
HAL Id: hal-00780197
https://hal.science/hal-00780197

Submitted on 15 Jul 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evaluation of classical spatial-analysis schemes of
extreme rainfall

Davide Ceresetti, Eugen Ursu, Julie Carreau, Sandrine Anquetin,
Jean-Dominique Creutin, Laurent Gardes, Stéphane Girard, Gilles Molinie

To cite this version:
Davide Ceresetti, Eugen Ursu, Julie Carreau, Sandrine Anquetin, Jean-Dominique Creutin, et al..
Evaluation of classical spatial-analysis schemes of extreme rainfall. Natural Hazards and Earth System
Sciences, 2012, 12, pp.3229-3240. �10.5194/nhess-12-3229-2012�. �hal-00780197�

https://hal.science/hal-00780197
https://hal.archives-ouvertes.fr


Nat. Hazards Earth Syst. Sci., 12, 3229–3240, 2012
www.nat-hazards-earth-syst-sci.net/12/3229/2012/
doi:10.5194/nhess-12-3229-2012
© Author(s) 2012. CC Attribution 3.0 License.

Natural Hazards
and Earth

System Sciences

Evaluation of classical spatial-analysis schemes of extreme rainfall

D. Ceresetti1,*, E. Ursu2,*, J. Carreau3,*, S. Anquetin1, J. D. Creutin1, L. Gardes2, S. Girard2, and G. Molini é1

1LTHE, Laboratoire d’́etude des transferts en hydrologie et environnement, UMR5564, Université de Grenoble/CNRS, France
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Correspondence to: G. Molinié (gilles.molinie@ujf-grenoble.fr)

Received: 16 February 2012 – Revised: 14 July 2012 – Accepted: 28 August 2012 – Published: 6 November 2012

Abstract. Extreme rainfall is classically estimated using
raingauge data at raingauge locations. An important related
issue is to assess return levels of extreme rainfall at ungauged
sites. Classical methods consist in interpolating extreme-
value models. In this paper, such methods are referred to as
regionalization schemes. Our goal is to evaluate three clas-
sical regionalization schemes. Each scheme consists of an
extreme-value model (block maxima, peaks over threshold)
taken from extreme-value theory plus a method to interpo-
late the parameters of the statistical model throughout the
Cévennes-Vivarais region. From the interpolated parameters,
the 100-yr quantile level can be estimated over this whole
region. A reference regionalization scheme is made of the
couple block maxima/kriging, where kriging is an optimal
interpolation method. The two other schemes differ from the
reference by replacing either the extreme-value model block
maxima by peaks over threshold or kriging by a neural net-
work interpolation procedure. Hyper-parameters are selected
by cross-validation and the three regionalization schemes are
compared by double cross-validation. Our evaluation crite-
ria are based on the ability to interpolate the 100-yr return
level both in terms of precision and spatial distribution. It
turns out that the best results are obtained by the regional-
ization scheme combining the peaks-over-threshold method
with kriging.

1 Introduction

The statistical frequency analysis of extreme rainfall can be
seen as a normalization procedure allowing site-to-site com-
parison. Therefore, several applications rely on rainfall fre-
quencies (or equivalently return period), such as the design

of civil equipments (bridge, dike, dam,...) or climate studies
and specifically variable trends due to climate change (see
Zwiers and Kharin, 1998; Kharin and Zwiers, 2005, for ex-
amples).

Estimating the frequency of a particular event implies
the knowledge of its background distribution. Concerning
rainfall the most reliable and longest data series are those
recorded by raingauges. As one very long series is more effi-
cient than several shorter ones, numerous methods have been
elaborated to gather in the same set rainfall series with com-
mon statistical properties (Carreau and Girard, 2011; Cun-
nane, 1988; Daouia et al., 2011; Hosking and Wallis, 1997;
Gardes and Girard, 2008; Gardes and Girard, 2010; Neppel
et al., 2011). Hosking and Wallis (1997) coined the term “re-
gional frequency analyses” for such methods. Regional fre-
quency analysis is by extension able to provide spatial rep-
resentation of extreme rainfall, which is of prime interest for
example to compare with model outputs not collocated with
reference raingauges.

Another point is extreme areal integration of the rainfall
intensities. An elegant procedure to estimate extreme val-
ues of areal intensities is to fit a spatial extreme-value model
(max-stable process, de Haan 1984; de Haan and Pickands,
1986) to extreme rainfall collected asynchronously at differ-
ent raingauge stations. Such models have to take into ac-
count the spatial and temporal dependence between extreme
point rainfall (Aryal et al., 2009; Frei and Schar, 2001; Katz,
2010). This technique is relatively recent and not widely used
in practical applications. In addition, the heterogeneity of
extreme rainfall in the study region (Ceresetti et al., 2010)
makes the application of max-stable processes very challeng-
ing. As a consequence, the current study focuses on more
classical methods.
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The MedUp project was dedicated to the assessment of
uncertainties in climate projections of extreme-weather im-
pacts. In such a context, it is required to implement a statis-
tical tool to analyse extreme rainfall in the study region. In
the MedUp framework, extreme-value statistics were used to
compute severity diagrams. Ramos et al. (2005) have shown
the importance of considering extremes of areal rainfall to
assess the storm severity and propose to display the return
period as a function of the temporal and spatial scales of in-
tegration: the so-called severity diagrams. To compute sever-
ity diagrams, Ceresetti et al. (2011) use the dynamic scaling
framework to convert maximum areal rainfall intensities into
point ones and then extreme-value theory to calculate return
periods. In this project, severity diagrams have further been
used to assess extreme rainfall from the large amount of out-
puts yielded by ensemble simulations (Norbiato et al., 2007;
Ceresetti et al., 2011; Vié et al., 2012).

