Band structure of the Ruelle spectrum of contact Anosov flows
Frédéric Faure, Masato Tsujii

To cite this version:

HAL Id: hal-00780217
https://hal.archives-ouvertes.fr/hal-00780217v3
Submitted on 30 May 2013

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Abstract

If X is a contact Anosov vector field on a smooth compact manifold M and $V \in C^\infty(M)$ it is known that the differential operator $A = -X + V$ has some discrete spectrum called Ruelle-Pollicott resonances in specific Sobolev spaces. We show that for $\lvert \text{Im} z \rvert \to \infty$ the eigenvalues of A are restricted to vertical bands and in the gaps between the bands, the resolvent of A is bounded uniformly with respect to $\lvert \text{Im} (z) \rvert$. In each isolated band the density of eigenvalues is given by the Weyl law. In the first band, most of the eigenvalues concentrate to the vertical line $\text{Re} (z) = \langle D \rangle_M$, the space average of the function $D (x) = V (x) - \frac{1}{2} \text{div} X |_{E_u (x)}$ where E_u is the unstable distribution. This band spectrum gives an asymptotic expansion for dynamical correlation functions.
Résumé

Titre : “Structure en bandes du spectre de Ruelle des flots Anosov de contact”.

Si X est un champ de vecteur Anosov de contact sur une variété compacte lisse M et si $V \in C^\infty(M)$, il est connu que l'opérateur différentiel $A = -X + V$ du spectre discret appelé résonances de Ruelle-Pollicott dans des espaces de Sobolev spécifiques. On montre que pour $|\text{Im}(z)| \to \infty$ les valeurs propres de A sont incluses dans des bandes verticales et que dans les gaps entre ces bandes la résolvante de A est bornée uniformément par rapport à $|\text{Im}(z)|$. Dans chaque bande isolée, la densité des valeurs propres est donnée par une loi de Weyl. Ce spectre en bande permet d’exprimer le comportement asymptotique des fonctions de correlations dynamiques.

1 Introduction

In this paper we announce some results concerning the Ruelle-Pollicott spectrum of transfer operators associated to contact Anosov flows [7]. Let X be a smooth vector field on a compact manifold M and suppose that X generates a contact Anosov flow.

The Ruelle-Pollicott spectrum of contact Anosov flows has been studied since a long time due to its importance to describe the precise behavior and decay of time correlation functions for large time. From this, one can deduce fine statistical properties of the dynamics of the flow such as exponential convergence towards equilibrium (i.e. mixing) or central limit theorem for the Birkhoff average of functions. The Ruelle-Pollicott spectrum is also useful to get some precise asymptotic counting of periodic orbits.

Recent results show that the Ruelle-Pollicott resonances are the discrete eigenvalues of the generator $(-X)$ seen as a differential operator in some specific Sobolev spaces of distributions $H \subset D'(M)$ [1, 6, 9]. A more precise description of the structure of this spectrum has been obtained in [15, 16] where it is shown that in the asymptotic limit $|\text{Im}(z)| \to \infty$ the spectrum is on the domain $\text{Re}(z) \leq \gamma^+_0$ with some explicit “gap” $\gamma^+_0 < 0$ given below. More generally these results can be extended to the operator $A = -X + V$ where $V \in C^\infty(M)$ is a smooth function called “potential”.

In this paper we improve the description of the structure of this Ruelle-Pollicott spectrum. The main results are stated in Theorem 5.1. They show that the Ruelle-Pollicott spectrum of the first order differential operator $A = -X + V$ has some band structure in the asymptotic limit $|\text{Im}(z)| \to \infty$, i.e. is contained in the union of vertical bands $B_k = \{ z \in \mathbb{C}, \text{Re}(z) \in [\gamma^-_k, \gamma^+_k] \}$, $k \geq 0$ with $\gamma^{+}_{k+1} < \gamma^{+}_k$. The values γ^-_k, γ^+_k are given explicitly in (5.1) by the maximum (respect. minimum) of the time averaged along trajectories of a function $D \in C^\infty(M)$ called “damping function” given by $D = V - \frac{1}{2} \text{div} X_{E(u)}$. If the band B_k is isolated from the others by an asymptotic spectral gap (i.e. $\gamma^{+}_{k+1} \leq \gamma^-_k$) then the norm of resolvent of A is bounded in this gap uniformly with respect to $|\text{Im}(z)|$.
Theorem 5.1 shows that the spectrum in every isolated band B_k satisfies a Weyl law, i.e. the number $N(b)$ of eigenvalues $z \in B_k$ satisfying $\text{Im}(z) \in [b, b + b^\varepsilon]$ is given by

