using the fact thae-" does not depend op, (123) easily gives us
Vy-7=0. (127)
Using (121), (110) and the fact th&t,y; = y1 = g1, we have, o’
ey (y1(81 - V:)u') + €, (V) = ex(u’), (128)
then, (125) and the last equation yield

™ =c: (ex(u”) + &y (V) , (129)
=c’+c:e (V). (130)

Using the boundary condition (116), the order 1 asymptotic problem rettuties following problem:

T=c:ey(Vv) in RxY,, (131)

Vy-#=0 in RxY,, (132)

#-n=-0%0,2)-n on RxTI, (133)
lim 7 31 =0, (134)

y1—00

V(z2,y) and 7(z9,y) areinV. (135)

Based on the linearity of the last problem and noting that the only non zero cemipoho? is

ag2g2(0, 29) =82 - o' - g, we seek for solutions under the following form:
‘A/(z% Y) = UgQgQ(Oa Z2)V(22a Y) + <‘7> (Z2) (136)
T(22,¥) = 0gaga(0,22) T(22,y) (137)

whereV and T are inyY. From equations (131-135), we show tRatand T are solutions of the

following cell problems:
T=c:e, (V) in RxY,,
Vy - T=0 in RxY,,

T-n:—(n'yg)yz on IRXI‘EO7 (138)
lim T-y1:0.
Y1—00

T and V inV.

The last problem can be solved based on the same finite elements solvethas geriodic case. It
is actually the same problem as for the periodic case but in a deformed ggoesetiting of the(_
transformation. We are now able to compttand incompletely ((v) is not determined).

We now need to compute the order 1 boundary for the volume. This develomweny similar to
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the periodic case, nevertheless, we need to go through it again to aéaothe deformed geometry.
The external sourcg is once again assumed to be in the volume domain, and is reintroduced later if

this is not the case. Integrating the stress matching condition=for overY,,, we find

|Ya| 0'1(0, z9) = lim (/ T1(227y) dya — y1|Yuwl|(g1 - VX)00(0722)> . (139)
Yuw

Y1—00

Eq. (114) fori = 0 gives

Vy - = pv0 — Ve, - 7, (140)
and therefore,

Vy T+ Vg, - %0, 20) + Vg, - 7 = p¥°. (141)
Using the definition (93) ot/ ,, we haved,,Y, = O(¢) and therefore,

Ve, | #dy= / Vg, - #dy + O(e). (142)
Yz

Using (121), integrating (141) ovéf,(y1) and passing to the limit and using the last equation, we

obtain, to the first order,

Vg, - | #dy = lim (—/ Vy  rldy + |Ya(y1)| (—Vg, - 0° + pﬁ0)> : (143)
Yz(yl)

—00
2 Y1

Using an integration by parts, the free boundary condition aldbagd the periodicity iny,, we find

w

/( )Vy‘71(22,y,)dy,=/ 7! (22,y1,92) - g1 dy2 (144)
Yz (y1

Using (144) and (139) in (143), we have

Ve | 7y =—|Yulol gt lim (—yiYul(g1 Vi) g1+ Ya(yr)| (- Ve, 0" + pi’)) ,

(145)

where|Y,(y1)| = [y, ,,)dy’- Using (111) fori = 0 and(g; - Vx)o¥ - g1 = Vg, - ¥ in the last

equation, we get

Ve, | Fdy =—[Vulol g+ Tm ([Va(y)| —mlYol) (-Ve - 0" +pit") | (146)

z

which finally leads to the order 1 volume boundary conditiorTgh

0 .
60’1(0, 29) - g1 = —8722(022g2 b(z2)) + h(z2) (—Vg2 ol + puo) , a47)
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where
£ A
b(z2) = — | T-y2dy, (148)
Yol Jy,
_ . Y2 (y1)| — y1]Ya|
h(z2) = eyP_r}noo Yo . (149)

Based on the same demonstration as for the periodic case, we shdw-that= 0. Using again the

fact that onlyag2g2 is non zero ol’;, we can rewrite the order 1 boundary conditionltyas:

