A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Mathematische Annalen Année : 2014

A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality

Michel Bonnefont
Nicola Garofalo
  • Fonction : Auteur

Résumé

Let $\M$ be a smooth connected manifold endowed with a smooth measure $\mu$ and a smooth locally subelliptic diffusion operator $L$ satisfying $L1=0$, and which is symmetric with respect to $\mu$. We show that if $L$ satisfies, with a non negative curvature parameter, the generalized curvature inequality introduced by the first and third named authors in \cite{BG}, then the following properties hold: 1 The volume doubling property; 2 The Poincaré inequality; 3 The parabolic Harnack inequality. The key ingredient is the study of dimensional reverse log-Sobolev inequalities for the heat semigroup and corresponding non-linear reverse Harnack type inequalities. Our results apply in particular to all Sasakian manifolds whose horizontal Webster-Tanaka-Ricci curvature is non negative, all Carnot groups with step two, and to wide subclasses of principal bundles over Riemannian manifolds whose Ricci curvature is non negative.

Dates et versions

hal-00779388 , version 1 (22-01-2013)

Identifiants

Citer

Fabrice Baudoin, Michel Bonnefont, Nicola Garofalo. A sub-Riemannian curvature-dimension inequality, volume doubling property and the Poincaré inequality. Mathematische Annalen, 2014, 358 (3-4), pp.833-860. ⟨10.1007/s00208-013-0961-y⟩. ⟨hal-00779388⟩

Collections

CNRS IMB TDS-MACS
107 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More