$$N(b) / b^d \sim b^d$$

as $b \to \infty$ for any $\varepsilon > 0$, where $\dim M = 2d + 1$. The assumption that the band is isolated is not needed for the upper bound. A better result for the upper bound of this Weyl law is given in [2]: it is shown that for any radius $C_0 > 0$, the number of resonances in the disk $D(ib, C_0)$ of center ib is $O(b^d)$ (i.e. this is the case $\varepsilon = 0$).

Concerning the most interesting “external band” $B_0 = \{z \in \mathbb{C}, \text{Re}(z) \in [\gamma^-_0, \gamma^+_0]\}$, supposing that it is isolated ($\gamma^+_1 < \gamma^-_0$), it is shown in Theorem 5.3 that most of the resonances in the band B_0 accumulate on the vertical line $\text{Re}(z) = \langle D \rangle_M$ given by the space average of the function D. This is due to ergodicity. This problem is then closely related to the description of the spectrum of the damped wave equation [13]. Finally Corollary 5.4 shows that dynamical correlation functions can be expanded over the infinite spectrum contained in the first band B_0.

In the forthcoming paper [7] we will consider the special case $V = V_0 = 1/2 \text{div} X_{|E_u}$ for which the damping function vanishes $D = 0$, $\gamma^+_0 = 0$, i.e. the Ruelle-Pollicott resonances of the external band accumulate on the imaginary axis. However, V_0 is not smooth and this requires an extension of the theory.

From Selberg theory and representation theory, this particular band structure is known for a long time in the case of homogeneous hyperbolic manifolds $M = \Gamma \backslash SO_{1,n}/SO_{n-1} \equiv \Gamma \backslash T^*_n \mathbb{H}^n$ where Γ is a discrete co-compact subgroup. In that case, the contact Anosov flow is the geodesic flow on the hyperbolic manifold surface $\mathcal{N} = \Gamma \backslash \mathbb{H}^n = \Gamma \backslash SO_{1,n}/SO_n$.

Technically we use semiclassical analysis to study the spectrum of the differential operator $A = -X + V$ [11, 17]. We consider the associated “canonical dynamics” in the phase space T^*M which is simply the lifted flow. The key observation is that this canonical dynamics has a non-wandering set or “trapped set” which is a smooth symplectic submanifold $K \subset T^*M$ and which is normally hyperbolic. This is the origin of the band structure of the spectrum. The results presented in this paper have been already obtained (among others) for a closely related problem, namely the band structure of prequantum Anosov diffeomorphisms [8]. This approach has been originally developed on a simple model in [5].

In a recent paper [4], Semyon Dyatlov shows a band structure for resonances for a similar problem motivated by scattering by black holes. The band structure he obtains also comes from the property that the trapped set in his problem is symplectic and normally hyperbolic but he assumes some smoothness for the (un)stable foliations. One difficulty we have to deal with for Anosov flows is the non smoothness of the (un)stable foliations. An other related recent work is the paper of Nonnenmacher-Zworski [12] where they obtain Theorem 3.5 below but for more general models including contact Anosov flow.

The notation $\mathcal{N}(b) \sim |b|^{d+\varepsilon}$ means that $\exists C > 0$ independent of b s.t. $\frac{1}{C} |b|^{d+\varepsilon} \leq \mathcal{N}(b) \leq C |b|^{d+\varepsilon}$.

