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Controllability of the Schr 6dinger equation via adiabatic methods and conical
intersections of the eigenvalues

Francesca Carlotta Chittaro, Paolo Mason, Ugo Boscain aadoMsigalotti

Abstract— We present a constructive method to control the bilinear
Schrodinger equation by means of two or three controlled externh
fields. The method is based on adiabatic techniques and workg
the spectrum of the Hamiltonian admits eigenvalue interseitons, with
respect to variations of the controls, and if the latter are onical. We
provide sharp estimates of the relation between the error ad the
controllability time.

|. INTRODUCTION

In this paper we are interested in the problem of controltimg
bilinear Schrodinger equation

z’% - <H0 + ;uk(t)flk) w(t).

Here ¢ belongs to the Hilbert spher8 of a (finite or infinite
dimensional) complex separable Hilbert sp&¢eand Ho, ..., Hy,

are self-adjoint operators dr. The controlsus, . . ., u,, are scalar-
valued and represent the action of external fielHs. describes
the “internal” dynamics of the system, whil&, ..., H,, the
interrelation between the system and the controls.

1)

In most of the results in the literature only the case= 1
is considered. In this paper we study the cases= 2,3 and
we look both for controllability results and explicit exgsons
of the external fields realizing the transition. The systendeu
consideration is then

d

i (8) = H(u(®)w(0)

with H(u) = Ho+ >, uiH;, m =2,3 andu = (u1,...,uUmnm).
The idea is to use slowly varying controls and climb the eperg
levels through conical intersections, if they are present.

A classical tool, which is used in our approach, is the adiaba
theorem (see [19]). Roughly speaking, the adiabatic tmetates
that the occupation probabilities associated with the ggnévels
of a time-dependent HamiltoniaH (-) are almost preserved along
the evolution given byit(t) = H(t)(t), provided thatH(-)
varies very slowly. This result works whenever the energiele
(i.e. the eigenvalues ofi(-)) are pairwise isolated for every.
On the other hand, i (-) is a C? slowly varying Hamiltonian,
the passage through (conical) intersections among enengisl

When describing quantum phenomena, typical models haee oft yetermine (approximate) exchanges of the correspondicgpae

the previous form withHy = —A + Vi (z), H; = Vi(x), wherex

belongs to a domairb C R™ and Vb, ..., V,, are real functions
(multiplication operators). However, equation (1) can lsedito
describe more general controlled dynamics. For instangeaatum
particle on a Riemannian manifold subject to external fields

two-level ion trapped in a harmonic potential (the so-chierly—
Law model [1], [5]). In the latter case, as in many other rafev

tion probabilities (see [19, Corollary 2.5] and Figure 1. this
paper we generalize this property in order to constructablet
paths allowing to approximately attain prescribed disttitns of
probability, thus getting a particular controllability querty (that
we call approximate spread controllability). The case = 2
has already been studied in [8]. In this paper we will tackle t
casem = 3. For reasonable space reasons, all the results will

physical situationsH, cannot be written as the sum of a Laplacianye presented without proof. As for the case= 3 they can be

plus a potential.

The controllability problem aims at establishing whethfen;
every pair of statego and1, there exist controls(-) and a time
T such that the solution of (1) with initial condition(0) = o

obtained by suitably adapting the proofs in [8]. This cask e
analyzed in more details in future works.

The structure of the paper is the following. In Section II, we
introduce the framework and we state the main result. Ini@edt

satisfiesy(T) = 1. The answer to this question is in generalyye recall the time adiabatic theorem and some results on the
negative wher{ is infinite-dimensional (see [2], [20]). Hence one regularity of eigenvalues and eigenstates of paramefesrdtent

has to look for weaker controllability properties as, fostamce,
approximate controllability (see for instance [7], [9]13]1[15]) or
controllability between subfamilies of states and in maitir the

Hamiltonians. In Section IV we deepen our analysis of cdnica
intersection; in particular, we state and prove a suffictmdition
for an intersection to be conical. Our first controllabilitgsult

eigenstates offo (which are the most relevant physical states) angs introduced in Section V, while Section VI is devoted to the

other regular states (see [3], [4]).