Hosking and Wallis (1997) describe step by step the imple-
mentation of the regional frequency analysis. After screen-
ing the data, they propose to delineate homogeneous regions
for extreme rainfall, then to choose the appropriate proba-
bility function in order to fit heavy rainfall frequencies and
to interpolate the probability function parameters allowing
to compute regional return levels or periods. The latter two
steps, the models of extreme point rainfall and the interpola-
tion schemes, have been subject to discussions in the litera-
ture.

There are two families of probability models asymptoti-
cally derived from point-rainfall frequency analysis. If the
point-rainfall set is made of maxima drawn from fixed-length
periods of time, a suitable model is the so-called generalized
extreme-value model (GEV). If the set is made of excesses
regarding a given threshold, the theoretical model is the gen-
eralized Pareto distribution (GPD) (see Coles, 2001, for an
example).

Rainfall interpolation has been a recurrent topic in lit-
erature for decades (see Ripley, 1981, or Myers, 1994,
for an overview). Rainfall interpolation methods have been
classified as deterministic (inverse distance, multiquadratic,
spline) and optimal (kriging, Chiles, 2001). Optimal is used
in the sense that interpolation weights are selected so as to
optimize some criterion of best fit at the data points. Creutin
and Obled (1982) and Borga and Vizzaccaro (1997) noted
that these methods could be equivalent in certain conditions.
Creutin and Obled (1982) noted that one advantage of op-
timal interpolation is the possibility to compute the estima-
tion variance. Borga and Vizzaccaro (1997), who compared
multiquadratic (deterministic) and kriging (optimal) interpo-
lations, found them equivalent in terms of performance statis-
tics except in the case of low-density raingauge networks.
In such a case, kriging performs better than multiquadratic.
Kriging allows accounting for the spatial dependence be-
tween observations, because the weights of the linear inter-
polation coefficients depend on a spatial structure function,
the so-called variogram. To overcome the computation time

necessary to fit a variogram model (referred to above as im-
plementation cost), Bastin et al. (1984) and Lebel and Bastin
(1985) propose using a climatological variogram determined
only once for any random variable, while Goovaerts (2000)
implemented an automatic fitting procedure for variograms,
using a weighted sum-of-squares minimization where the
weights are functions of the inter-distance between data and
of the number of couples for each inter-distance. In addition,
kriging allows taking into account covariates which are eas-
ier to sample than rainfall (like altitude) (Goovaerts, 2000;
Prudhomme and Reed, 1999). Thanks to all these functional-
ities, kriging is an attractive interpolator of rainfall data and
it is widely used in this research field.

Another optimal but automatic (no hand tuning) technique
is neural networks. They are flexible regression estimators
useful for spatial interpolation (Bishop, 2006). Neural net-
works are non-linear, non-parametric estimators which can
in theory approximate any continuous function (Hornik et
al., 1989). However, neural networks, like any other stan-
dard regression method, do not take into account the spa-
tial dependence structure in the data. The performances of
neural networks for spatial interpolation are evaluated in
Snell et al. (2000), showing that, usually, the predictive accu-
racy of neural networks is superior to that of the traditional
methods (nearest neighbors, spatial average, inverse-distance
weighted average).

To interpolate rainfall data, two state-of-the-art methods
are kriging and neural networks. Despite its benefits, the two
major steps in kriging are sources of uncertainties. Any ap-
plication of kriging requires the choice of a spatial depen-
dence model (variogram model) and of its estimation (often
handmade). Secondly, kriging assumes a linear relationship
between rainfall parameters and the altitude covariate, which
is valid only for some time steps and raingauge environments
(Ceresetti et al., 2010; Molinié et al., 2012).

Therefore, the purpose of this study is to assess the un-
certainty in regional frequency analysis of rainfall intensities
due to two major steps: (i) the choice of the extreme-value
density function (EV) and (ii) the interpolation scheme. We
consider the most widespread EV and interpolation schemes,
i.e. GEV and kriging, as the reference regional-frequency
analysis scheme RSref. We compare RSref with two other
schemes: RS2, which differs from RSref in its EV model,
and RS3, which differs in its interpolation scheme. We have
implemented the comparison of the three RS models with
a double cross-validation procedure. This procedure allows
the selection of the complexity level of the models, such as
the variogram model, and the fair comparison of the models’
performance on out-of-sample data (Bishop, 2006).

This paper is organized as follows. Section 2 re-
views the two extreme-value models and the kriging and
neural-networks interpolation methods. Then, Sect. 3 de-
tails the practical implementation of the three regional-
ization schemes. In Sect. 4, we discuss hyper-parameter
selection and model comparison. The application to the
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Cévennes-Vivarais rainfall data is detailed in Sect. 5 and
some conclusions are drawn in Sect. 6.