3
2 Contact Anosov flow

Definition 2.1. On a smooth Riemannian compact manifold \((M, g)\), a smooth vector field \(X\) generating a flow \(\phi_t : M \to M, t \in \mathbb{R},\) is **Anosov** (see Fig. 2.1), if there exists an \(\phi_t\)-invariant decomposition of the tangent bundle \(TM = E_u \oplus E_s \oplus E_0\), where \(E_0 = \mathbb{R}X\) and \(C > 0, \lambda > 0\) such that for every \(t \geq 0\)

\[
\|D\phi_t/E_s\|_g \leq Ce^{-\lambda t}, \quad \|D\phi_{-t}/E_u\|_g \leq Ce^{-\lambda t}.
\]

(2.1)

Remark 2.2. In general the map \(x \in M \to E_u(x), E_s(x)\) are only Hölder continuous. The “structural stability theorem” shows that Anosov vector field is a property robust under perturbation.

Definition 2.3. The Anosov one form \(\alpha \in C(T^*M)\) is defined by \(\ker\alpha = E_u \oplus E_s,\) \(\alpha(X) = 1.\) \(X\) is a **contact Anosov vector field** if \(\alpha\) is a smooth contact one form i.e. \((d\alpha)|_{E_u \oplus E_s}\) is non degenerate (symplectic).

Remark 2.4. If the case of a contact Anosov vector field we have that \(\dim E_u = \dim E_s = d,\) with \(\dim M = 2d + 1\) and that \(dx = \alpha \wedge (d\alpha)^d\) is smooth volume form on \(M\) preserved by the flow \(\phi_t.\)

As an example, the geodesic flow on a compact manifold \(N\) with negative sectional curvature (not necessary constant) defines a contact Anosov flow on \(T^*_1N.\) In that case the Anosov one form \(\alpha\) coincides with the canonical Liouville one form \(\xi dx\) on \(T^*N.\)

We will assume that \(X\) is a contact Anosov vector field on \(M\) in the rest of this paper.

![Figure 2.1: Anosov flow.](image-url)
3 The transfer operator

Let $V \in C^\infty(M)$ be a smooth function called “potential”.

Definition 3.1. The **transfer operator** is the group of operators

$$\hat{F}_t : \begin{cases} C^\infty(M) & \to C^\infty(M) \\ v & \to e^{tA}v \end{cases}, \quad t \geq 0$$

with the generator

$$A := -X + V$$

which is a first order differential operator.

Remark 3.2.

- Since X generates the flow ϕ_t we can write $\hat{F}_t v = \left(e^{\int_0^t V_{\phi_{-s}} \, ds} \right) v(\phi_{-t}(x))$, hence \hat{F}_t acts as transport of functions by the flow with multiplication by exponential of the function V averaged along the trajectory.

- In the case $V = 0$, the operator \hat{F}_t is useful in order to express “dynamical correlation functions” between $u, v \in C^\infty(M)$, $t \in \mathbb{R}$:

$$C_{u,v}(t) := \int_M u \cdot (v \circ \phi_{-t}) \, dx = \langle u, \hat{F}_t v \rangle_{L^2} \quad (3.1)$$

The study of these time correlation functions permits to establish the mixing properties and other statistical properties of the dynamics of the Anosov flow. In particular $u = cste$ is an obvious eigenfunction of $A = -X$ with eigenvalue $z_0 = 0$. Since $\text{div}X = 0$ we have that \hat{F}_t is unitary in $L^2(M, dx)$ and $iA = (iA)^*$ is self-adjoint and has continuous spectrum on the imaginary axis $\text{Re}(z) = 0$. In the next theorem we consider more interesting functional spaces where the operator A has discrete spectrum but is non self-adjoint.

Theorem 3.3 ([1][6]). "discrete spectrum”. If X is an Anosov vector field and $V \in C^\infty(M)$ then for every $C > 0$, there exists a Hilbert space \mathcal{H}_C with $C^\infty(M) \subset \mathcal{H}_C \subset D'(M)$, such that

$$A = -X + V : \mathcal{H}_C \to \mathcal{H}_C$$

has discrete spectrum on the domain $\text{Re}(z) > -C\lambda$, called Ruelle-Pollicott resonances, independent on the choice of \mathcal{H}_C.

