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Controllability of the Schr ödinger equation via adiabatic methods and conical
intersections of the eigenvalues

Francesca Carlotta Chittaro, Paolo Mason, Ugo Boscain and Mario Sigalotti

Abstract— We present a constructive method to control the bilinear
Schrödinger equation by means of two or three controlled external
fields. The method is based on adiabatic techniques and worksif
the spectrum of the Hamiltonian admits eigenvalue intersections, with
respect to variations of the controls, and if the latter are conical. We
provide sharp estimates of the relation between the error and the
controllability time.

I. I NTRODUCTION

In this paper we are interested in the problem of controllingthe
bilinear Schrödinger equation

i
dψ

dt
=

 
H0 +

mX

k=1

uk(t)Hk

!
ψ(t). (1)

Here ψ belongs to the Hilbert sphereS of a (finite or infinite
dimensional) complex separable Hilbert spaceH andH0, . . . ,Hm

are self-adjoint operators onH. The controlsu1, . . . , um are scalar-
valued and represent the action of external fields.H0 describes
the “internal” dynamics of the system, whileH1, . . . ,Hm the
interrelation between the system and the controls.

When describing quantum phenomena, typical models have often
the previous form withH0 = −∆ + V0(x), Hi = Vi(x), wherex
belongs to a domainD ⊂ R

n and V0, . . . , Vm are real functions
(multiplication operators). However, equation (1) can be used to
describe more general controlled dynamics. For instance, aquantum
particle on a Riemannian manifold subject to external fieldsor a
two-level ion trapped in a harmonic potential (the so-called Eberly–
Law model [1], [5]). In the latter case, as in many other relevant
physical situations,H0 cannot be written as the sum of a Laplacian
plus a potential.

The controllability problem aims at establishing whether,for
every pair of statesψ0 andψ1, there exist controlsuk(·) and a time
T such that the solution of (1) with initial conditionψ(0) = ψ0

satisfiesψ(T ) = ψ1. The answer to this question is in general
negative whenH is infinite-dimensional (see [2], [20]). Hence one
has to look for weaker controllability properties as, for instance,
approximate controllability (see for instance [7], [9], [13], [15]) or
controllability between subfamilies of states and in particular the
eigenstates ofH0 (which are the most relevant physical states) and
other regular states (see [3], [4]).
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In most of the results in the literature only the casem = 1
is considered. In this paper we study the casesm = 2, 3 and
we look both for controllability results and explicit expressions
of the external fields realizing the transition. The system under
consideration is then

i
d

dt
ψ(t) = H(u(t))ψ(t),

with H(u) = H0 +
Pm

i=1 uiHi, m = 2, 3 andu = (u1, . . . , um).
The idea is to use slowly varying controls and climb the energy
levels through conical intersections, if they are present.

A classical tool, which is used in our approach, is the adiabatic
theorem (see [19]). Roughly speaking, the adiabatic theorem states
that the occupation probabilities associated with the energy levels
of a time-dependent HamiltonianH(·) are almost preserved along
the evolution given byiψ̇(t) = H(t)ψ(t), provided thatH(·)
varies very slowly. This result works whenever the energy levels
(i.e. the eigenvalues ofH(·)) are pairwise isolated for everyt.
On the other hand, ifH(·) is a C2 slowly varying Hamiltonian,
the passage through (conical) intersections among energy levels
determine (approximate) exchanges of the corresponding occupa-
tion probabilities (see [19, Corollary 2.5] and Figure 1). In this
paper we generalize this property in order to construct suitable
paths allowing to approximately attain prescribed distributions of
probability, thus getting a particular controllability property (that
we call approximate spread controllability). The casem = 2
has already been studied in [8]. In this paper we will tackle the
casem = 3. For reasonable space reasons, all the results will
be presented without proof. As for the casem = 3 they can be
obtained by suitably adapting the proofs in [8]. This case will be
analyzed in more details in future works.

The structure of the paper is the following. In Section II, we
introduce the framework and we state the main result. In Section III
we recall the time adiabatic theorem and some results on the
regularity of eigenvalues and eigenstates of parameter-dependent
Hamiltonians. In Section IV we deepen our analysis of conical
intersection; in particular, we state and prove a sufficientcondition
for an intersection to be conical. Our first controllabilityresult
is introduced in Section V, while Section VI is devoted to the
construction, under additional assumptions, of some special curves
that allow to strengthen our controllability result.

II. D EFINITIONS AND NOTATIONS

We consider the Hamiltonian

H(u) = H0 +
mX

i=1

uiHi,

for u = (u1, . . . , um) ∈ R
m. From now on we assume thatH(·)

satisfies the following assumption:

(H0) H0 is a self-adjoint operator on a separable Hilbert spaceH,
andHi are bounded self-adjoint operators onH for i = 1, . . . ,m.
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Fig. 1. A slow path “climbing” the spectrum ofH(·), plotted in function
of u = (u1, u2).