2 Methodology

2.1 Statistical modelling of extreme rainfall

Given a sample setz1, ...,zn of independent observations
with common cumulative distribution functionF , our goal
is to model the tail distribution ofF in order to estimate ex-
treme quantilesqαn , defined by 1− F(qαn) = αn ∈ (0,1). A
quantile is called “extreme” ifαn < 1/n. In this situation, the
true quantileqαn is, in most cases, larger than the maximum
observation. In this paper, the observations will be the rain-
fall intensity records measured at a given station.

We often speak of “T -yr return level” instead of quantile.
TheT -yr return level is the amount of rain exceeded on aver-
age everyT years, and it corresponds to the quantile of order
αn = T̃ /(nT ), whereT̃ is the number of years of measure-
ments. Two methods of quantile estimation are considered:
block maxima and peaks over threshold (POT). These ap-
proaches are based on the generalized extreme-value (GEV)
distribution (Coles (2001), Sect. 3.1.3), which is given by

Gξ (t) =

{

exp
{

−(1+ ξ t)−1/ξ
}

if ξ 6= 0, (1a)

exp{−exp(−t)} if ξ = 0, (1b)

where the parameterξ is referred to as the extreme-value in-
dex. The two methods differ first by the way heavy rainfall is
selected in the data set and second by the expression of the
density-function model.

2.1.1 1-yr maxima approach

In extreme-value theory, the block-maxima approach con-
sists in fitting a GEV distribution,Gξ ((. − µ)/σ), to a set
of maxima each drawn from a data block. In this study,
data blocks span one year (from January to December), in-
cluding thus an average of 365.25 records of daily rainfall
amounts (z1, . . . ,z365). Thus, the block-maxima approach
will be called in the following the 1-yr maxima approach.
For each yeari = 1, . . . , T̃ (with T̃ as the number of years of
observations), the maximummi = max(z(i−1)s+1, . . . ,zi365)

is extracted. The GEV distribution (Eq. 1) provides a model
for the distribution of the 1-yr maxima. We propose estimat-
ing the three parametersξ , µ andσ by ξ̂1, µ̂1 andσ̂ 1, which
maximize the likelihood

l1(ξ,µ,σ ; {mi}i=1,...,r) =
r
∏

i=1

1

σ
gξ

(

mi − µ

σ

)

, (2)

wheregξ is the first derivative ofGξ . When the observations
are the rainfall intensities collected at a single station, the
easiest way to constitute the data blocks is to group the ob-
servations year by year. In this case, theT -yr return level is
estimated by

Fig. 1. Scatter plot of GEV location parameters (µ) against scale
parameters (σ ) estimated for every station. The line added corre-
sponds to linear regression.

q̂
(1)
T = µ̂1 −

σ̂ 1

ξ̂1

[

1−

{

− log

(

1−
1

T

)}−ξ̂1
]

. (3)

At each station, the GEV distribution is fitted to these an-
nual maxima by maximizing the likelihood functionl1. For
each stations ∈ {1, . . . ,S} in the training set, three GEV pa-
rameters(µ(s),σ (s),ξ (s)) have to be estimated. In order to
get some insight into our data, a preliminary analysis is per-
formed using the complete data set. In Fig. 1, the GEV loca-
tion and scale parametersµ(s) andσ (s) are estimated at each
stations ∈ {1, . . . ,S} and are plotted one against the other to-
gether with the regression line. Since the coefficient of deter-
minationR2 is equal to 0.838, it seems reasonable to assume
a linear relationship of the formµ = a + bσ between these
two parameters. This preliminary analysis leads us to con-
sider the following constrained GEV model for the annual
maxima at the stations:

µ(s) = a + bσ (s), ξ (s) = ξ,

where s ∈ {1, . . . ,S}. The parameters of this model,
a, b, ξ, σ = {σ (s)}Ss=1, are estimated by maximizing the
function (see Eq. 2)

S
∏

s=1

l1(ξ,a + bσ (s),σ (s); {ms,j }j=1,...,ns ), (4)

where ms,j is the maximum observation of thej -th year
for the s-th site, S is the number of sites andns repre-
sents the number of years of measure at thes-th site. From

www.nat-hazards-earth-syst-sci.net/12/3229/2012/ Nat. Hazards Earth Syst. Sci., 12, 3229–3240, 2012



3232 D. Ceresetti et al.: Spatial analysis of extreme rainfall

the estimateŝa, b̂, ξ̂ and σ̂ (s), s = 1, . . . ,S, a prediction at
an ungauged sitex can be computed by interpolating the
scale parameterσ(x). Then one getŝµ(x) = â + b̂σ̂ (x) and
ξ̂(x) = ξ̂ .