0 oh
e (0,20) - g1 = b-ys+ h)o 4+ —o0 - g+ hpu . 150
(0,22) - g1 { D2 (( Y2 ) 8282 gQ) D2 g2 P }z 0o (150)

Using the fact thad,,h = O(¢), the last equation can also be written, to the first order:

e0'(0,22) - g1 = {— (82 - Vx) (((b(22) - J2 + h) g2 - 0° - g2) &2) + h(zz)Pﬁo}Z:(O,@) . (151)

3.3 Construction of ¢,

AssumingIs° is known, following Fletcher (1991) and Komatitseh al. (1996), we use a simple
algebraic method based on third degree Hermite polynomials allowing to obtaithanormal curvi-
linear basis vector in the neighborhoodIgif . This allows to build a parametric transformatigy) .

The inverse transformatiori’);o1 is not known analytically, but can be built numerically.

3.4 FindingI'}° and consequences

Now that we have shown how to write and solve the matched asymptotic proki¢ine foon-periodic
case, the main point of this paper is to find a smooth effective topogrBghthat will define the
transformatiorg,, such thafl' andV indeed belong td’. We will not try to show that such a smooth
effective topography's° exits in general or that there is some kind of uniqueness up to a constant of
the solution, if any. We just show that it is possible to find a solution in some caskethat those
cases include all the examples we have tried. A solution toFittdcould be to set up optimization
algorithm, but that would be probably difficult. Instead, we propose an iméuirative approach for
which we need to define, for any tendagy) in Y, and extended t&? with zeros,

F(6) (o) = / W (92 — V46, ) dy (152)

z

- /R F(t) (g1, o) s (153)

F (t) (y2) is the sum along; of all t lowpass filtered cross sections alapg Moreover, we define

Fa () (y2) = / Wi (y2 — Yo) (Y1, y2) dy’, (154)
melZO
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and

Fy (t) (y2) = / Wi (Y2 — Yot (Y1, y3) dy’ (155)
Yz,y1<0

Suchf (t) = F, (t) + F (t).

We propose to take advantage of the following property (see appendix C)
F (Th2) = Fo (Taz) + Fp (Ta2) = F (T%°) . (156)

Note thatF (I'"0) is simply the lowpass filtered topography. The last equation therefore mestns th
the lowpass filtered topography is equalqTs,). The idea is the following: ifT' belongs toy,
then F (Ta2) (y1,y2) = cst for y; > 0, wherecst is a constant value igy. Assuming, for the
sake of simplicity, thatf cst dy; = 0, T belongs toV therefore implies thaf, (Tk2) = 0. Even if

Fi (Ta2) = 0 is not a warranty thal' belongs toy, we at least need to find an effective topography
such thatF, (Ty) = 0. For a wrong effective topography, (T»2) is not zero and, based on (156),
we make the assumption, that we just need to rendgu@s2) from F (I'*0) and to iterate this process

to obtain the wanted results. With such an idea, we propose the followingieche

(i) iterationiter = 0; We assume a flat effective free surface at start. Therefore, vie dodiat
reo-iter=0 interface and build the associate transformagdfi =0 as well as its inverse¢:<"=?] -
(see Sec. 3.3).

(ii) build Yifer = [¢er)=1(Q°)nr, finite element mesh, wherg, = {y € R?;ys € [cz2 — BAm,
ez + BAml}

(i) solve the cell problem (138) fom**";

(iv) computeF;, (T35") and deduc&s""" ™ (x) = F; (o) (€ (ey))

(v) if Fp (T3) is small enough, the process is over; if not, bif™*! from 15" *!(x) and

go to (ii).

As we will show for an example in Sec. 3.7, and for all the examples we have fokalving this
scheme, we findf, (Tyo) = 0, but alsoT in V.