F.C. Chittaro is with LSIS, UMR CNRS 7296,
versitt  du  Sud-Toulon Var, 83957 La Garde,
francesca-carlotta.chittaro@mniv-tln.fr.

P. Mason is with CNRS-LSS-Supélec, 3 rue Joliot-Curie, 21 Gif-sur-
Yvette, Francemason@ ss. supel ec. fr.

U. Boscain is with CMAPEcole Polytechnique CNRS, Palaiseau, France,

boscai n@map. pol yt echni que. fr

M. Sigalotti is with Team GECO, INRIA Saclay
de-France and CMAP Ecole Polytechnique, Palaiseau,
mario.sigalotti @nria.fr.

—ile-

Uni-
France,

France,

construction, under additional assumptions, of some apearves
that allow to strengthen our controllability result.

II. DEFINITIONS AND NOTATIONS

We consider the Hamiltonian
m
H(u) = Ho + ZUiHi7
=1

for u = (u1,...,um) € R™. From now on we assume thaf(-)

This research has been supported by the European ReseautitilCo satisfies the following assumption:

ERC StG 2009 “GeCoMethods”, contract number 239748, by tiNRA

“GCM”, program “Blanc—CSD"” project humber NT09-504490,daoy the
DIGITEO project “CONGEO".

(HO) Hy is a self-adjoint operator on a separable Hilbert spice

and H; are bounded self-adjoint operators Bhfor i = 1,...,m.



spectrum ofH (u) is said to be sseparated discrete spectruom
w if there exist two continuous function§, f> : w — R such that
o fi(u) < f2(u) andX(u) C [fi(u), f2(u)] Yu € w.
« there existd" > 0 such that
inf

inf dist(A I.
Inf b dist [ (W), W) >

Notation From now on we label the eigenvalues belonging{a)

in such a way thak(u) = {Ao(u),..., A\x(u)}, wheredo(u) <

-+ < Ax(u) are counted according to their multiplicity (note that
the separation af from the rest of the spectrum guarantees thiat
constant). Moreover we denote k(u),. .., ¢x(u) an orthonor-
mal family of eigenstates correspondingXe(u), . .., Ax(u). No-
tice that in this notation\o does not need to be the ground state of
the system.

Definition 2.3: Let > be a separated discrete spectrumwan
We say that (2) is approximatelgpread-controllableon X if for
everyu’, u' € w such that(u®) andX(u') are non-degenerate,
for every ¢ € {¢o(u®),...,0x(u®)}, p € [0,1]*** such that
SF ,pi =1, and every: > 0 there existl’ > 0, Jo, ..., 0, € R

Fig. 1. A slow path “climbing” the spectrum dfl (-), plotted in function

of u= (u1,us). and a piecewis€' controlu(-) : [0, 7] — R™ such that
k
[e(T) = _pje di(uh)] <e, 3)
Some of the results of this paper, in particular those in st | j=0

section, are obtained in the case wheme= 3, denoted in the

following with (C), or in the following case wherey(.) is the soltion of (2) withy(0) = ¢.

Our techniques rely on the existence of conical intersestio
(R) Assume thatm = 2 and that there exists an orthonormalbetween the eigenvalues. Notice indeed that when two |éveds
basis{x;}; of the Hilbert spaceé{ such that the matrix elements sect the conservation of occupation probabilities of theceoned
(x5, Hoxr), (x5, Hixk) and{x;, Haxi) are real for anyj, k. We levels under adiabatic evolution is no more guaranteed.icabn
denote with4® the real Hilbert space generated by the bésis};.  intersections constitute a well-known notion in molecyttiysics
(see for instance [6], [12], [19]).

In this paper we will use the following definition, which mset
all the features commonly attributed to conical interseti

Definition 2.4: Let H(-) satisfy hypothesigH0). We say that
a € R™ is aconical intersectiorbetween the eigenvalues; and
Aj+1 i Aj(a) = Aj+1(a) has multiplicity two and there exists a
constantc > 0 such that for any unit vectov € R™ andt > 0
0small enough we have that

Remark 2.1:In the case(R), with eachu and each eigenvalue
of H(u) (counted according to their multiplicity), it is possible t
associate an eigenstate whose components with respe@ basis
{x;}; are all real.