2.1.2 Peaks-over-threshold model

In the “peaks-over-threshold” approach (POT), one mod-
els the statistical behaviour of observations exceeding a
given threshold ({z∗

i = zi − u|zi > u,i ∈ {1, . . . ,n}}, u being
the threshold). Denoting byFu the distribution function of
the exceedances above the thresholdu, it is well known
(see Coles, 2001, Theorem 4.1) that foru large enough, there
existsβ(u) > 0 such that

1− Fu(t) ≈ − logGξ

(

t − u

β(u)

)

. (5)

The associated likelihood is then given by

l2(ξ,β(u); {z∗
i }i=1,...,d)

=
d
∏

i=1

1

β(u)
gξ

(

z∗
i − u

β(u)

)/

Gξ

(

z∗
i − u

β(u)

)

,

where the thresholdu is fixed a priori andd is the number
of exceedances. The corresponding maximum likelihood es-
timators are denoted bŷξ2 andβ̂2. Using the relationship in
Eq. (5), the tail of the distribution functionF can be approx-
imated by

1− F(t) = (1− F(u))(1− Fu(t − u))

≈ −(1− F(u)) logGξ ((t − u)/β(u)),

and estimating 1− F(u) by d/n, the observed proportion of
exceedances, theT -yr return level (i.e. the quantile of order
T̃ /(nT )) is estimated by

q̂
(2)
T = u −

β̂2

ξ̂2



1−

(

T̃

dT

)−ξ̂2


 . (6)

The practical implementation of POT is used to estimate
the three parametersu, β andξ at each gauged site. The first
step consists in declustering the data by filtering dependent
data to obtain a set of independent exceedances (Coles, 2001,
Sect. 5.3.2). To determine clusters of extremes, one needs to
fix a first very low threshold. Starting from the maximum,
the first cluster is defined as the largest set of consecutive ob-
servations such that at mostr values fall below the threshold.
Removing this first cluster from the initial data, the next clus-
ter is determined in the same way. This procedure is iterated
until all the remaining observations fall below the threshold.
Finally, we only keep the maximum observation in each clus-
ter in our estimation procedure. The second step is the choice
of a sufficiently high thresholdu for each station. The thresh-
old is fixed to the 1− p empirical quantile of daily rainfall
amounts, for a smallp. The remaining parametersβ andξ

can then be estimated by the method of moments or by Max-
imum Likelihood Estimation.

2.1.3 Comparison between the two approaches

Let us note that, whenT is large, one has

q̂
(1)
T ≃ µ̂1 −

σ̂ 1

ξ̂1

[

1−

(

1

T

)−ξ̂1
]

,

and thus the analytical expression of the estimated quantile
using the 1-yr maxima approach is similar to Eq. (6) derived
from the peaks-over-threshold model. Parametersu and µ̂1
can be interpreted as location parameters, whileβ̂3 and σ̂ 1
can be interpreted as scale parameters. In both cases,ξ̂3 and
ξ̂1 correspond to the extreme-value index. As a consequence,
both approaches use three parameters with analogous inter-
pretations. However, as their fittings do not rely on the same
data set, they may therefore yield different results.

2.2 Interpolation methods

The two approaches described above yield estimates of the
extreme-value density parametersu, ξ andσ or β at each
gauged station. From Eqs. (3) or (6), return levels at each
gauge station can then be derived. These so-called local esti-
mates have to be interpolated to perform a regional analysis.
As explained in the introduction (Sect. 1), kriging with an
external drift depending on the altitude and neural networks
are implemented because of their popularity and ability to
perform interpolation with covariates. Kriging and neural
network interpolation perform better when applied to Gaus-
sian random variables. Since rainfall intensity is known to be
non-Gaussian, the interpolation with both methods is applied
to the extreme-value density parameters which are approxi-
mately normal. Return-period levels are then calculated.

2.2.1 Kriging with an external drift

Kriging is a linear, unbiased and optimal interpolation
method (see e.g. Chiles, 2001 for more details). Kriging with
an external drift (Goovaerts, 1997; Wackernagel, 1998) is a
non-stationary method which generalizes the kriging inter-
polation. It consists in estimatinĝz, a realization of the ran-
dom variableZ at an ungauged locationx0 as a function of:
(i) observed realizations ofZ (for instance, the return level
known at the sitesxs , s = 1, . . . ,S) and (ii) a covariateY bet-
ter documented thanZ. Goovaerts (2000) showed that krig-
ing rainfall fields with external drift yields better results than
co-kriging when the covariate includes the altitude. Ceresetti
et al. (2010) and Moliníe et al. (2012) show a close corre-
lation between daily extreme rainfall and terrain elevation.
Therefore, the altitude of a digital terrain model is used in
this study as the covariateY to parametrize the mean drift of
Z in space.

Kriging with an external drift requires to breakZ down
into the sum of its mean̄Z and residualZr. The meanZ̄ is de-
rived from the covariateY . The simple kriging interpolation
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of the residualsZr yields an estimated residualẐr at location
x0,

ẑr(x0) =
S
∑

s=1

λs(xs)zr(xs), (7)

whereλs are weights applied to the samplezs at location
xs , s = 1, . . . ,S. They are determined by solving the kriging
linear system














































S
∑

β=1

λβγ (xs − xβ) + µ0 + µ1Y (xs) = γ (xs − x0)

S
∑

β=1

λβ = 1

S
∑

β=1

λβY (xβ) = Y (x0)

(8)

for s = 1, . . . ,S, whereµ0 andµ1 are local coefficients re-
quired to express the local mean of the fieldZ as a linear
combination of the auxiliary variableY . Note thatγ is the
variogram of the residues. In practice it is an analytical ex-
pression of the variogram model chosen between four classi-
cal models called “spherical”, “Gaussian”, “exponential” and
“power law” models (Chiles, 2001, p. 83). The variogram
model parameters are considered as hyper-parameters of the
RS schemes. Four sets of parameters are estimated. A set is
computed by fitting a variogram model to the sample vari-
ogram (Eq. 9) expressing the spatial correlation of the field
at discrete spatial lagsδ,

Ŵ(δ) =
1

2N(δ)

N(δ)
∑

k=1

[z(xk) − z(xk + δ)]2, (9)

whereN(δ) is the number of sample pairs separated by the
spatial lagδ. The most appropriate model is determined via
the cross-validation procedure detailed in Sect. 4.1.