Some of the results of this paper, in particular those in the last
section, are obtained in the case wherem = 3, denoted in the
following with (C), or in the following case

(R) Assume thatm = 2 and that there exists an orthonormal
basis{χj}j of the Hilbert spaceH such that the matrix elements
〈χj ,H0χk〉, 〈χj , H1χk〉 and〈χj ,H2χk〉 are real for anyj, k. We
denote withHR the real Hilbert space generated by the basis{χj}j .

Remark 2.1:In the case(R), with eachu and each eigenvalue
of H(u) (counted according to their multiplicity), it is possible to
associate an eigenstate whose components with respect to the basis
{χj}j are all real.

Concerning the case(R), a typical example is whenH0 = −∆+
V , where∆ is the Laplacian on a bounded domainΩ ⊂ R

d with
Dirichlet boundary conditions,V ∈ L∞(Ω,R), H = L2(Ω,C),
andH1,H2 are two bounded multiplication operators by real valued
functions. In this case the spectrum ofH0 is discrete. However
the case(R) does not cover some basic quantum systems, as for
instance the electromagnetic Hamiltonian, in which one controls the
magnetic field. Although this system is not linear in the controls, the
results presented in this paper for the case(C) have to be intended
as a first step towards the complete analysis of the electromagnetic
case.

The dynamics are described by the time-dependent Schrödinger
equation

i
dψ

dt
= H(u(t))ψ(t). (2)

Such an equation has classical solutions under hypothesis(H0),
u(·) piecewiseC1 and with an initial condition in the domain of
H0 (see [18] and also [2]).

We are interested in controlling (2) inside some portion of the
discrete spectrum ofH(u). Since we use adiabatic techniques, such
portion of spectrum must be well separated from its complement
in the spectrum of the Hamiltonian, and this property must hold
uniformly for u belonging to some domain inRm. All these
properties are formalized by the following notion.

Definition 2.2: Let ω be a domain inRm. A mapΣ defined on
ω that associates with eachu ∈ ω a subsetΣ(u) of the discrete

spectrum ofH(u) is said to be aseparated discrete spectrumon
ω if there exist two continuous functionsf1, f2 : ω → R such that

• f1(u) < f2(u) andΣ(u) ⊂ [f1(u), f2(u)] ∀u ∈ ω.
• there existsΓ > 0 such that

inf
u∈ω

inf
λ∈Spec(H(u))\Σ(u)

dist(λ, [f1(u), f2(u)])) > Γ.

Notation From now on we label the eigenvalues belonging toΣ(u)
in such a way thatΣ(u) = {λ0(u), . . . , λk(u)}, whereλ0(u) ≤
· · · ≤ λk(u) are counted according to their multiplicity (note that
the separation ofΣ from the rest of the spectrum guarantees thatk is
constant). Moreover we denote byφ0(u), . . . , φk(u) an orthonor-
mal family of eigenstates corresponding toλ0(u), . . . , λk(u). No-
tice that in this notationλ0 does not need to be the ground state of
the system.

Definition 2.3: Let Σ be a separated discrete spectrum onω.
We say that (2) is approximatelyspread-controllableon Σ if for
everyu

0,u1 ∈ ω such thatΣ(u0) andΣ(u1) are non-degenerate,
for every φ̄ ∈ {φ0(u

0), . . . , φk(u0)}, p ∈ [0, 1]k+1 such thatPk

l=0 p
2
l = 1, and everyε > 0 there existT > 0, ϑ0, . . . , ϑk ∈ R

and a piecewiseC1 control u(·) : [0, T ] → R
m such that

‖ψ(T ) −
kX

j=0

pje
iϑjφj(u

1)‖ ≤ ε, (3)

whereψ(·) is the solution of (2) withψ(0) = φ̄.
Our techniques rely on the existence of conical intersections

between the eigenvalues. Notice indeed that when two levelsinter-
sect the conservation of occupation probabilities of the concerned
levels under adiabatic evolution is no more guaranteed. Conical
intersections constitute a well-known notion in molecularphysics
(see for instance [6], [12], [19]).

In this paper we will use the following definition, which meets
all the features commonly attributed to conical intersections.

Definition 2.4: Let H(·) satisfy hypothesis(H0). We say that
ū ∈ R

m is a conical intersectionbetween the eigenvaluesλj and
λj+1 if λj(ū) = λj+1(ū) has multiplicity two and there exists a
constantc > 0 such that for any unit vectorv ∈ R

m and t > 0
small enough we have that

λj+1(ū + tv) − λj(ū + tv) > ct . (4)
It is worth noticing that conical intersections are not pathological
phenomena. On the contrary, they often happen to be generic,as
explained in [8].