Once an appropriate effective topography is found, the problem isahatd yet. Indeed, depend-
ing on the chosen width df, and on the topography, the coefficiehts:,) andh(z2) are not really
smooth and can contain order 1 discontinuities. For a direct solver this cgorbblam and smoother
coefficients would be appropriate. This problem is another matched asyngtaitiem. Its resolution
is simple and leads to a cell problem similar to (138). The difference is thabwes dansmooth topog-
raphy with an independent fast boundary condition (and not a fasgjitapby and boundary condition
that depends on this topography as it is the case for (138) ). The homatienigroblem is therefore

linear with respect to the coefficiebt and 4 which means that homogenization problem is trivial.
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In such a case, the scale separation can be done with any king of lineardilberim and to find
effective coefficientd* andh*. The fact that this second homogenization has to be done to obtain
b* andh* is not very satisfactory and one could hope to obtain these effectifécommts form the
effective topography in a single step. Unfortunately, we haven't angd alternative algorithm so far.

In practice, solving the cell problem (138) on a large number of small domgjris technically
not straightforward because it imposes to design a large number of smaksnéébshing tool effi-
cient manipulations requires some skills that the authors don’'t have and¥ee an alternate strategy
that is not fully equivalent and probably numerically less efficient buager to implement and that
gives good results. Instead of a large number of small domains, we useabhe iterative scheme on
the whole domain at once, or on a few smaller domains (for parallel computisgnefor example).

Once the effective topography is found, we compute the effective cieeffs as

h* = Fo (R) (157)
b* = Fy (b) | (158)

where, for any

For ©)(22) = = [ et ( - 25) a2, (159)

€0 €0
andw,, is a lowpass filter with &;,,, wave number cutoff that can be different from the cutgjff
used in Sec. 3.1. Property (156) is still valid, which means ttiat b5 = 0. Therefore, finally, the

order 1 boundary condition diZ° reduces to
50’1(0, 2’2) ‘81 = h*(ZQ)pﬁO|Z:(O722) . (160)

k., could be used to define another small parametebut we do not investigate this possibility
and setk,,, = k,, and, in this paper, we therefore hawe = ¢y. To conclude, let us say that, if
the calculus for the non-periodic case is more difficult than for the pericaiie,cthe result for the
boundary condition is the same. The new aspect is that the effective &miygneeds to be evaluate

which is not as simple as for the periodic case.

3.5 Practical resolution of the effective equations

The different orders of the asymptotic expansion are combined together aoitésor the periodic
case in Sec. 2.4. The order one correction for the receiver can leeadoior the periodic case, and
the external source, if within the boundary layer, is corrected using@nggprinciple as proposed in
Sec. 2.4.1.

The only value ofz that has a physical meaningds= ¢ as it is the only case for which the
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Figure 7. Graphs 0, 1 and 2: the three tested topographfesn graph 3 is plotted the module of the spectrum
of each topography (black: topography 0; red: topograplgrden: topography 2)

solution to thes-indexed set of solutions®*¢ is equal to the solution of the original problasff/. We
therefore in practice always havg = <. This has a practical consequence on the type of topography
for which we can have a warranted convergence of the asymptotic soluti@dak?/ with ¢.
Indeed, depending of the spectrum of the topography, the amplitude aecreases or not witly. If

the topography spectrum is such that the amplitude*®fdoes not decrease witly, we do not expect
any convergence. This is a notable difference with the non-periodic geniation in the volume
(Capdevilleet al., 2010b) for which the convergence with is independent on the property of the
elastic media as long as a minimum wavelength can be defined.

We finally replace the original problem by solving the wave equation in the dof2&invith the
dynamic boundary condition (160), which is simple to implement in a spectral etgoregram. The
effective topography's® nevertheless needs to be meshed, which is not as simple as for the periodic
case, but a much simpler problem than meshing the original topog@phyhe effective solutions

depend orzy and we expect the accuracy to increase whetlecreases.
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3.6 \Validation tests

In this section, we test the non-periodic algorithm on three topographiesmstiowig. 7, graph 0,
1 and 2. Each of these three topographies have a low frequency companéra high frequency

component with the following type of spectrum:

e topography 0: flat high frequency spectrum;
e topography 1%~! high frequency spectrum;
e topography 2%~2 high frequency spectrum.