In our context, the kriging interpolation scheme implies
(Chiles, 2001, p. 154–171)

– the intrinsic hypothesis: the covariance function de-
pends only on the lagδ; and

– the co-location of the random variableZ and of the co-
variateY . The latter must also be known at the estima-
tion points.

Moreover, if the random fieldZ is normally distributed,
it is well known that (i) kriging performs better (unbiased
estimation ensured), and (ii) the estimations of the two pa-
rameters of the normal distribution converge.

In practical applications, the Gaussianity of the field is
rarely verified on real data. An appropriate anamorphosis is
often a log transformation ofZ. In addition, a continuous
variogram model has to be fitted to the empirical variogram
computed for a finite number of distance ranges.

2.2.2 Neural networks

Feed-forward one-hidden-layer neural networks (Bishop,
2006) are a flexible class of algorithms which allows for non-
linear non-parametric interpolation. By non-parametric we
mean an algorithm which does not assume a specific para-
metric shape, such as a polynomial, for instance. Given a set
of covariatesy1, . . . ,yd measured at a sitex (for instance,
we might consider the longitude, latitude and altitude at the
site), the neural network will output̂z1, . . . , ẑk (which could
be the three GEV parameters predicted for this site). We im-
plemented the feed-forward neural network in a standard way
as follows. LetH be the number of hidden units. Each hid-
den unitah with h = 1, . . . ,H computes a linear combination
of the covariatesyi , which is then non-linearly transformed
by means of the hyperbolic tangent tanh,

ah = tanh

(

d
∑

i=1

vh,iyi + vh,0

)

, (10)

wherevh,i are the neural network weights linking the covari-
ates to the hidden units. When the number of hidden units is
selected according to the data at hand, the hyperbolic tangent
confers the universal approximation property to the neural
network (Hornik et al., 1989). Similarly toah, each output
ẑj is given by a linear combination of the hidden unitsah,
which are then transformed by a functiong(·) in order to en-
sure range constraint (e.g. the exponential could be used to
impose positivity of the GEV scale parameter),

ẑj = g

(

H
∑

h=1

wj,hah + wj,0

)

, (11)

wherej = 1, . . . ,k, k being the number of outputs computed
by the neural network. The weightsvh,i in Eq. (10) andwj,h
in Eq. (11), which we collect inω, are determined by min-
imizing a cost function Err(ω). We chose to minimize the
sum-of-squares error, so that for every sitexn, n = 1, . . . ,N ,
the predicted GEV parametersẑi(xn) matched as closely as
possible the GEV parameters estimated at sitexn:

Err(ω) =
1

2

N
∑

n=1

k
∑

i=1

(zi(xn) − ẑi(xn))
2. (12)

The minimization of Err(ω) requires gradient-descent-
type optimization algorithms, such as the conjugate gradient
algorithm. Efficient computation of the gradient of Err(ω) is
done via the back-propagation algorithm, see Rumelhart et
al. (1986). In order to avoid local minima, the optimization
is re-started 10 times with different initial weight values and
the weights which give the smallest error are kept. To ob-
tain error bounds from neural networks, the error function
should be modified in order to account for our distributional
assumptions on the error process, see Cawley et al. (2007).
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3 Regionalization Schemes (RS)

In this section, we compare three regionalization schemes,
each of them being a combination of one model to esti-
mate the distribution of extreme observations (Sect. 2.1)
and another to interpolate the parameters of this distribution
(Sect. 2.2). As explained in the introduction, one reference
scheme, RSref, is compared to two others, RS2 and RS3,
each of them differing from RSref either in the extreme-value
model or in the interpolation method.

In RSref, the 1-yr maxima model is coupled to kriging with
an external drift. In RS2, kriging is replaced by a neural net-
work interpolation. In RS3, the 1-yr maxima model of RSref
is replaced by the POT method, whereas the interpolation
model is the same as in RSref (kriging).

The 1-yr maxima model (RSref, RS2) leads to the esti-
mation of three parameters(µ,σ,ξ) for the distribution of
annual maxima by maximizing the log-likelihood function
in Eq. (2). The POT method involves a distribution for ex-
ceedances with parametersu,β andξ , whereu is fixed a pri-
ori; onlyβ andξ are determined by log-likelihood estimation
(Eq. 6) and then interpolated with kriging. The interpolation
of each parameter is made by choosing the variogram model
that best fits the sample variogram.

In scheme RS2, neural networks, implemented as de-
scribed in Sect. 2.2.2, serve to predict the parameters of a
constrained 1-yr maxima model, see Sect. 2.1.1. Given the
covariates (longitude, latitude, altitude) at a sites, the neu-
ral network provides an estimateσ̂ (s) of the scale parameter.
The location parameter is then estimated byµ̂(s) = a+bσ̂ (s)

and the tail index by a constantξ . Then, the neural network is
used to calculatea,b andξ by minimizing the sum-of-squares
error function between the parametersµ, σ andξ estimated
for each raingauge using the maximum likelihood estimation
described in Sect. 1 and the neural network estimates with
the constrained model.