III. SURVEY OF BASIC RESULTS

A. The adiabatic theorem

One of the main tools used in this paper is the adiabatic theorem
([6], [10], [14], [16]); here we recall its formulation, adapting it to
our framework. For a general overview see the monograph [19]. We
remark that we refer here exclusively to the time-adiabatictheorem.

The adiabatic theorem deals with quantum systems governed
by Hamiltonians that explicitly depend on time, but whose de-
pendence is slow. While in quantum systems driven by time-
independent Hamiltonians the evolution preserves the occupation
probabilities of the energy levels, this is in general not true for
time-dependent Hamiltonians. The adiabatic theorem states that if
the time-dependence is slow, then the occupation probability of the
energy levels, which also evolve in time, is approximately conserved
by the evolution.

More precisely, considerh(t) = H0 +
Pm

i=1 uiHi, t ∈ I =
[t0, tf ], satisfying (H0), and assume that the mapt 7→ u(t) =
(u1(t), . . . , um(t)) belongs toC2(I,Rm). Assume moreover that



there existsω ⊂ R
m such thatu(t) ∈ ω for all t ∈ I and Σ is a

separated discrete spectrum onω.
We introduce a small parameterε > 0 that controls the time

scale, and consider the slow Hamiltonianh(εt), t ∈ [t0/ε, tf/ε].
The time evolution (fromt0/ε to t) eUε(t, t0/ε) generated byh(ε·)
satisfies the equationi d

dt
eUε(t, t0/ε) = h(εt)eUε(t, t0/ε). Let τ =

εt belong to[t0, tf ] and τ0 = t0; the time evolutionUε(τ, τ0) :=
eUε(τ/ε, τ0/ε) satisfies the equation

iε
d

dτ
Uε(τ, τ0) = h(τ )Uε(τ, τ0). (5)

Notice thatUε(τ, τ0) does not preserve the probability of occu-
pations: in fact, if we denote byP∗(τ ) the spectral projection of
h(τ ) on Σ(u(τ )), thenP∗(τ )U

ε(τ, τ0) is in general different from
Uε(τ, τ0)P∗(τ0).

Let us consider theadiabatic Hamiltonianassociated withΣ,
ha(τ ) = h(τ )−iεP∗(τ )Ṗ∗(τ )−iεP⊥

∗ (τ )Ṗ⊥
∗ (τ ), whereP⊥

∗ (τ ) =
id − P∗(τ ) and id denotes the identity onH. Here and in the
following the time-derivatives shall be intended with respect to the
reparametrized timeτ . The adiabatic propagator associated with
ha(τ ), denoted byUε

a(τ, τ0), is the solution of

iε
d

dτ
Uε

a(τ, τ0) = ha(τ )Uε
a(τ, τ0), Uε

a(τ0, τ0) = id.

Notice thatP∗(τ )U
ε
a(τ, τ0) = Uε

a(τ, τ0)P∗(τ0), that is, the adi-
abatic evolution preserves the occupation probability of the band
Σ.

Now we can adapt to our setting the strong version of the
quantum adiabatic theorem, as stated in [19].

Theorem 3.1: Assume thatH(u) = H0 +
Pm

i=1 uiHi satisfies
(H0), and thatΣ is a separated discrete spectrum onω ⊂ R

m. Let
I = [t0, tf ], u : I → ω be aC2 curve and seth(t) = H(u(t)).
ThenP∗ ∈ C2(I,L(H)) and there exists a constantC > 0 such
that for all τ, τ0 ∈ I

‖Uε(τ, τ0) − Uε
a(τ, τ0)‖ ≤ Cε (1 + |τ − τ0|) . (6)

Remark 3.2:If there are more than two parts of the spec-
trum which are separated by a gap, then it is possible to gen-
eralize the adiabatic Hamiltonian as ([14])ha(τ ) = h(τ ) −
iε
P

α Pα(τ )Ṗα(τ ), where eachPα(τ ) is the spectral projection
associated with a separated portion of the spectrum, partitioning it
asα varies.

Let us now consider the band made by the eigenvalues
λj , λj+1 ∈ Σ. There exists an open domainω′ ⊂ ω such that
{λj , λj+1} is a separated discrete spectrum onω′. As above, we
consider a control functionu(·) ∈ C2(I, ω′). We can then apply
the adiabatic theorem to the separated discrete spectrumΣ′ : u 7→
{λj(u), λj+1(u)}, u ∈ ω′: we call H(τ ) the space constituted by
the direct sum of the eigenspaces relative toλj(u(τ )), λj+1(u(τ )).

We are interested in the dynamics insideH(τ ). SinceH(τ ) is
two-dimensional for anyτ , it is possible to map it isomorphically
on C

2 and identify aneffective Hamiltonianwhose evolution is a
representation ofUε

a(τ, τ0)|H(τ0) on C
2.