The spectrum of each topography is plotted on Fig. 7, graph 3. It caoteel that the spectrum of
topography 0 is flat for high wavenumber, which implies that there is little chénat¢¢he amplitude of
I'*° decreases with, and therefore, as mentioned in Sec. 3.5, we expect, in that case, somédtidifficu
for the convergence. Even if the earth large scale topography speistrmnore ink—2, none of the
tested topographies is supposed to be realistic, but they provide goofibtesis method.

Before going further, let us define the average interface:

1 -
oo == | w, <$2 x?) %0 () day (161)
€0 JrR €0

Note that, if the average interfad&° is in general different from the effective interfaté, wave
equation solutions computed using both topographies (with free boundariioohdre both order 0
solution. Aey convergence can therefore be expected for both smooth interface®ifgival topog-

raphy spectrum allows it.

3.7 Ilterative algorithm to find the effective topography example

Before addressing the accuracy and convergence of the effexdiuéon, we illustrate the algo-
rithm proposed in Sec. 3.4. We choose the topography 0 (Fig. 7. graptdGua our algorithm for
Ao =1km. On Fig. 8, left graph, is showh, (745") for three iterations and, as expected its amplitude
decreases toward zero with the number of iterations. At the end of the praeesxsieed have found
a smooth effective topography for which, (735") ~ 0. For each iteration, the new topographiy
needs to be meshed. For that purpose, we use thgtostl(Geuzaine & Remacle, 2009) (see Fig. 9).
On Fig. 8, right graph, are plotted the correspondiigfor the last iteration and, for comparison, the
average interfac€:’. It can be clearly seen that the effective interface is below the avarsgéace
and looks like a kind of lower envelope on the original topography. OnXlgright plot, is shown a
cut along they, axis fory; = 100m of Tit" (y) for the first and the last iterations and on the right
plot the corresponding spectrum. If thgc =" doesn’t belong td/ (a significant amplitude signal can

be seen on its Fourier spectrum for< 0.001m 1), Tiker=> is clearly inV (The same observation
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Figure 8. Left plot: F;, (T35") for iter = 1 (black line),iter = 3 (red line) anditer = 5 (green line). Right
plot: original topography™’ (black line), the effective topograpty;® for Ay =1 km after 5 iterations (red line)

and, for comparison, the lowpass filtered topography fostrae)\q, I':° (green line).
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Figure 9. Finite element mesh sample used to solve the cell probleB) (i@ the first iteration of the algorithm

described in Sec. 3.4, used to find the effective topography

could be made fadf?,, if plotted). This shows the proposed algorithm can find an effective teypby
for which F, (T) = 0 and, moreover, it can find an effective topography for wtiths in V. The
convergence of this example and the fact t(Ratumerically belongs td’ is representative of all the

other tested topographies.

3.8 Accuracy and convergence of the effective solution

In this section, we use reference solutions computed with SEM, meshing the thgiealdopogra-
phies, once again usiggnsh for an explosion located 200 m below the free surface. We then compute

the average topographi®€$® and effective topographids’ for five values oty. Samples of each of
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Figure 10. Left plot: To2(y1,y2) as a function ofy, for a fixedy;, 100 m below the effective topography
for iterations 1 (black line) and 5 (red line). Right plot:reesponding module of the Fourier transform of

T52(y1,y=) alongys, for iterations 1 (black line) and 5 (red liné)he grey line corresponds tg = 0.001
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Figure 11.Sample of the three effective topographies (red lines) topare with the original topography (black
line) and the lowpass filtered topography (green linekfoe= 0.5 and for the three tested topographies, 0 (left
graph) 1 (center graph) and 2 (right graph).