Concerning the cag®), a typical example is wheflp = —A+
V, where A is the Laplacian on a bounded domd&nhcC R? with
Dirichlet boundary conditionsy € L*°(Q,R), H = L*(,C),
andH, H, are two bounded multiplication operators by real value
functions. In this case the spectrum ff, is discrete. However Njri(@+tv) = Xj(a+tv) > ct. (4)
the case(R) does not cover some basic quantum systems, as fitris worth noticing that conical intersections are not juolical
instance the electromagnetic Hamiltonian, in which ondrodsithe  phenomena. On the contrary, they often happen to be gerasric,
magnetic field. Although this system is not linear in the colst the  explained in [8].
results presented in this paper for the céSghave to be intended

as a first step towards the complete analysis of the electyoatia lll. SURVEY OF BASIC RESULTS

case. A. The adiabatic theorem
The dynamics are described by the time-dependent Scly&din  One of the main tools used in this paper is the adiabatic émeor
equation ([6], [10], [14], [16]); here we recall its formulation, aping it to
dip our framework. For a general overview see the monograph Yi8]
z’E = H(u(t))y(t). (2)  remark that we refer here exclusively to the time-adiatthgorem.

The adiabatic theorem deals with quantum systems governed

Such an equation has classical solutions under hypotiei€ls by Hamiltonians that explicitly depend on time, but whose de
u(-) piecewiseC' and with an initial condition in the domain of pendence is slow. While in quantum systems driven by time-
Hy (see [18] and also [2]). independent Hamiltonians the evolution preserves the patmn

We are interested in controlling (2) inside some portiontaf t probabilities of the energy levels, this is in general natetrfor
discrete spectrum dff (u). Since we use adiabatic techniques, suchime-dependent Hamiltonians. The adiabatic theorem stéigt if
portion of spectrum must be well separated from its compigme the time-dependence is slow, then the occupation probabiiithe
in the spectrum of the Hamiltonian, and this property mudtiho energy levels, which also evolve in time, is approximategserved
uniformly for u belonging to some domain iiR™. All these by the evolution.
properties are formalized by the following notion. More precisely, consideh(t) = Ho + > -, wiH;, t € I =

Definition 2.2: Let w be a domain ilR™. A mapX defined on  [to, ts], satisfying (HO), and assume that the map— u(t) =
w that associates with eaaln € w a subsett(u) of the discrete (u1(t),...,un(t)) belongs toC*(I,R™). Assume moreover that



there existsv C R™ such thatu(t) € w for all t € T andX is a where H;(7) is the effective Hamiltoniarwhose form is
separa_ted discrete spectrum ©on _ e (e 0\ ((ba()da (™) bs(r)ba(r) .

We introduce a small parameter > 0 that controls the time e (T)={"" Ag(r)) T8 (ba(),35(0) (5()da()) ) 7
_sr(r:]ale_, and C(I)nglderf the slow Haglsltonlhfst), te [to/dz-:,btf/s]. Theorem 3.1 implies the following.

?;!metﬁvo utlont.( r(()in[z]og/s 1) _(1;1’ to/sf}sgenerate L %(6'_) Theorem 3.3: Assume that{\;, \;+1} is a separated discrete
satl)s ;es © equa |cm% (_t’ to_/i)] = h(et) I(t’.t%]i)' € 7~ spectrum onv’ and letu : [to, ¢;] — w’ be aC? curve such that
€t belong tolto, 1] :m 7;? = to; the time evolutionl™(7, 70) :=  pere exists &'-varying basis ofy(-) made of eigenstates &f(-).
U*(7/e,70/¢) satisfies the equation Then there exists a constafit such that

. d e € * €
ie——U"(7,70) = h(T)U" (7, 70). ®) | (U (7, 70) = U (T)Usqt (7, 70)U(70)) |55 () (T0) |

dr
Notice thatU*(r, 7o) does not preserve the probability of occu- < Ce(l+ |7 — 7o)

pations: in fact, if we denote by () the spectral projection of for everyr, 7o € [to, t/].
h(r) onX(u(7)), thenP,(T)U*(r, 10) is in general different from