Let us assume that there exists an eigenstate basis
{φα(τ ), φβ(τ )} of H(τ ) such that φα(·), φβ(·) belong to
C1(I,H). We construct the time-dependent unitary operator
U(τ ) : H(τ ) → C

2 by defining for any ψ ∈ H(τ )
U(τ )ψ = e1〈φα(τ ), ψ〉 + e2〈φβ(τ ), ψ〉, where {e1, e2}
is the canonical basis ofC2, and the effective propagator
Uε

eff(τ, τ0) = U(τ )Uε
a(τ, τ0)U∗(τ0). It is easy to see that

Uε
eff(τ, τ0) satisfies the equation

iε
d

dτ
Uε

eff(τ, τ0) = Hε
eff(τ )Uε

eff(τ, τ0), U
ε
eff (τ0, τ0) = id,

whereHε
eff(τ ) is theeffective Hamiltonianwhose form is

Hε
eff(τ )=

“
λα(τ) 0

0 λβ(τ)

”
−iε
“
〈φα(τ),φ̇α(τ)〉〈φβ(τ),φ̇α(τ)〉

〈φα(τ),φ̇β(τ)〉〈φβ(τ),φ̇β(τ)〉

”
. (7)

Theorem 3.1 implies the following.
Theorem 3.3: Assume that{λj , λj+1} is a separated discrete

spectrum onω′ and letu : [t0, tf ] → ω′ be aC2 curve such that
there exists aC1-varying basis ofH(·) made of eigenstates ofh(·).
Then there exists a constantC such that

‖ (Uε(τ, τ0) − U∗(τ )Uε
eff(τ, τ0)U(τ0)) |H(τ)(τ0)‖

≤ Cε(1 + |τ − τ0|)

for everyτ, τ0 ∈ [t0, tf ].

B. Regularity of eigenstates

Classical results (see [17]) say that the mapu 7→ Pu, where
Pu is the spectral projection relative to a separated discretespec-
trum, is analytic onω. In particular, eigenstates relative to simple
eigenvalues can be chosen analytic with respect tou. Similar results
hold also for intersecting eigenvalues, provided that the Hamiltonian
depends on one parameter and is analytic. In particular, ifΣ is a
separated discrete spectrum onω andu : I → ω is analytic, then
there exist two families of analytic functionsΛj : I → R andΦj :
I → H, j = 0, . . . , k, such that for everyt in I the (k+ 1)-tuple
(Λ0(t), . . . ,Λk(t)) is a reordering of(λ0(u(t)), . . . , λk(u(t))),
and (Φ0(t), . . . ,Φk(t)) is an orthonormal basis of corresponding
eigenstates. (see [11], [17, Theorem XII.13]). Moreover, we can
easily find conditions on the derivatives of the functionsΛl,Φl:
indeed, consider aC1 curve u : I → R

m such that there exist
two families of C1 functionsΛl : I → R and Φl : I → H, l =
0, . . . , k, which for anyt ∈ I , correspond to the eigenvalues and
the (orthonormal) eigenstates ofH(u(t)).

By direct computations we obtain that for allt ∈ I the following
equations hold:

Λ̇l(t) = 〈Φl(t),
“ mX

i=1

u̇i(t)Hi

”
Φl(t)〉 (8)

(Λm(t) − Λl(t)) 〈Φl(t), Φ̇m(t)〉 =

= 〈Φl(t),
“ mX

i=1

u̇i(t)Hi

”
Φm(t)〉. (9)

An immediate consequence of (8) is that the eigenvaluesλl are
Lipschitz with respect tot.

Let ū be a conical intersection betweenλj(u) and λj+1(u).
Consider the straight linerv(t) = ū+tv, t ≥ 0, v = (v1, . . . , vm)
unit vector. Then (9) implies that

lim
t→0+

〈φj(rv(t)),
“ mX

i=1

viHi

”
φj+1(rv(t))〉 = 0. (10)

IV. CONICAL INTERSECTIONS

In this section, we investigate the features of conical intersections
and provide also a criterion for checking if an intersectionbetween
two eigenvalues is conical. First of all we notice that Definition 2.4
can be reformulated by saying that an intersectionū between the
eigenvaluesλj andλj+1 is conical if and only if there existsc > 0
such that, for every straight liner(t) with r(0) = ū, it holds

d

dt

˛̨
˛
t=0+

h
λj+1(r(t)) − λj(r(t))

i
≥ c.

Moreover, the following result guarantees that (4) holds true in
a neighborhood of a conical intersection. It follows easilyfrom the
Lipschitz continuity of the eigenvalues.



Lemma 4.1: Let ū a conical intersection betweenλj andλj+1.
Then there exists a suitably small neighborhoodU of ū andC > 0
such that

λj+1(u) − λj(u) ≥ C|u − ū|, ∀u ∈ U. (11)
Let us now define the following matrices, which allow to

introduce a further characterization of conical intersections and
which play an important role for our strongest controllability results
obtained in the cases(R) and (C).