Note that instead of performing this two-stage optimiza-
tion procedure (maximizing the log-likelihood at each site
to obtain local estimates ofµ, σ and ξ and then minimiz-
ing the sum-of-squares error to determine the neural network
weights), we could optimize the neural network weightsω

by including them in the log-likelihood function of Eq. (4).
In practice, this one-stage optimization approach did not im-
prove our results much (the error decreased by less than 1%)
and is much more computationally demanding, so we did not
pursue it further.

4 Hyper-parameter selection and model comparison

For each of the regionalization schemes, we are faced with
two modelling questions: (a) how to select the optimal com-
plexity level of the models (such as the number of hidden
units in the neural network) and (b) how to perform a fair
comparison of the RS schemes. Cross- and double validation

are procedures by which we can answer questions (a) and (b),
respectively.

4.1 Cross-validation

Typically, determining the optimal complexity level of mod-
els involves a bias/variance trade-off. The complexity level
depends on a hyper-parameter, which is often proportional
to the number of parameters in the model and controls its
ability to approximate complex functions. For a neural net-
work, the hyper-parameter is the number of hidden units. Too
low a complexity level and the model will systematically de-
viate from the underlying process generating the data. This
phenomenon is called bias. On the other hand, if the com-
plexity level is too high, this might induce over-fitting, i.e.
the model is fitting too precisely the data points. This means
that the model has a high variance in the sense that it depends
closely on the data set. Low bias, good approximation of the
underlying process together with low variance, i.e. stability
across different data sets, are desirable. As just described,
these are conflicting properties. One way to get around this
is by choosing the complexity level so as to minimize the ex-
pected error (the average error on new data from the same
underlying process). The expected error can be decomposed
into a sum of bias, variance plus noise (the noise is the resid-
ual part of the error that cannot be fit). It follows that the com-
plexity level which minimizes the expected error minimizes
simultaneously bias and variance. One way to estimate the
expected error is via the cross-validation method. For exam-
ple, we describe the hyper-parameter selection withm-fold
cross-validation for the number of hidden units in a neural
network. LetH contain all likely values for the number of
hidden units, typically chosen as powers of 2. We proceed as
follows:

1. Split the data set intom subsets, called folds:
L1, . . . ,Lm.

2. Leave one of the folds,Lℓ, aside and denote byL−ℓ the
m − 1 remaining folds.

3. For eachH ∈H, find the weightsωH which minimize
Err(ω) in Eq. (12) onL−ℓ.

4. Use again Eq. (12) to evaluate the performanceEℓ(ωH )

on the left-aside foldLℓ.

5. Return to step 2 until allm folds have been left aside in
turn.

6. Choose the number of hidden units:

H ∗ = argmin
H

m
∑

ℓ=1

Eℓ(ωH )
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This procedure is also applied to kriging. For the latter,H

is the set of variogram models. The chosen model is the one
minimizing the error between the variogram model estimated
using the training set and applied on the independent samples
of the test set. The variogram parameters are computed using
a dichotomy procedure.

4.2 Double cross-validation

To perform a fair comparison among the schemes (question b
above), we would need a test set, i.e. data that were used nei-
ther for training nor for hyper-parameter selection. To this
end, a second loop in the cross-validation method is intro-
duced. This double-loop cross-validation is called “double
cross-validation”. The second or outer loop goes as follows.
The data are split into five folds. Keep four of these folds
for hyper-parameter selection and model calibration and one
last fold for testing. Alternate until all folds have been used
for testing. The cross-validation described in steps 1 to 6
performs hyper-parameter selection on each of the possible
combinations of the four folds, i.e. for each evaluation of the
outer loop. Different models or schemes can be compared by
looking at their performance on the test set (the combination
of each of the five folds left aside in turn in the outer loop of
the double cross-validation method). The threshold level se-
lection in RS3 also raises a bias/variance trade-off. A higher
threshold means lower bias with respect to the extremal be-
haviour, but a higher threshold also implies fewer observa-
tions available for the estimation and this results in larger es-
timation variance. The double cross-validation procedure de-
scribed in this section can serve proper threshold selection as
well. Double cross-validation can be computationally inten-
sive, especially if there are many hyper-parameters to choose.
Also, this method could result in different hyper-parameter
values selected in each iteration of the outer loop of the dou-
ble cross-validation. This could serve to check whether the
model is stable across data sets. However, since the cross-
validation error is a noisy estimate of the expected error, it is
normal to observe some variability in the selection of hyper-
parameters.

5 Application in the Cévennes-Vivarais region

In this section, the three previously defined schemes RSref,
RS2 and RS3 are used to estimate the return levels forT =

100 yr in the Ćevennes-Vivarais region. Section 5.1 presents
the data. In Sect. 5.2 we compare these models using the
double cross-validation method described in Sect. 4. We then
plot return level maps according to each scheme in Sect. 5.3.