U* (7, 70) P (10). B. Regularity of eigenstates
Let us consider theadiabatic Hamiltonianassociated withs, Classical results (see [17]) say that the map— P,, where
ha(T) = h(7) —ieP.(17) P. (1) —ie P} (1) P (1), where P (1) =  Pu is the spectral projection relative to a separated disepée-

id — P.(7) and id denotes the identity ori{. Here and in the trum, is analytic onw. In particular, eigenstates relative to simple
following the time-derivatives shall be intended with respto the eigenvalues can be chosen analytic with respeat t®imilar results
reparametrized time-. The adiabatic propagator associated withhold also for intersecting eigenvalues, provided that thenHtonian

ha(7), denoted byU; (7, 70), is the solution of depends on one parameter and is analytic. In particula, i a
d separated discrete spectrum©randu : I — w is analytic, then
ie—-Ua(7,70) = ha(7)Ua(m,70),  Us(70,70) = id. there exist two families of analytic function§; : I — R and ®;

) ; ; . . I —H, j=0,...,k, such that for every in I the (k + 1)-tuple
Notice thatP_*(r)Ua(r, T0) = Ug (T, 70)1_3*(7-0), that_ is, the adi- (Ao(t), .., Ax()) is a reordering of(ho(u(t)),. .., A (u(t))),
abatic evolution preserves the occupation probabilityhef band 4 (®o(t), ..., Pk (t)) is an orthonormal basis of corresponding
. . ) eigenstates. (see [11], [17, Theorem XII.13]). Moreoveg gan

Now we can adapt to our setting the strong version of th%asily find conditions on the derivatives of the functiohg ®;:

quaﬂtum adiabfatic theorerrrll, as stated in [19];n i indeed, consider &' curveu : I — R™ such that there exist
Theorem 3.1: Assume thatll (u) = Ho + 3, uifl; satisfies o tamilies of ¢! functionsA; : 7 — R and®; : T — H, [ —

(HO), and that: is a separatedeiscrete spectrumwo R™. Let "~ 4 “\which for anyt € I, correspond to the eigenvalues and
I = [to, ty], uil—w be aC” curve and set(t) = H(u(t)).  the (orthonormal) eigenstates &f(u(t)).

Then P. € C*(I, £(H)) and there exists a constaft > 0 such By direct computations we obtain that for alE I the following
that for all 7,70 € 1 equations hold:

|U*(7,70) = Ua(7,70)[| < Ce (1 + |7 — 7o) (6) . m
Remark 3.2:If there are more than two parts of the spec- Ai(t) = (Pu(1), (Zm(t)Hi)i)z(t)) (8)
trum which are separated by a gap, then it is possible to gen- i=1 ]
eralize the adiabatic Hamiltonian as ([140.(7) = h(r) — (Am(t) — N (2)) (Pi(t), P (2)) =
ie Y., Pa(7)Pa(r), where eachP,(r) is the spectral projection m
associated with a separated portion of the spectrum, ipaitit it = (Pu(t), (Zﬂi(t)Hi) P (1)) )
asa varies. =1

Let us now consider the band made by the eigenvalues An immediate consequence of (8) is that the eigenvaljesre
Aj,Aj+1 € X. There exists an open domaisi C w such that Lipschitz with respect ta.
{\j,\j+1} is a separated discrete spectrumugn As above, we Let @ be a conical intersection betweeyy(u) and Aji(u).
consider a control functiom(-) € C?(I,w’). We can then apply Consider the straight ling, (t) = a+tv, t > 0, v = (v1,...,0m)
the adiabatic theorem to the separated discrete specffumm —  unit vector. Then (9) implies that
{N\j(u),\j+1(u)}, u € w': we call H(7) the space constituted by

the direct sum of the eigenspaces relative fou(7)), Aj+1(u(7)). lim {(¢;(rv(t)), (Z viHi) di+1(rv(t))) = 0. (10)
We are interested in the dynamics insi@é¢r). Since $H(7) is =0t i=1
two-dimensional for anyr, it is possible to map it isomorphically IV. CONICAL INTERSECTIONS