the three effective topographies and average topographies ara shdwg. 11 forsy = 0.5. It can be
observed that, if the fact that the effective topography is similar to a loaendb envelope of the orig-
inal topography when the high frequencies dominate (which is the casspfagraphy 0), it is not that
obvious when the low frequency topography is significant (which is tee & topographies 1 and 2).
It can nevertheless be observed that the effective topography is gt ttme significantly deeper
than the average topographies. Once the effective topography compuntigletic seismograms are
computed with SEM in a domain withi° as free boundary (“average solution”) and witf? taking
into account the order 1 DtN operator (160) (“order 1 solution”). Annegke of the obtained seis-

mograms for a receiver located 28.5 km away from the source, for twewaliz, and for the three
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Figure 12.Examples of vertical traces computed for a receiver locat@8.5 km from the source. The reference
solution (black line), the effective solution (red line)datine solution computed using the average topography
I'2° (green line) are plotted for the three tested topographyo@icaphy O: first line of graphs; topography 1:
second line; topography 3: third line) and two values®{ ¢o = 1: left column of graphszy, = 0.5: right

column of graphs)

topographies is presented on Fig. 12. For the topography 0 (Fig. 12apb%), as expected, the aver-
age solution (an order 0 solution) doesn’t seem to convergeawithis is confirmed on Fig. 13, left
graph, with theL, error (see (77)) as a function ef that shows little improvement with smalleg.
The order 1 solution significantly improves the accuracy compared to the solotigouted with the
average topography, but it seems that, similarly to the “average solution”, littleirement of the
accuracy comes with lowey. Nevertheless, on the, error (Fig. 13, left graph), it can be seen that,
after a slow decrease fer < 0.5, the error of the order 1 solution decreases as fasg.aghis result

is surprising but shows that the order 1 solution can converge in a flaigFapectrum topography,

at least for some examples. For topography 1, both on traces (Fig. 12ergidghs) and on thés
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Figure 13. Graphs a,b and c: L2 errors computed following (77) as a fanatf ¢, for topography 0, 1 and

2 respectively. The black circles are the errors for thectiffe solution developed in the present papér!
and the black triangles, the error obtained in a lowpasgditeéopography (with the same filter as the one
used to find the effective topographiiae dotted and dashed lines display, respectivglynds3 curves for

comparison.

error (Fig. 13, center graph) a steady convergence witbf the solution computed in the average
topography can be observed, which was expected. The order 1 sahtiars a more accurate solu-
tion than the average solution and(%asolution, at least forg < 0.5. The fact that the error doesn't
continue to decrease for loweg is due to the error of the SEM itself, and to the fact that we can't
use exactly the same mesh for both reference and asymptotic solutions. A solutian pootblem
would be to significantly decrease the element size, which we haven'tkdaweing the excellent
accuracy already reached. For topography 2, both on traces igpoitom graphs) and on the
error (Fig. 13, right graph), a steady convergenceinan be observed for the solutions computed in
the average topography. For the order 1 solution, a convergencetfette! is observed foe, < 0.5

and then a converge Y. The change in the rate of convergence is once again probably due to the
SEM error itself.

Finally, the traces presented Fig. 14 show that the difference betwaeioss obtained iT:°
andI'® but with a free boundary condition (“order O solution”) is weak. Both solutiaresorder 0
solutions and show the same convergence rate ayitiNevertheless, the solution obtained witg?
has a slightly better accuracy than the solution computed in the averaged topoBfaphy

To conclude these tests, it can be said that the rate of convergencaldepethe Fourier spectrum
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Figure 14. Example of vertical traces computed for a receiver located0sb km from the source for the
topography 0. The reference solution (black line), ordehd ¢ffective solution (red line) and the solution
computed using the average topogra@tyy (green line) as well as the order 0 solution (blue line) aceted
for g =0.5.

of the topography, which is rather intuitive as the smallest is the amplitude of thexéds topography
the littlest effect of the fast topography is expected. Of both order Gisoki(average topography,
order O effective topography), the effective topography giveddst results, nevertheless, the differ-
ence is small. The order 1 solution brings a significant improvement in theaagycaf the solution

and one order ia( for the convergence rate.