5.1 Data

This study relies on daily rainfall records from 1958 to 2008.
The data have been collected by the French meteorological
service Ḿet́eo-France. In order to get longer rainfall series,

rainfall records of neighbouring raingauges are concatenated
if they do not overlap in time. Two raingauges are consid-
ered neighbours if their spatial distance is smaller than 1 km
and their altitude difference is smaller than 100 m. This re-
sults in 225 rainfall series, whose locations are displayed in
Fig. 5. The data points are distributed quite homogeneously
in a 160× 200 km2 area. The average of the minimum dis-
tance between raingauges is about 5 km. It has been noticed
in Molini é et al. (2012) that the raingauge density increases
with the altitude from 1 per 100 km−2 in the range 0–500 m
above sea level (a.s.l.) to 3 per 100 km−2 above 900 m a.s.l.

5.2 Regionalization scheme comparison

The double cross-validation method described in Sect. 4.2 is
used to perform hyper-parameter selection for each scheme
and for evaluation and comparison of test data. In the outer
loop, the initial 225 raingauges are split into five subsets,
each of which contains data from 45 gauges. We perform
m-fold cross-validation (withm = 20) at each step of the
outer loop. Thus, hyper-parameter selection is performed on
four of the folds, which makes for a data set of 180 gauges.
In RSref, the hyper-parameter is the variogram model; it
is the number of hidden units in RS2, while in RS3, a
two-dimensional grid search determines as the first hyper-
parameter the probabilityp to exceed the threshold and as
the second hyper-parameter the variogram model.

Some additional details of the hyper-parameters choice for
the three regionalization schemes are reported below:

– For RSref and RS3, four variogram models are con-
sidered (Chiles, 2001, p. 80–85): (i) spherical, of easy
parametrization even if not physically based; (ii) expo-
nential, related to Markov processes; (iii) Gaussian, ex-
pressing the covariance of infinite differentiable station-
ary random functions; (iv) power law, related to scale
invariance.

– For RS2, the number of hidden units of the single-
hidden-layer neural network is chosen in the setH=

{2,4,8,16,32}.

– For RS3, p ∈ {0.005,0.010. . . ,0.070}. These values
cover an average number of events per year ranging
from 1.8 to 25.

In order to compare the three regionalization schemes, a
distance between local, i.e. at-site, and RSi (i standing for
ref, 2 and 3) estimates of the 100-yr return level is introduced:

1(RSi) =

√

√

√

√

5
∑

ℓ=1

∑

n∈Lℓ

(

q̂
(ℓ)
100,n − q̃100,n

)2
,

whereq̂
(ℓ)
100,n is the 100-yr return level estimator provided by

RSi on Lℓ for the n-th station, and̃q100,n is the local esti-
mator given by Eqs. (3) or (6). For the three regionalization
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Fig. 2. Scatter plot of 100-yr return levels estimated locally versus
the return levels predicted by RSref. Pearson’s correlation is 0.73.

Fig. 3. Scatter plot of 100-yr return levels estimated locally versus
the return levels predicted by RS2. Pearson’s correlation is 0.79.

schemes, the following distances are obtained:1(RSref) =

58,1(RS2) = 50 and1(RS3) = 39. According to the mea-
sure1, the best regionalization scheme is provided by RS3
for this data set. A visual assessment of1 is displayed in
Figs. 2, 3 and 4, where the return levels estimated with mod-
els RSref, RS2 and RS3, respectively, are also plotted versus
the local estimates. It appears that, in all cases, the points are
approximately aligned on the linex = y and thus all the three
schemes provide good regionalizations of the return levels.
These results have been quantified using Pearson’s correla-
tion coefficient; RS3 gets the best result.

5.3 Return level maps

To plot the return level maps, we calibrate each RSi on the
complete database, which contains 225 stations.

Fig. 4. Scatter plot of 100-yr return levels estimated locally versus
the return levels predicted by RS3. Pearson’s correlation is 0.87.

The choice of the hyper-parameters is done by performing
cross-validation on the full database with the same number
of folds and the same grid search as in the cross-validation
procedure of Sect. 5.2. The selected hyper-parameters are
displayed in Table 1. The return level maps for daily rain-
fall intensities characterized by a return period ofT = 100 yr
are reported in Figs. 6, 7 and 8 for the RSref, RS2 and RS3
schemes, respectively. The three maps show similar patterns
for the 100-yr return level of daily rainfall. South of the
southwest–northeast diagonal, the return level is well corre-
lated with the mountain slope until it reaches the Rhône River
valley and the Mediterranean shore. In these regions, despite
low altitude variations, the return level gradient is kept con-
stant in direction and collinear to the Cévennes main-slope
gradient. This is certainly due to the forcing mechanisms of
heavy precipitation, such as the cold pool, which enhances
air lifting well ahead of the mountain slopes (Nuissier et al.,
2008; Ducrocq et al., 2008). North of this diagonal, the 100-
yr return level is no more correlated with the altitude. This
is the result of the well-known mountain-shading effect. It
takes place at the north of the maps because air fluxes pro-
ducing heavy rainfall at the daily time scale are from a sector
from the south to southeast (Nuissier et al., 2011). A close
look at the return level maps shows that over the plain and
even over the foothills, all the scheme (RSref, RS2 and RS3)
estimates are very similar.

The main differences between return levels yielded by
the three schemes are located over the Cévennes mountain
ridge. Each RSi estimates the maximum 100-yr return lev-
els over the three higher peaks: Mont Aigoual, Mont Lozère
and Serre de la croix de Beauzon. Molinié et al. (2012) dis-
cuss the mechanisms involving the heavy daily rainfall over
these peaks. It turns out that Mont Lozère is the highest peak
of the mountain range, whereas Mont Aigoual is the most
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Table 1.Hyper-parameters selected by the inner cross-validation over the 225 stations.