Definition 4.2: In the case(R) we define theconicity matrix
associated with(ψ1, ψ2) ∈ HR ×HR as

M(ψ1, ψ2)=

„
〈ψ1,H1ψ2〉 1

2

`
〈ψ2,H1ψ2〉 − 〈ψ1,H1ψ1〉

´

〈ψ1,H2ψ2〉 1
2

`
〈ψ2,H2ψ2〉 − 〈ψ1,H2ψ1〉

´
«
.

If (C) holds, then theconicity matrix associated with(ψ1, ψ2) ∈
H ×H is defined as

M(ψ1, ψ2) =
0
@
〈ψ1,H1ψ2〉 〈ψ1,H1ψ2〉∗ 〈ψ2,H1ψ2〉 − 〈ψ1,H1ψ1〉
〈ψ1,H2ψ2〉 〈ψ1,H2ψ2〉∗ 〈ψ2,H2ψ2〉 − 〈ψ1,H2ψ1〉
〈ψ1,H3ψ2〉 〈ψ1,H3ψ2〉∗ 〈ψ2,H3ψ2〉 − 〈ψ1,H3ψ1〉

1
A .

Lemma 4.3: If (R) holds, the function (ψ1, ψ2) 7→
|detM(ψ1, ψ2)| is invariant under orthogonal transformations
of the argument, that is if( bψ1, bψ2)

T = O(ψ1, ψ2)
T for a

pair ψ1, ψ2 of orthonormal elements ofHR and O ∈ O(2),
then one has |detM( bψ1, bψ2)| = |detM(ψ1, ψ2)|. If
(C) holds, then detM(ψ1, ψ2) is purely imaginary and the
function (ψ1, ψ2) 7→ detM(ψ1, ψ2) is invariant under unitary
transformation of the argument, that is if( bψ1, bψ2)

T = U(ψ1, ψ2)
T

for a pair ψ1, ψ2 of orthonormal elements ofH and U ∈ U(2),
then one hasdetM( bψ1, bψ2) = detM(ψ1, ψ2).

The following result characterizes conical intersectionsin terms
of the conicity matrix.

Proposition 4.4: Assume that (R) or (C) holds and that
{λj , λj+1} is a separated discrete spectrum withλj(ū) = λj+1(ū).
Let {ψ1, ψ2} be an orthonormal basis of the eigenspace associated
with the double eigenvalue, withψ1, ψ2 ∈ HR in the(R) case. Then
ū is a conical intersection if and only ifM(ψ1, ψ2) is nonsingular.

As noticed above, for any analytic curve that reaches a conical
intersection it is possible to choose analytic eigenstatesalong
the curve. A peculiarity of conical intersections is that, when
approaching the singularity from different directions, the eigenstates
corresponding to the intersecting eigenvalues have different limits.
Calling φ0

j , φ
0
j+1 be the limits ast → 0+ of the eigenstates

φj(r0(t)), φj+1(r0(t)) along a straight liner0(t) = u + tv0

for some unit vectorv0, and φv

j , φ
v

j+1 the limit basis along the
straight linerv(t) = u + tv, we can relate them by the following
transformation, up to some phases forφv

j andφv

j+1:
„
φv

j

φv

j+1

«
=

„
cosΞ e−iβ sinΞ

−eiβ sinΞ cosΞ

«„
φ0

j

φ0
j+1

«
. (12)

Using (10), it is easy to see that the parametersΞ = Ξ(v) and
β = β(v) satisfy the following equations:

tan 2Ξ(v) =
2|〈φ0

j ,Hvφ
0
j+1〉|

〈φ0
j ,Hvφ0

j 〉 − 〈φ0
j+1,Hvφ0

j+1〉
(13)

β(v) = arg〈φ0
j ,Hvφ

0
j+1〉, (14)

whereHv =
Pm

i=1Hivi.
Remark 4.5:It can be seen that not all the solutions of (13)-(14)

provide the correct transformation (12). Nevertheless, let v0,v1

be two unit vectors andw(s), s ∈ [0, s̄], be a curve joining
v0 to v1 such thatw(s) /∈ {v0,−v0} for every s ∈ (0, s̄);

for conical intersections, it is possible to associate withsuch a
curve a continuous solution(Ξ(w(s)), β(w(s))) of (13)-(14) with
Ξ(v0) = 0 and compatible with (12). It is easy to see that
Ξ(w(s)) ∈ [−π/2, 0] for s ∈ [0, s̄] from which one deduces that
the final valueΞ(v1) = Ξ(w(s̄)) is independent of the chosen
path and continuously depends onv1. In particular it turns out
that Ξ(−v0) = −π/2. Similarly, one can show thatβ(v1) =
β(w(s̄)) is independent of the chosen path and continuous outside
{v0,−v0}. Note that the fact thatβ is discontinuous at−v0 implies
that the corresponding limit basis(φv

j , φ
v

j+1) has a discontinuity at
−v0.