5
Remark 3.4. Concerning the meaning of these eigenvalues, notice that with the choice $V = 0$, if $(-X) v = z v$, v is an invariant distribution with eigenvalue $z = -a + ib \in \mathbb{C}$, then $v \circ \phi_{-t} = e^{-tX} v = e^{-at} e^{ibt} v$, i.e. $a = -\Re(z)$ contributes as a damping factor and $b = \Im(z)$ as a frequency in time correlation function (3.1). See corollary 5.4 below for a precise statement. Notice also the symmetry of the spectrum under complex conjugation that $Av = zv$ implies $A\overline{v} = \overline{zv}$.

We introduce now the following function that will play an important role:

$$V_0 (x) := \frac{1}{2} \text{div} X |_{E_u}.$$ \hspace{1cm} (3.2)

From (2.1) we have $V_0 (x) \geq \frac{1}{2} d \cdot \lambda$. Since $E_u (x)$ is only Hölder in x so is $V_0 (x)$. We will also consider the difference

$$D (x) := V (x) - V_0 (x)$$ \hspace{1cm} (3.3)

and called it the “effective damping function”. For simplicity we will write:

$$\left(\int_0^t D \right) (x) := \int_0^t (D \circ \phi_{-s}) (x) ds, \quad x \in M,$n

for the Birkhoff average of D along trajectories.

Theorem 3.5 ([15, 16]). "asymptotic gap". If X is a contact Anosov vector field on M and $V \in C^\infty (M)$, then for any $\varepsilon > 0$ the Ruelle-Pollicott eigenvalues $(z_j) \in \mathbb{C}$ of $A = -X + V$ are contained in

$$\Re (z) \leq \gamma_0 + \varepsilon$$

up to finitely many exceptions and with

$$\gamma_0^+ = \limsup_{t \to \infty} \frac{1}{t} \left(\int_0^t D \right) (x).$$ \hspace{1cm} (3.4)

Remark 3.6. See Figure 5.1(b). Notice that in the case $V = 0$ we have $\gamma_0^+ \leq -\frac{1}{2}d \cdot \lambda < 0$.

Let μ_g be the induced Riemann volume form on $E_u (x)$ defined from the choice of a metric g on M. As the usual definition in differential geometry [14, p.125], for tangent vectors $u_1, \ldots, u_d \in E_u (x)$, $\text{div} X |_{E_u}$ measures the rate of change of the volume of E_u and is defined by

$$(\text{div} X |_{E_u} (x)) \cdot \mu_g (u_1, \ldots, u_d) = \lim_{t \to 0} \frac{1}{t} (\mu_g (D\phi_t (u_1), \ldots, D\phi_t (u_d)) - \mu_g (u_1, \ldots, u_d))$$

Equivalently we can write that $\text{div} X |_{E_u} (x) = \frac{d}{dt} (\det (D\phi_t) |_{E_u}) |_{t=0}$.

6
4 Example of the geodesic flow on constant curvature surface

A simple and well known example of contact Anosov flow is provided by the geodesic flow on a surface S with constant negative curvature. Precisely let $\Gamma < SL_2\mathbb{R}$ be a co-compact discrete subgroup of $G = SL_2\mathbb{R}$ (i.e. such that $M := \Gamma \backslash SL_2\mathbb{R}$ is compact). We suppose that $(-\text{Id}) \in \Gamma$. Then we have a natural identification that $M \cong T^*S$ is the unit cotangent bundle of the hyperbolic surface $\mathcal{S} := \Gamma \backslash SL_2\mathbb{R}/SO_2 \cong \mathbb{H}^2$. Let X be the left invariant vector field on M given by the element $X_e = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in sl_2\mathbb{R} = T_eG$. Then X is an Anosov contact vector field on M and can be interpreted as the geodesic flow on the surface S. Using representation theory, it is known that the Ruelle-Pollicott spectrum of the operator $(-X)$ coincides with the zeros of the dynamical Fredholm determinant. This dynamical Fredholm determinant is expressed as the product of the Selberg zeta functions and gives the following result; see figure 5.1(a). We refer to [7] for further details.