on C* and identify aneffective Hamiltonianwhose evolution is a In this section, we investigate the features of conicalrg@etions

representation ob/; (7, 70) s (-,) On C. . . and provide also a criterion for checking if an intersectietween
Let us assume that there exists an eigenstate bagjg, gigenvalues is conical. First of all we notice that Deiimi 2.4
{?Q(T)v%(ﬂ} of $(r) such that ¢a(-),¢s()) belong 10 n e reformulated by saying that an intersectiobetween the
C'(I,7). We construct the time-dependent unitary Operatogigenyaluesy; and),+; is conical if and only if there exisis > 0
Uir) + H(r) — C° by defining for anys € H(1) g, ch that, for every straight line(¢) with »(0) = @, it holds
Uy = e(galr),¥) + e2(ds(7),¢), where {e1, ez} d
N (r®) = X )] = e

is the canonical basis ofC?, and the effective propagator el

Uss(1,70) = U(T)UE(T,70)U*(10). It is easy to see that dt

U (7, 70) satisfies the equation Moreover, the following result guarantees that (4) holde tin
a neighborhood of a conical intersection. It follows eaigm the

igd;‘iUgg(ﬂ 70) = Heg (T)Usgr (7, 70), User (70,70) = id, Lipschitz continuity of the eigenvalues.

t=01



Lemma 4.1: Let u a conical intersection betweeyy and ;1. for conical intersections, it is possible to associate vdtith a
Then there exists a suitably small neighborh@éddf @ andC' > 0  curve a continuous solutiofE(w (s)), 3(w(s))) of (13)-(14) with
such that E(vo) = 0 and compatible with (12). It is easy to see that

Aj+1(u) = Aj(u) > Clu—1l, Yue U. (12)
Let us now define the following matrices, which allow to
introduce a further characterization of conical interged and
which play an important role for our strongest controllapitesults
obtained in the casg®) and (C).
Definition 4.2: In the case(R) we define theconicity matrix
associated with(1)1, 12) € H® x H* as

—

E(w(s)) € [-m/2,0] for s € [0, 5] from which one deduces that
the final valueE(vy) = E(w(5)) is independent of the chosen
path and continuously depends en. In particular it turns out
that 2(—vo) = —n/2. Similarly, one can show thaf(vi) =
B(w(5)) is independent of the chosen path and continuous outside
{vo, —vo}. Note that the fact that is discontinuous atv, implies

that the corresponding limit basig}, #7.,1) has a discontinuity at

—Vo.
M1, o) = (1, Hitpo) 5 (w2, Hitbe) — (1, Hip1))
’ (Y1, Hapa) 5 ((W2, Hatoa) — (1, Hatpr)) ) V. A SPREAD CONTROLLABILITY RESULT
If (C) holds, then theconicity matrix associated witky, ¢2) € Our first result states that spread controllability holds &
H x 'H is defined as class of systems having pairwise conical intersectioneyiging
_ in addition an estimate of the controllability time. As a byguct
M1, 1p2) = \ . > <
I H . H 1 of the proof, we will also get an explicit characterizatiohtbe
EZ“HIZ?; EZhHlZQ;* EZ%HlZQ; - EZ“Hlili motion planning strategy (the patf{(-) below).
b2 b2 2> 72%2) T 22yl Theorem 5.1: Let H(u) = H ™ u,; H; satisfy hypothesis
<¢17H3¢2> <'¢17H31/)2>* <'¢2,H31/)2> — <’¢1,H3’¢1> (u) O+Zz:1u fy yp