V. A SPREAD CONTROLLABILITY RESULT

Our first result states that spread controllability holds for a
class of systems having pairwise conical intersections, providing
in addition an estimate of the controllability time. As a byproduct
of the proof, we will also get an explicit characterization of the
motion planning strategy (the pathγ(·) below).

Theorem 5.1: LetH(u) = H0+
Pm

i=1 uiHi satisfy hypothesis
(H0). Let Σ : u 7→ {λ0(u), . . . , λk(u)} be a separated discrete
spectrum onω ⊂ R

m and assume that there exist conical inter-
sectionsuj ∈ ω, j = 0, . . . , k − 1, between the eigenvalues
λj , λj+1, with λl(uj) simple if l 6= j, j + 1. Then, for every
u

0 and u
1 such thatΣ(u0) and Σ(u1) are non-degenerate, for

every φ̄ ∈ {φ0(u
0), . . . , φk(u0)}, and p ∈ [0, 1]k+1 such thatPk

l=0 p
2
l = 1, there existC > 0 and a continuous control

γ(·) : [0, 1] → R
m with γ(0) = u

0 and γ(1) = u
1, such that

for everyε > 0

‖ψ(1/ε) −
kX

j=0

pje
iϑjφj(u

1)‖ ≤ C
√
ε, (15)

whereψ(·) is the solution of (2) withψ(0) = φ̄, u(t) = γ(εt),
and ϑ0, . . . , ϑk ∈ R are some phases depending onε and γ. In
particular, (2) is approximately spread controllable onΣ.

The control strategy consists in constructing piecewise smooth
paths that pass through conical intersections making suitable cor-
ners. While far from a conical intersection, we can use an adiabatic
approximation that separates all the levels inΣ, and therefore
the occupation probabilities of the energy levels are approximately
conserved. When in a neighborhood of a conical intersection(to fix
the ideas, between the eigenvaluesλj andλj+1), we will treat the
two intersecting levels together, by means of (7). We then consider
the effective Hamiltonian and its associated evolution operatorUε

eff .
The key point is that there exists some phases (depending onε)
ϑj , ϑj+1 such that

‖Uε
eff (0, τ0) −

„
eiϑj 0

0 eiϑj+1

«
‖ ≤ C

√
ε,

and a similar inequality holds forUε
eff (τ0, 1). This fact can be

shown with explicit computations (see e.g. [8]). We remark that the
term

√
ε is due to the presence of intersecting eigenvalues (see [8]

and also [19, Corollary 2.5] for a similar result). The spreading of
occupation probabilities induced by the corner at the singularity is
described by the following proposition.

Proposition 5.2: Let ū be a conical intersection between the
eigenvaluesλj , λj+1, and letγ : [0, 1] → ω be the curve defined
as

γ(τ ) =

(
ū + (τ0 − τ )v0 τ ∈ [0, τ0]

ū + (τ − τ0)v τ ∈ [τ0, 1].



Let φ0
j , φ

0
j+1 be limits as τ → τ−0 of the eigenstates

φj(γ(τ )), φj+1(γ(τ )), respectively. Then there existsC > 0 such
that, for anyε > 0,

‖ψ(1/ε) − p1e
iϑjφj(γ(1)) − p2e

iϑj+1φj+1(γ(1))‖ ≤ C
√
ε (16)

whereϑj , ϑj+1 ∈ R, ψ(·) is the solution of equation (2) with
ψ(0) = φj(γ(0)) corresponding to the controlu : [0, 1/ε] → ω
defined byu(t) = γ(εt),

p1 = | cos (Ξ(v)) |, p2 = | sin (Ξ(v)) |,

andΞ(·) is defined as in equation (13) and Remark 4.5.
Remark 5.3:For control purposes, it is interesting to consider

the case in which the initial probability is concentrated inthe first
level, the final occupation probabilitiesp2

1 andp2
2 are prescribed.

Choosingη ∈ [0, π/2] such that(p1, p2) = (cos η, sin η), we
select the outcoming directionv in such a way that it satisfies

Ξ(v) = ±η.

Thanks to Remark 4.5, this is always possible.

VI. N ON-MIXING CURVES

The purpose of this section is to improve the controllability
results in the cases(R) and(C). Throughout the section we assume,
without loss of generality, that{λj , λj+1} is a separated discrete
spectrum on an open domainω and that0 ∈ ω is the only conical
intersection between the eigenvalues.

Following Section III-A, the effective HamiltonianHε
eff , defined

as in (7), (approximately) describes the dynamics in the eigenspaces
associated withλj , λj+1, for u slowly varying inω. When integrat-
ing the effective Hamiltonian, the off-diagonal terms in (7) induce a
(a priori) non-negligible probability transfer between the two levels,
which is taken into account in the estimate (15) by the termO(

√
ε).