Proposition 4.1. If X is the geodesic flow on an hyperbolic surface $S = \Gamma \backslash \mathbb{H}^2$ then the Ruelle-Pollicott eigenvalues z of $(-X)$ are of the form

$$z_{k,l} = \frac{-1}{2} - k \pm i\sqrt{\mu_l - \frac{1}{4}}$$

where $k \in \mathbb{N}$ and $(\mu_l)_{l \in \mathbb{N}} \in \mathbb{R}^+$ are the discrete eigenvalues of the hyperbolic Laplacian Δ on the surface S. There are also $z_n = -n$ with $n \in \mathbb{N}^*$. Each set $(z_{k,l})_l$ with fixed k will be called the line B_k. The “Weyl law” for Δ gives the density of eigenvalues on each vertical line B_k, for $b \to \infty$,

$$\sharp \{z_{k,l}, \ b < \text{Im} \ (z_{k,l}) < b + 1\} \asymp |b|$$

5 Band spectrum for general contact Anosov flow

Proposition 4.1 above shows that the Ruelle-Pollicott spectrum for the geodesic flow on constant negative surface has the structure of vertical lines B_k at $\text{Re} z = -\frac{1}{2} - k$. In each line the eigenvalues are in correspondence with the eigenvalues of the Laplacian Δ. We address now the question if this structure persists somehow for geodesic flow on manifolds with negative (variable) sectional curvature and more generally for any contact Anosov flow. In the next Theorem, for a linear invertible map L, we note $\|L\|_{\text{max}} := \|L\|$ and $\|L\|_{\text{min}} := \|L^{-1}\|^{-1}$.
Theorem 5.1. [7]“asymptotic band structure”. If X is a contact Anosov vector field on M and $V \in C^\infty(M)$ then for every $C > 0$, there exists an Hilbert space \mathcal{H}_C with $C^\infty(M) \subset \mathcal{H}_C \subset D'(M)$, such that for any $\varepsilon > 0$, the Ruelle-Pollicott eigenvalues $(z_j) \in \mathbb{C}$ of the operator $A = -X + V : \mathcal{H}_C \to \mathcal{H}_C$ on the domain $\Re(z) > -C\lambda$ are contained, up to finitely many exceptions, in the union of finitely many bands

$$z \in \bigcup_{k \geq 0} [\gamma_k^- - \varepsilon, \gamma_k^+ + \varepsilon] \times i\mathbb{R}$$

with

$$\gamma_k^+ = \lim_{t \to \infty} \sup_x \frac{1}{t} \left(\left(\int_0^t D(x) \right) - k \log \left\| D\phi_t(x)/E_u \right\|_{\min} \right)$$

(5.1)

$$\gamma_k^- = \lim_{t \to \infty} \inf_x \frac{1}{t} \left(\left(\int_0^t D(x) \right) - k \log \left\| D\phi_t(x)/E_u \right\|_{\max} \right)$$

(5.2)

and where $D = V - V_0$ is the damping function (3.3). In the gaps (i.e. between the bands) the norm of the resolvent is controlled: there exists $c > 0$ such that for every $z /\notin \bigcup_{k \geq 0} \mathcal{B}_k$ with $|\Im(z)| > c$

$$\left\| (z - A)^{-1} \right\| \leq c.$$

For some $k \geq 0$, if the band \mathcal{B}_k is “isolated”, i.e. $\gamma_{k+1}^+ < \gamma_k^-$ and $\gamma_k^+ < \gamma_{k-1}^-$ (this last condition is for $k \geq 1$) then the number of resonances in \mathcal{B}_k obeys a “Weyl law”: $\forall b > c,$

$$\frac{1}{c} |b|^d < \frac{1}{|b|^e} \cdot \# \{ z_j \in \mathcal{B}_k, b < \Im(z_j) < b + b^e \} < c |b|^d$$

(5.3)

with $\dim M = 2d + 1$. The upper bound holds without the condition that \mathcal{B}_k is isolated.