) (HO). Let ¥ : u — {Xo(u),...,\x(u)} be a separated discrete
Lemma 4.3: If (R) holds, the function (¢1,%2) —  spectrum onw C R™ and assume that there exist conical inter-
| det M(31,2)| is invariant under orthogonal transformationssectionsuj € w, j=0,...k—1, between the eigenvalues
of the argument, that is if(¥1,42)" = O(¢1,¢2)" for a Xj, Ajr1, with \;(uy) simple if I # 4,5 + 1. Then, for every
pair ¢1,%> of orthonormal elements of{* and O € O(2). 0 andu! such thatx(u®) and X(u') are non-degenerate, for
then one has |det/\/l(1/)171/)2)| = |det/\/l(’(/)17’(/}2)|. If everyg? c {d)o(u())’.”,q&k(u())}’ andp € [O, 1]k+1 such that
(C) holds, thendet M(v1,12) is purely imaginary and the Siopi = 1, there existC' > 0 and a continuous control
function (¢1,¢2) +— det M(31,%2) is invariant under unitary 7(-)7: 0,1 — R™ with 7(0) = u® and~(1) = u', such that
transformation of the argument, that is(if1, 12)" = U(¢1,¢2)"  for everye > 0
for a pair 1,42 of orthonormal elements oft andU € U(2),
then one haslet M (11,2) = det M(3)1, 12). k .
The following result characterizes conical intersectionserms lp(1/e) = > pseig;(u')]| < CE, (15)
of the conicity matrix. =0

Propositipn 4.4: Assume that (R) or (C)_ holds and that wherey(+) is the solution of (2) withy(0) = &, u(t) = ~(et),
{Aj; Aj+1} is @ separated discrete spectrum wiffta) = A;+1(0).  and,,..., 9, € R are some phases depending omnd ~. In
Let {11,142} be an orthonormal basis of the eigenspace associated icular, (2) is approximately spread controllable n
with the double eigenvalue, with; , . € H® in the(R) case. Then o . ) .

@ is a conical intersection if and only #1(1)1, ¥2) is nonsingular. The control strategy COnSI§ts in constrgctlng p|gcewusgcnm

As noticed above, for any analytic curve that reaches a abnicPaths thgt pass through Qonlgal intersections making tﬂemao.r-
intersection it is possible to choose analytic eigenstatemg Ners: V\_/h|Ie_far from a conical intersection, we can use aatmdic
the curve. A peculiarity of conical intersections is thathem &PProximation that separates all the levels3in and therefore
approaching the singularity from different directionss #igenstates e occupation probabilities of the energy levels are apprately
corresponding to the intersecting eigenvalues have diftetimits. ~ cOnserved. When in a neighborhood of a conical interse¢tofix
Calling ¢2,¢%,, be the limits ast — 0% of the eigenstates the |.deas, bgtween the eigenvalugsand A1), we will treat.the
b:(ro(t)), di+1(ro(t)) along a straight linero(t) = u + tvo two mter;ectmg Igvelg togethgr, by means of (7). We thersniter
for some unit vectonvo, and ¢Y,¢Y,, the limit basis along the the effectlve. Hgmlltonlan and |t§ associated evolutiornrajoe Jetr-
straight linery () = u + tv, we can relate them by the following 11€ key point is that there exists some phases (depending on

transformation, up to some phases §f and ¢, ;: 93,9541 such that

. 9
o7\ cos B e PsinE qbg U+ (0, 7 7(6 J ) ) =CvE
(W) =(CoSs o)) e 050,70~ () o ) IS OVE,
Using (10), it is easy to see that the parameErs: Z(v) and and a similar inequality holds fot/;(70,1). This fact can be
B = B(v) satisfy the following equations: shown with explicit computations (see e.g. [8]). We remé&udt the
2162, Hy?s )| term/z is due to the presence of intersecting eigenvalues (see [8]
g VP

tan 28(v) = G0 Ho) — (60,1 HodloD) (13) and also [19, Corollary 2.5] for a similar result). The splieg of
Y {) ({“’ VPl occupation probabilities induced by the corner at the dargy is
B(v) = arg(¢;, Hvdji1), (14)  described by the following proposition.
where H, = 3> | Hvi. Proposition 5.2: Let u be a conical intersection between the

Remark 4.5:1t can be seen that not all the solutions of (13)-(14)2i9envalues\;, A;+1, and lety : [0,1] — w be the curve defined
provide the correct transformation (12). Nevertheless,vigv, @S
be two unit vectors andv(s), s € [0,5], be a curve joining () = {u+ (ro—7)vo 7 € [0, 70]
vo to vy such thatw(s) ¢ {vo,—vo} for every s € (0,5); a+ (r—710)v 7€ [0,1].



