Extension of ALE methodology to unstructured conical meshes

Abstract : We propose a bi-dimensional nite volume extension of a continuous ALE method on unstructured cells whose edges are parameterized by rational quadratic Bezier curves. For each edge, the control point possess a weight that permits to represent any conic (see for example [LIGACH]) and thanks to [WAGUSEDE,WAGU], we are able to compute the exact area of our cells. We then give an extension of scheme for remapping step based on volume uxing [MARSHA] and selfintersection ux [ALE2DHAL]. For the rezoning phase, we propose a three step process based on moving nodes, followed by control point and weight re-adjustment. Finally, for the hydrodynamic step, we present the GLACE scheme [GLACE] extension (at rst-order) on conic cell using the same formalism. We only propose some preliminary rst-order simulations for each steps: Remap, Pure Lagrangian and nally ALE (rezoning and remapping).
Type de document :
Article dans une revue
ESAIM: Proceedings, EDP Sciences, 2011, 32, pp.32-55. 〈10.1051/proc/2011011〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00777271
Contributeur : Marie-Annick Guillemer <>
Soumis le : jeudi 17 janvier 2013 - 11:38:38
Dernière modification le : mercredi 23 janvier 2019 - 10:28:52

Lien texte intégral

Identifiants

Citation

Benjamin Boutin, Erwan Deriaz, Philippe Hoch, Pierre Navaro. Extension of ALE methodology to unstructured conical meshes. ESAIM: Proceedings, EDP Sciences, 2011, 32, pp.32-55. 〈10.1051/proc/2011011〉. 〈hal-00777271〉

Partager

Métriques

Consultations de la notice

506