Remark 5.2. We can compare Theorem 5.1 with Proposition 4.1 in the special case of the geodesic flow on a constant curvature surface $S = \Gamma \backslash \mathbb{H}^2$: we have $D\phi_t(x)/E_u \equiv e^t$ hence $V_0 = \frac{1}{2}$. The choice of potential $V = 0$ gives the constant damping function $D = -\frac{1}{2}$, hence (5.1) gives $\gamma_k^+ = \gamma_k^- = -\frac{1}{2} - k$ as in Proposition 4.1.

In the forthcoming paper [7] we will show that for a general contact Anosov vector field it is possible to choose the potential $V = V_0$ (non smooth), giving $\gamma_0^+ = \gamma_0^- = 0$, i.e. the first band is reduced to the imaginary axis and is isolated from the second band by a gap, $\gamma_1^+ < 0$.

8
Figure 5.1: (a) For an hyperbolic surface $S = \Gamma \setminus \mathbb{H}^2$, the Ruelle-Pollicott spectrum of the geodesic vector field $-X$ given by Proposition 4.1. It is related to the eigenvalues of the Laplacian by (4.1). (b) For a general contact Anosov flow, the spectrum of $A = -X + V$ and its asymptotic band structure given by Theorems 5.1 and 5.3.

Theorem 5.3. [7] If the external band B_0 is isolated i.e. $\gamma_1^+ < \gamma_0^-$, then most of the resonances accumulate on the vertical line

$$\text{Re}(z) = \langle D \rangle := \frac{1}{\text{Vol}(M)} \int_M D(x) \, dx$$

in the precise sense that

$$\frac{1}{\text{Vol}(M)} \sum_{z_i \in B_b} |z_i - \langle D \rangle| \xrightarrow{b \to \infty} 0,$$

with $B_b := \{ z_i \in B_0, |\text{Im}(z_i)| < b \}$. (5.4)

Consequence for correlation functions expansion

We mentioned the usefulness of dynamical correlation functions in (3.1). Let Π_j denotes the finite rank spectral projector associated to the eigenvalue z_j. The following Corollary provides an expansion of correlation functions over the spectrum of resonances of the first band B_0. This is an infinite sum.
Corollary 5.4. Suppose that \(\gamma_1^+ < \gamma_0^- \). Then for any \(\varepsilon > 0 \), there exists \(C_\varepsilon \), for any \(u, v \in C^\infty(M) \) and \(t \geq 0 \),

\[
\left| \langle u, \hat{F}_t v \rangle_{L^2} - \sum_{z_j, \text{Re}(z_j) \geq \gamma_1^+ + \varepsilon} \langle u, \hat{F}_t \Pi_j v \rangle \right| \leq C_\varepsilon \|u\|_{H^0} \cdot \|u\|_{H^0} \cdot e^{(\gamma_0^- + \varepsilon)t}.
\] (5.5)

The infinite sum above converges fast because for arbitrary large \(m \geq 0 \) there exists \(C_{m,\varepsilon}(u,v) \geq 0 \) such that \(\left| \langle u, \hat{F}_t \Pi_j v \rangle \right| \leq C_{m,\varepsilon}(u,v) \cdot e^{(\gamma_0^- + \varepsilon)t} \cdot |\text{Im}(z_j)|^{-m} \) (except for a finite number of terms).

Eq.(5.5) is a refinement of decay of correlation results of Dolgopyat [3], Liverani [10], Tsujii [15, 16, Cor.1.2] and Nonnenmacher-Zworski [12, Cor.5] where their expansion is a finite sum over one or a finite number of leading resonances.

Outline of the proof

The band structure and all related results presented above have already been proven for the spectrum of Anosov prequantum map in [8]. An Anosov prequantum map \(\tilde{f} : P \to P \) is an equivariant lift of an Anosov diffeomorphism \(f : M \to M \) on a principal bundle \(U(1) \to P \to M \) such that \(\tilde{f} \) preserves a contact one form \(\alpha \) (a connection on \(P \)). Therefore \(\tilde{f} : P \to P \) is very similar to the contact Anosov flow \(\phi_t : M \to M \) considered in this paper, that also preserves a contact one form \(\alpha \). Our proof of Theorem 5.1 is directly adapted from the proof given in [8]. We refer to this paper for more precisions on the proof and we use the same notations below. The techniques rely on semiclassical analysis adapted to the geometry of the contact Anosov flow lifted in the cotangent space \(T^*M \). In the limit \(|\text{Im}z| \to \infty \) of large frequencies under study, the semiclassical parameter is written \(\hbar := 1/|\text{Im}z| \). We now sketch the main steps of the proof.