Thus, to improve the precision of the result, we need to kill the
off-diagonal terms in the effective Hamiltonian. In order to do that,
we choose some special trajectories inω along which the term
〈φj , φ̇j+1〉 is null. Here and in the following we use the notation
φ̇ = φ̇(γ(·)) to denote d

dt
(φ(γ(·))).

We treat the cases(R) and (C) separately.

(R) We consider trajectories satisfying the following system

u̇1 = −〈φj ,H2φj+1〉
u̇2 = 〈φj ,H1φj+1〉. (17)

Notice that the right-hand side of (17) can be taken real-valued un-
der the current hypotheses. It is defined up to a sign, becauseof the
freedom in the choice of the sign of the eigenstates. Nevertheless,
locally around points whereλj 6= λj+1, it is possible to choose
the sign in such a way that the right-hand side of (17) is smooth,
and, from equation (9), we see that〈φj(γ(t)), φ̇j+1(γ(t))〉 = 0
along any integral curveγ of (17). Let nowGr2(HR) be the 2-
Grassmannian ofHR, i.e. the set of all two-dimensional subspaces
of HR. This set has a natural structure of a metric space defined by
the distanced(W1,W2) = ‖PW1

−PW2
‖, wherePW1

, PW2
are the

orthogonal projections on the two-dimensional subspacesW1,W2.
Lemma 4.3 allows us to define the function̂F : Gr2(HR) → R

as F̂ (W ) = |detM(v1, v2)|, where{v1, v2} is any orthonormal
basis ofW ∈ Gr2(HR). It is easy to see that̂F is continuous.

Let Pu be the spectral projection associated with the pair
{λj(u), λj+1(u)}. We know from Section III-B thatPu is analytic
onω. Thereforeu 7→ PuH∩HR is continuous in Gr2(HR). Let now
F (u) := |detM(φj(u), φj+1(u))|. SinceF (u) = F̂ (PuH∩HR)
and by Proposition 4.4 we get the following result.

Lemma 6.1: The functionu 7→ F (u) is well defined and con-
tinuous inω. In particularF is different from0 in a neighborhood
of u = 0.

Without loss of generality, we assume from now on thatF is
different from zero onω.

Lemma 6.2: There exists aC∞ choice of the right-hand side of
(17) in ω \ {0} such that, ifu(·) is a corresponding solution, then

d

dt

h
λj+1(u(t)) − λj(u(t))

i
= −2F (u(t)) (18)

on ω \ {0}.
We now define thenon-mixing field, denoted byXP , as the

smooth vector field onω \ {0} identified by the preceding lemma.
Its integral curves areC∞ in ω\{0}. Moreover, its norm is equal to
the norm of the first row ofM(φj , φj+1), and therefore bounded
both from above and from below by positive constants inω \ {0}.

By consideringλj+1(u) − λj(u) as a local Lyapunov function,
the above results lead to the following proposition.

Proposition 6.3: There exists a punctured neighborhoodU of 0
such that all the integral curves ofXP starting fromU reach the
origin in finite time.

The integral curves of non-mixing field turn out to be smooth
even at the singularity (for technical details, see [8]).

Proposition 6.4: Let γ : [−η, 0] → ω be an integral
curve of XP with γ(0) = 0. Then γ(·) and the eigenstates
φj(γ(·)), φj+1(γ(·)) areC∞ on [−η, 0].

The following result is crucial to our controllability strategy.
Proposition 6.5: For every unit vectorw in R

2 there exists an
integral curveγ : [−η, 0] → ω of XP with γ(0) = 0 such that

lim
t→0−

γ̇(t)

‖γ̇(t)‖ = w.

By concatenating integral curves of the non-mixing field, we
construct paths that realize the transitions with a precision of the
orderε. This allows us to state the following result:

Theorem 6.6: Consider the case(R), and let the hypotheses of
Theorem 5.1 hold. Then for everyu0 andu

1 such thatΣ(u0) and
Σ(u1) are non-degenerate, for everȳφ ∈ {φ0(u

0), . . . , φk(u0)},
and p ∈ [0, 1]k+1 such that

Pk

l=0 p
2
l = 1, there existC > 0

and a continuous controlγ(·) : [0, 1] → R
2 with γ(0) = u

0 and
γ(1) = u

1, such that for everyε > 0

‖ψ(1/ε) −
kX

j=0

pje
iϑjφj(u

1)‖ ≤ Cε, (19)

whereψ(·) is the solution of (2) withψ(0) = φ̄, u(t) = γ(εt),
andϑ0, . . . , ϑk ∈ R are some phases depending onε andγ.