—

Let ¢7,¢7,, be limits as 7 7, of the eigenstates
#;(v(7)), pj+1(7(7)), respectively. Then there exists > 0 such
that, for anye > 0,

[(1/€) — p1e® d;(4(1)) — p2e™*i+1 ;41 (v(1))]| < CVe (16)

whered;, 9,41 € R, #(-) is the solution of equation (2) with
¥(0) = ¢;(v(0)) corresponding to the contral : [0,1/¢] — w
defined byu(t) = v(et),

p1 = [cos (E(v)) [, p2 = [sin (E(V))],

and=(-) is defined as in equation (13) and Remark 4.5.

Lemma 6.1: The functionu — F'(u) is well defined and con-
tinuous inw. In particularF" is different from0 in a neighborhood
of u=0.

Without loss of generality, we assume from now on thais
different from zero orw.

Lemma 6.2: There exists &> choice of the right-hand side of
(17) inw \ {0} such that, ifu(-) is a corresponding solution, then

4 D) = A a0)] = 27 (u()
onw \ {0}.

We now define thenon-mixing field denoted byXp, as the

(18)

Remark 5.3:For control purposes, it is interesting to considersmooth vector field o \ {0} identified by the preceding lemma.

the case in which the initial probability is concentratedhe first
level, the final occupation probabilitigs andp3 are prescribed.
Choosingn € [0, 7/2] such that(pi, p2) = (cosn,sinn), we
select the outcoming direction in such a way that it satisfies
E(v) = +£n.
Thanks to Remark 4.5, this is always possible.

VI. NON-MIXING CURVES

Its integral curves aré* in w\ {0}. Moreover, its norm is equal to
the norm of the first row ofM(¢;, ¢;+1), and therefore bounded
both from above and from below by positive constantsyig{0}.

By considering\;j+1(u) — A;(u) as a local Lyapunov function,
the above results lead to the following proposition.

Proposition 6.3: There exists a punctured neighborhdddf 0
such that all the integral curves d&fp starting fromU reach the
origin in finite time.

The integral curves of non-mixing field turn out to be smooth

The purpose of this section is to improve the controllapilit even at the singularity (for technical details, see [8]).

results in the casg®R) and(C). Throughout the section we assume,

Proposition 6.4: Let ~ — w be an integral

[_777 0]

without loss of generality, thaf);, X\;+1} is a separated discrete curve of Ap with (0) = 0. Then v(:) and the eigenstates

spectrum on an open domainand that0 € w is the only conical
intersection between the eigenvalues.

Following Section IlI-A, the effective Hamiltonia#/S;, defined
as in (7), (approximately) describes the dynamics in thereigaces
associated with\;, A;+1, for u slowly varying inw. When integrat-
ing the effective Hamiltonian, the off-diagonal terms in ifTduce a
(a priori) non-negligible probability transfer betweer tfwvo levels,
which is taken into account in the estimate (15) by the téxty/z).

Thus, to improve the precision of the result, we need to kil t
off-diagonal terms in the effective Hamiltonian. In orderdo that,
we choose some special trajectoriesuinalong which the term
(bir Pi+1)
¢ = $(7(-)) to denote g (4(v(-)))-

We treat the case®) and (C) separately.

(R) We consider trajectories satisfying the following system
{ Uy = —(¢;, Hahj11)

Uz = (¢j, Hi1¢j+41).
Notice that the right-hand side of (17) can be taken reale@lun-
der the current hypotheses. It is defined up to a sign, beaHube

freedom in the choice of the sign of the eigenstates. Neskash,
locally around points where\; # \;11, it is possible to choose

an

is null. Here and in the following we use the notationz(u1)

¢;(7(-), @5+1(7(-)) areC™ on [—n, 0].
The following result is crucial to our controllability stemy.
Proposition 6.5: For every unit vectow in R? there exists an
integral curvey : [-n,0] — w of Xp with v(0) = 0 such that