Global geometrical description. \(A = -X + V \) is a differential operator. Its principal symbol is the function \(\sigma(A)(x,\xi) = \sum_j x_j \sum_k \partial_x^k \sum_l \partial_{\xi}^l \) on phase space \(T^*M \) (the cotangent bundle). It generates an Hamiltonian flow which is simply the canonical lift of the flow \(\phi_t \) on \(M \). Due to Anosov hypothesis on the flow in Definition 2.1, the non-wandering set of the Hamiltonian flow is the continuous sub-bundle \(K = \text{Re} \alpha \subset T^*M \) where \(\alpha \) is the Anosov one form. \(K \) is normally hyperbolic. This analysis has already been used in [6] for the semiclassical analysis of Anosov flow (not necessary contact). With the additional hypothesis that \(\alpha \) is a smooth contact one form, this makes \(K \setminus \{0\} \) a smooth symplectic submanifold of \(T^*M \) (usually called the symplectization of the contact one form \(\alpha \)) and normally hyperbolic. Let \(\rho = (x,\xi) \in K \) be a point on the trapped set. Let \(\hbar^{-1} = X_\rho(\xi) \) be its “energy”. Let \(\Omega = \sum_j dx_j \wedge d\xi_j \) be the canonical symplectic form on \(T^*M \) and consider the \(\Omega \)-orthogonal
splitting of the tangent space at $\rho \in K$:
\[T_\rho (T^* M) = T_\rho K \oplus (T_\rho K)^\perp \tag{5.6} \]
Due to hyperbolicity assumption, we have an additional decomposition of the space
\[(T_\rho K)^\perp = E^{(2)}_u \oplus E^{(2)}_s \]
transverse to the trapped set into unstable/stable spaces.

Partition of unity. We decompose functions on the manifold using a microlocal partition of unity of size $\hbar^{1/2-\varepsilon}$ with some $1/2 > \varepsilon > 0$, that is refined as $\hbar \to 0$. In each chart we use a canonical change of variables adapted to the decomposition (5.6), and construct an escape function adapted to the local splitting $E^{(2)}_u \oplus E^{(2)}_s$ above. This escape function has “strong damping effect” outside a vicinity of size $O(\hbar^{1/2})$ of the trapped set K. We use this to define the anisotropic Sobolev space \mathcal{H}_C. At the level of operators, we perform a decomposition similar to (5.6) and obtain a microlocal decomposition of the transfer operator \hat{F}_t as a tensor product $\hat{F}_t|_{(T_\rho K)^\perp} \otimes \hat{F}_t|_{(T_\rho K)^\perp}$. The first operator $\hat{F}_t|_{(T_\rho K)}$ is unitary whereas the second one $\hat{F}_t|_{(T_\rho K)^\perp}$ has discrete spectrum of resonances indexed by an integer $k \in \mathbb{N}$. This is due to the choice of the escape function. We can construct explicitly some approximate local spectral projectors Π_k for every value of k, and patching these locals expression together we get global spectral operators for each band. The positions γ^\pm_k of the band B_k come from estimates on the discrete spectrum of the local operator $\hat{F}_t|_{(T_\rho K)^\perp}$ restricted by the projector Π_k. We obtain results on the spectrum of the generator \hat{A} from the results on the transfer operator $\hat{F}_t = e^{tA}$ by standard arguments.

The proof of the Weyl law is similar to the proof of J.Sjöstrand about the damped wave equation [13] but needs more arguments. The accumulation of resonances on the value $\langle D \rangle$ in Theorem 5.3 given by the spatial average of the damping function, Eq.(5.4), uses the ergodicity property of the Anosov flow and is also similar to the spectral results obtained in [13] for the damped wave equation.

Références