4 DISCUSSION AND CONCLUSIONS

We have shown a two scale asymptotic method able to take into account nodipéasi scales to-
pography for 2D elastic waves in homogeneous media. To the order 1stisefde topography can be
replaced by a smooth effective topography and the dynamic boundaditioon\We have shown that
the effective topography is approximately similar to a lower envelope of gtedpography and the
dynamic boundary condition account for the inertial effect of the fasigogohy above the effective
topography. Its overall effect is to slow down the elastic waves propagakimg the topography. It
can approximately said that the waves are propagating almost below thepfagtaphy but are slowed
down by the inertial effect of the weight of the fast topography aboeecffective free surface. We
have shown that the convergence rate of the asymptotic method dependb@pourier spectrum of
the topography: the faster it decreases with the wavenumber, the fasteethed converges. A flat
Fourier spectrum topography shows a poor convergence. The @sjenmethod allows to build first
order correctors for receivers and sources located within the fagyitayploy. The corrector effect can

be particularly large for moment tensor sources. If the algorithm proposeddéind the effective
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interface allows to find an effective topography, it is not fully satisfactbrdeed, it is iterative and
implies multiple meshes. It is therefore not straightforward to implement and moyé&aterconver-
gence is fast for the first iterations, it is then slow to achieve a more precisktsieOne can hope to

find a more direct and effective algorithm in future.

With respect to the work of Huang & Maradudin (1987) and Masfeal. (1991), which, among
other results, shows that the fast topography behaves like a shalloweasfewy we can say that we
find a similar result. Indeed the inertial effect of the fast topographyllipgereases the density in
the neighborhood of the effective free surface, which decreaseddhtic wave velocities. Neverthe-
less, this is not exactly the effect of a slow layer. Indeed, a slow thin lagermlso an elastic effect
(Capdeville & Marigo, 2008), which is not present here. The effetheffast topography is therefore

more a high density layer effect rather than a slow layer effect.

About Kohleret al. (2012)'s work, their idea is that the phase of surface waves is affégt¢he
longer propagation path in the topography than in a flat earth. This is triee dorooth topography
but not for a fast topography. Indeed, we have shown that forgigminies varying faster than the
minimum wavelength, the effect of the topography is dominated by the or@eeféect (high density
layer) and not by the shape of the effective topography (see FigDEfpending on the Fourier spec-
trum characteristic of the actual topography, the bias introduced by shéofgography is important
or negligible. A systematic study of the fast topography effect remains tmbe fbr the real earth,
nevertheless, this effect is expected to be small for large or regional(sstizssay 10000 km to 10 km),
but maybe not at small scales (surface waves propagating through in aittitiamge buildings for

example).

The general 2-D case, i.e. fast topography and fast elastic anitydertperty variations as well
as the 3-D case still need to be treated. The relevance of our iterativ@taigdo find the effective

topography in the inhomogeneous 3-D case will have to be demonstratedddradblyradapted.

Homogenization and upscaling in general have a lot to do with the inverse préiolermgraphy)
in seismology. The result of an elastic inversion of seismic data is closely relatieel homogenized
version of the real earth. In general, the present work should impaation technique and the inter-
pretation of tomographic images. Indeed, for a given frequency bankintven fine scale topography
should be upscaled to the actual scale of the inversion and the bourmtaliyian modified in order
to avoid miss-interpretation of a slow layer in the near surface. In practieg,iethis remains to be
closely studied, for most of the earth locations, the topography spectruranaplitude is probably

such that these effects are small.
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APPENDIX A: SOME NOTATIONS USED THROUGHOUT THE PAPER

For any 4th-order tensak and second order tensbr, we note

[A :bli; = Ajjribi (A1)
where the sum over repeated subscripts is assumed. For any 4thenrsiansA andB , we note

[A : Blijii = AijmnBmnki - (A2)