Number of Probability of Variogram
hidden unitsH∗ exceedancep models

RSref (1-yr max. + kriging) – – Spherical
RS2 (1-yr max. + neural networks) 4 – –
RS3 (P.O.T. + kriging) – 0.04 Power law

Fig. 5. Altitude map of the study region. The levels 200, 500 and
1000 m are also represented as iso-contour lines. The crosses rep-
resent the raingauge network composed by 225 daily gauges. Black
diamonds represent cities, triangles the main mountain peaks.

exposed to southerly unstable air fluxes (see Fig. 5). Serre de
la croix de Beauzon, even though less exposed to moist and
warm air masses because of its northern location, features
very deep (more than 600 m) valleys oriented west–east. Go-
dart et al. (2011) show that stationary rain bands triggered on
the shoulders of mountain ridges yielding to these deep val-
leys (Miniscloux et al., 2001; Anquetin et al., 2003) could
conceivably enhance the rainfall regime.

Each of the schemes RSref, RS2 and RS3 predicts the max-
imum return levels over Serre de la Croix Beauzon and Mont
Aigoual, even though of different magnitude. Another differ-
ence between the three schemes is for Mont Lozère, where
RS3 does not predict a return level as high as over Mont
Aigoual or Serre de la Croix de Beauzon, comparatively to
RSref and RS2. Moliníe et al. (2012) display a map of medi-
ans of maximum daily intensities on which the Mont Lozère
is at a lower level than Mont Aigoual and the Serre de la
Croix de Beauzon, similarly to RS3. Moreover, the high-
est of the medians is 450 mm day−1 and the overall maxi-
mum of daily rainfall amounts ever measured over the region

Fig. 6. 100-yr return levels estimated by RSref on the Ćevennes-
Vivarais data (mm).

in the 50-yr period from 1958 to 2008 is 519 mm day−1.
Therefore, as the predicted maximum return levels are about
390 mm day−1 in RSref, about 450 mm day−1 in RS2 and
600 mm day−1 in RS3, this RS3 prediction is again closer
to observations.

Ceresetti et al. (2010) identified a difference in extreme
rainfall distributions between the plain and mountainous part
of the study region. The return level distributions over the
plain have heavier tails than the ones over the mountain and
are well modelled by power law. All regionalization schemes
are able to fit the extreme rainfall distribution of the plain
region, while RS3 provides the best fit over the mountain
range.

As stated in Sect. 2.2.1, the standard deviation due to krig-
ing can be assessed thanks to the variogram structure func-
tion. The kriging coefficient of variation (standard deviation
normalized by the 100-yr return level) is displayed in Fig. 9.
It is shown that the uncertainty is relatively large, as it lies
in the range of 25 to 40 % of the return level in the region of
interest. This is a result of the inhomogeneity of the return
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Fig. 7. 100-yr return levels estimated by RS2 on the Cévennes-
Vivarais data (mm).

Fig. 8. 100-yr return levels estimated by RS3 on the Cévennes-
Vivarais data (mm).

level field at the raingauge network resolution, of the order
of 5 km. Therefore, the uncertainty on return levels is at least
as large as the kriging uncertainty.

6 Discussion and conclusion

This paper’s goal is to evaluate a widely used scheme for re-
gional analysis of extreme rainfall intensities, the so-called

Fig. 9. Kriging error for RS3 evaluated as the kriging standard-
deviation normalized by the 100-yr return levels.

reference scheme RSref. The reference scheme couples a 1-
yr model of heavy rainfall to the kriging interpolator. The
comparison between the reference RSref and the second re-
gionalization scheme RS2 intends to assess the interpolation
method so that RS2 is made of the 1-yr maxima point-rainfall
analysis and of a neural-network interpolator. Comparing the
third scheme RS3 and RSref is meant to evaluate the extreme
point-rainfall analysis method so that RS3 couples a POT se-
lection of heavy rainfall to kriging.

The use of a double cross-validation algorithm allows as-
sessing the point prediction of the regionalization scheme. In
terms of the distance1 and Pearson’s statistic, RS3 performs
better.

When comparing the maps of the 100-yr return level of
daily rainfall yielded by the three schemes, it turns out that
RS3 is again the closest to the current knowledge on extreme
rainfall in the region. Since RSref and RS2 provide similar re-
sults, the major issue in regional analysis of extreme rainfall
seems to be the statistical model for point-extreme rainfall.
It appears that the 1-yr maxima approach does not provide
return levels as high as the POT method over the localized
three mountain peaks of the region.

The two extreme-value models have different features:
The 1-yr maxima approach is easy to use since it does not
require any hyper-parameter selection. Conversely, POT is
more flexible, since it sets a threshold to choose the number
of extremal events. The two interpolation methods present
different skills. Kriging is the best linear interpolation and
uses the spatial correlation to infer the spatial distribution of
the data; its implementation is limited to data respecting a
number of constraints. Neural networks are a very flexible
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method that provides similar results. It does not use spatial
correlation and does not return the interpolation error, but the
data are not submitted to the constraints of kriging. The two
methods gave comparable results in this application; kriging
seems to work better in densely gauged networks and when
the field is well correlated.
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