QOIS
0 Ip(t)l\ ' R

By concatenating integral curves of the non-mixing field, we
construct paths that realize the transitions with a pregisif the
ordere. This allows us to state the following result:

Theorem 6.6: Consider the casgR), and let the hypotheses of
Theorem 5.1 hold. Then for eveny’ andu® such that>(u®) and
are non-degenerate, for evefyc {¢o(u®), ..., ¢r(u)},
andp € [0,1]*" such that>") ,p? = 1, there existC' > 0
and a continuous controj(-) : [0,1] — R? with v(0) = u° and
(1) = u', such that for every > 0

k
le(1/) =Y pie™ é;(uh)|| < Ce, (19)
=0
where ) (+) is the solution of (2) withy)(0) = ¢, u(t) = v(et),
and vy, ..., Y € R are some phases depending=oand~.
Remark 6.7:The phase%o, ..., 9, may, in principle, be com-

the sign in such a way that the right-hand side of (17) is smoot Puted explicitly. In fact, they are sums of terms of the form

and, from equation (9), we see thab;(v(t)), d;+1(v(t))) = 0
along any integral curves of (17). Let now Cra2(H®) be the 2-

éf:ll“ Aj(v(s)) ds, where|, ,.,) are the pieces of the path
~ between two successive passages through conical intersect

Grassmannian oF%, i.e. the set of all two-dimensional subspacegVioreover, if at the final Pgi?hgg’ (or at any other point of the
of H". This set has a natural structure of a metric space defined igposen path) all the ratiogX 5, I # j, j,l = 0,...,k, are

the distancel(W1, Ws) = || Pw, — Pw, ||, wherePyw, , Pw, are the
orthogonal projections on the two-dimensional subspagesiV,.
Lemma 4.3 allows us to define the functidn : Gra(H®) — R
as F(W) = | det M(v1,v2)|, where{vi,v2} is any orthonormal
basis of W € Grz(H). It is easy to see thak’ is continuous.

not rational, then, by stopping at’ for a long enough time, one
can approximately recover every final value @, ...,J%) (the
rational independence of the eigenvalues guarantees hibaset
of points (Yo, ...,Ys) attainable from any initial configuration is
dense in thek-dimensional torus). Thus this method allows to

Let P, be the spectral projection associated with the paitapproximately) induce any transition from an eigenstaative

{Aj(u), \j+1(u)}. We know from Section IlI-B thaP, is analytic
onw. Thereforeu — P, HNH" is continuous in Gy(H™). Let now
F(u) := |det M(¢j(n), ¢j4+1(0))|. SinceF (u) = F(PyHNHY)
and by Proposition 4.4 we get the following result.

to the eigenvalues i to any other state belonging to the sum of
eigenspaces relative to the eigenvalues.inNotice however that
the computation of the final phases is very sensitive to tiaria

of € and to errors in the computation of the eigenvalues, and also



approximate recovering of the desired phases could needya vafter an adaptation to the current framework. This meanswiea

large time, leading to important computational errors. réfare
this controllability strategy seems to be essentially asifiele in
practice.

We conclude the study of the ca@R) with a result of structural
stability of conical intersections.

Theorem 6.8: Assumet is a conical intersection between the

eigenvalues); and \;41 for an Hamiltonian H(u) = Ho +
ui1H1 + uzHs in the case(R). Assume moreover thati —

{Aj(u),\j+1(u)} is a separated discrete spectrum in a neighbor-

hAood ofﬁA. Then onr everye > 0 there exists) > 0 such that, if
H(u) = Ho +u1H1 +u2H> is in the casgR) and

|Ho — Hol| + |H1 — Hy|| + || H2 — Ha| < 6, (20)

then the operatoH (u) admits a conical intersection of eigenvalues

ata, with [@ — ] < e.

(C) The results obtained in the ca@R) can be partially adapted to

can construct the effective Hamiltonian along the integtalves of
the non-mixing field that go through the conical intersattithus
controlling the spreading of the occupation probabilityween the
two levels involved. In particular, Theorem 6.6, remaingetm the
case(C).
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