Remark 6.7:The phasesϑ0, . . . , ϑk may, in principle, be com-
puted explicitly. In fact, they are sums of terms of the form
1
ε

R sl+1

sl
λj(γ(s)) ds, whereγ|[sl,sl+1] are the pieces of the path

γ between two successive passages through conical intersections.
Moreover, if at the final pointu0 (or at any other point of the

chosen path) all the ratios
λj(u0)

λl(u
0)

, l 6= j, j, l = 0, . . . , k, are
not rational, then, by stopping atu0 for a long enough time, one
can approximately recover every final value of(ϑ0, . . . , ϑk) (the
rational independence of the eigenvalues guarantees that the set
of points (ϑ0, . . . , ϑk) attainable from any initial configuration is
dense in thek-dimensional torus). Thus this method allows to
(approximately) induce any transition from an eigenstate relative
to the eigenvalues inΣ to any other state belonging to the sum of
eigenspaces relative to the eigenvalues inΣ. Notice however that
the computation of the final phases is very sensitive to variations
of ε and to errors in the computation of the eigenvalues, and also



approximate recovering of the desired phases could need a very
large time, leading to important computational errors. Therefore
this controllability strategy seems to be essentially unfeasible in
practice.

We conclude the study of the case(R) with a result of structural
stability of conical intersections.

Theorem 6.8: Assumeū is a conical intersection between the
eigenvaluesλj and λj+1 for an HamiltonianH(u) = H0 +
u1H1 + u2H2 in the case(R). Assume moreover thatu 7→
{λj(u), λj+1(u)} is a separated discrete spectrum in a neighbor-
hood of ū. Then for everyε > 0 there existsδ > 0 such that, if
Ĥ(u) = Ĥ0 + u1Ĥ1 + u2Ĥ2 is in the case(R) and

‖Ĥ0 −H0‖ + ‖Ĥ1 −H1‖ + ‖Ĥ2 −H2‖ ≤ δ, (20)

then the operator̂H(u) admits a conical intersection of eigenvalues
at û, with |ū − û| ≤ ε.

(C) The results obtained in the case(R) can be partially adapted to
the case(C). We only give a sketch of the necessary modifications.

Similarly to the above construction, we can define the function
u 7→ detM(φj(u), φj+1(u)), whereφj(u), φj+1(u) are eigen-
states relative to the intersecting eigenvalues. We can prove the
analogue of Lemma 6.1, that is, the previous function is continuous
and therefore it has constant sign in a neighbourhood of the conical
intersection.

Let us now introduce the following vector

m(ψ1, ψ2) = (〈ψ1, H1ψ2〉, 〈ψ1,H2ψ2〉, 〈ψ1, H3ψ2〉)T , (21)

whereψ1, ψ2 ∈ H and denote its components〈ψ1,Hiψ2〉 asmi.
Moreover we call

m
∗(ψ1, ψ2) = (m∗

1,m
∗
2,m

∗
3)

T

Rem=(Rem1,Rem2,Rem3)
T

Imm=(Imm1, Imm2, Imm3)
T .

It is easy to see that the real vector

X(ψ1, ψ2) =
m(ψ1, ψ2) × m

∗(ψ1, ψ2)

2i
(22)

= (Im(m2m
∗
3), Im(m3m

∗
1), Im(m1m

∗
2))

T
,

where× denotes the cross product, is orthogonal to bothImm

andRem.
Remark 6.9:Let us remark that the vectorX(ψ1, ψ2)

is invariant under phase changes in the argument, that
is X(ψ1, ψ2) = X(eiβ1ψ1, e

iβ2ψ2). Notice however that
X(ψ1, ψ2) = −X(ψ2, ψ1).

Consider now the vector fieldXP (u) = X(φj(u), φj+1(u)),
and call it the non-mixing field. It turns out that it is well defined
and smooth in a punctured neighborhood of the conical intersection,
and, because of (9) and (22), we have〈φj , φ̇j+1〉 = 0 along its
integral curves. Moreover, since
*
X(ψ1, ψ2),

0
@
〈ψ2,H1ψ2〉 − 〈ψ1, H1ψ1〉
〈ψ2,H2ψ2〉 − 〈ψ1, H2ψ1〉
〈ψ2,H3ψ2〉 − 〈ψ1, H3ψ1〉

1
A
+

=
1

2i
detM(ψ1, ψ2),

we can conclude as in Proposition 6.3 that there is a global choice
of the sign ofXP (u) such that all its integral curves starting from a
punctured neighborhood of the conical intersection reach it in finite
time.

The other technical results concerning the non-mixing fieldand
its integral curves, stated for the case(R), still hold true for the
case(C). The proofs can be derived from those contained in [8],

after an adaptation to the current framework. This means that we
can construct the effective Hamiltonian along the integralcurves of
the non-mixing field that go through the conical intersection, thus
controlling the spreading of the occupation probability between the
two levels involved. In particular, Theorem 6.6, remains true in the
case(C).
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