We will sometimes use the following compact notation for partial derivatives wiphaet to any

variablex of a given functionu;:
Ot = — (A3)

and the classical notation for time partial derivative: for any

ou
= —. A4
U= (A4)
We define the gradient, for any vectey
ou; )
Vuza—xjxi@xj, (A5)

wherex;, ¢ = 1, 2 are the unit vector of the Cartesian coordinate systenwatick tensor producive

define the divergence, for any tensar

87-Z-j ~

V.-1T= X, (AB)
890]-
the gradient along a single component
Gui ~ ~
Ve u= 5y Xa ® x; (nosum om), (A7)
as well as the divergence along a single component
OTwi .
Ve, T= x; (nosum om). (A8)
0y
We define the strain tensor,
1 8uz an N ~
= = i iy A9
6(11) 9 <a$]+8$1> X ®X] ( )

as well as the strain tensor with respect to a single component

1/ 0u; . . ou; .
€, (u) = 3 <a§ Xo @ X; + % X; ® xa> (no sum o). (A10)
(0% (6%
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APPENDIX B: MATCHING CONDITIONS FOR THE NON-PERIODIC CASE

To establish the matching conditions between the two asymptotic expansions wveedbat it exists
an area where both are valid: for a givere I'S?, we assume it exits a large enoughsuch that both

expansion are valid fax + ¢ (cy):

lim v&(22, 41, 42) = u (x + (, (€y))

Y1 —00

(B1)
lim 7_5(22’ Y1, y?) = Ua(x + CEO (5y>) ’

Y1 —00

wherez, is thex curvilinear position alond@*s°. Whene goes toward zero, evenif is large,cy is
small and, for any, a Taylor expansion can be done:

[e.o]

Coley) = 3 St o 0.0) (B2)

i=1
Knowing thatg: (x) = 0, C., lz=<(0,y,) fOr x = ¢, (€(0,y2)), we have

o i
gt ..
Caoley) =D uigt (B3)
i=1
whereg} = 9. 'g;. For any small vectoa, we have

[e.9]

u(x+a,y) = Z [Jl'(a Vx)jui(x,y)} . (B4)

=0

Combining (B3) and (B4), at the order 2, we find

u'(x + Gy (ey)) = u'(x)+eyn (81 V) 0 (%)

+%azyf (((%gl - Vi) + (81 Vx)2> u'(x) + O(%)

(BS)

Applying the same taylor expansion4d, combining the last equation with B1, identifying terms by

power ofe yields:
e order O:

lim vo(zz,y1,y2) = 110(")7
Y1 —0o0
(B6)
lim 7922, y1,92) = 0°(x);
Yy1—00

e order 1;

Hm v'(22,y1,92) = u!(x) + y1 (81 - Vx) u’(x),
Y1—00

(B7)
lim TI(ZQ,yl,yQ) = UI(X) +y1 (g1 - Vx) O'O(X) )

Yy1—00
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e order 2:

lm v?(z2,y1,92) = u?(x) + 41 (81 - V) u'(x)

Y1—00

iy <(<9y1g1 V) + (g1 V")2> W)

2 (88)
y}i_rgo (22,41, 42) = (%) + 1 (81 Vi) o' (%)

L 2\ o

+ Pl (Oy,81- Vx) + (81 Vx)") o7 (x).
We obtain the periodic case matching asymptotic conditions by 5ifg) = z.
APPENDIX C: RELATION BETWEEN FILTERED T, AND T'¢0
We first define the scalar function
Y2 , ,
W (y2) = /0 Wi (Y2) dYs (C1)
such
Wi (y2)y2 = VyW. (C2)
Using an integration by parts and the equilibrium equation of the cell problen), (@@have
/WVy-Tdy: WT-ndy—/wmyg-Tdy:O. (C3)
Y Y Y

Taking advantage of the periodicity ia, of the boundary condition ig; — oo and onI'*°, we have

[ wnTdy =0, (c4)
Y
Wno dy + / Wy Tho dy = 0. (C5)
reo Y
Reminding thal*** = {y € Y;y; = I"*°(y2)}, we have
ore
=— C6
n2 ds ) ( )

wheres(yz) = [i° T (y5) dys. Therefore,

Sm F&
Wnody = —/ VVa ds, (C7)
0 88
Y.
w Jgre
0 Y2

Yuw
:/ w T dys . (C9)
0
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Finally, we have, using,,,(y, — y2) instead ofw,,(y2) in the above development

F(Tw) = ~F (%), (C10)
F(T) =0, (C11)

where, for any scalaty),

f@@gzéme%m%%my. (C12)



