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Abstract 21 

 22 

Aleppo pine is the most widespread pine species around the Mediterranean Basin. Its post-fire 23 

recruitment has been studied in depth, but regeneration of mature stands in fire-free 24 

conditions has received considerably less attention. This study examines the impact of 25 

different site preparation treatments on pine recruitment using three experimental mature 26 

stands along a gradient of site fertility in southeastern France. The stands were partially felled 27 

and subjected to the following treatments replicated four times on each site: mechanical 28 

chopping (all sites), chopping followed by single soil scarification (all sites) or double 29 

scarification (2 sites), controlled fire of low intensity (2 sites) or of high intensity (1 site) and 30 

control (all sites). In addition, the influence of slash, either left on the soil or removed before 31 

treatments, was tested for the single scarification treatment on two of the sites. Pine 32 

regeneration was counted and soil cover conditions described at different time intervals: 1 to 6 33 

years after the end of the treatments for two sites and 1 to 16 years for one site. Seedling 34 

dimensions were determined during the last count. Mean seedling densities after 6–9 years 35 

(0.57–1.06 pines/m2) were comparable to those found in post-fire conditions, although with a 36 

narrower range. Pine density was negligible in the control, while chopping followed by a 37 

single soil scarification emerged as the most favourable treatment tested in the three sites on 38 

seedling density (0.74–1.54 pines/m2 after 6–9 years) and seedling growth. For this treatment, 39 

the amount of slash had a contrasting influence on pine density according to site conditions. 40 

Double scarification did not affect pine density. Controlled high intensity fire, due to slash 41 

presence, was very favourable for pine regeneration (2.35 pines/m2), although this treatment 42 

was only tested at one site. Lastly, we found low pine densities in the chopping and low-43 

intensity controlled fire treatments (0.20 to 0.56 pines/m2). Variation in herb cover was a 44 

major factor influencing pine recruitment. This study emphasises the need for adapted site 45 

preparation treatments to regenerate mature pine stands in southern Europe. 46 

 47 

Key-words: Pinus halepensis, Mechanical treatment, Soil scarification, Controlled fire 48 

Soil cover conditions 49 
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 3 

Introduction 55 

 56 

Plant recruitment is a key phase in plant population and community dynamics (Nathan and 57 

Ne’eman 2004), particularly in forest ecosystems, and foresters have devoted much effort to 58 

obtaining natural regeneration in ageing stands. However, regeneration of mature stands is 59 

challenging in the Mediterranean forests due essentially to limitations of seed and seedling 60 

establishment (e.g. Acácio et al., 2007; Mendoza et al. 2009; Smit et al., 2009), driven mainly 61 

by abiotic constraints such as drought (Castro et al. 2004), but also by high pressure from 62 

herbivores (Baraza et al. 2006) and sometimes inappropriate management techniques (Pulido 63 

et al. 2001).  64 

In this study we examined the influence of different types of silvicultural treatments on 65 

Aleppo pine (Pinus halepensis) recruitment in various environmental conditions. P. 66 

halepensis (subsp. halepensis and brutia) is the most widespread coniferous species in the 67 

Mediterranean area, covering some 6.8 million hectares in the Mediterranean Basin (Barbéro 68 

et al., 1998). This pine exhibits a dual life history strategy characterized by its efficiency in 69 

exploiting new establishment opportunities generated by various disturbances in the absence 70 

or in the presence of fire (Ne’eman et al., 2004). Its capacity to colonise disturbed sites in fire-71 

free conditions is illustrated by the fast expansion of this species after land abandonment in 72 

southern France - from to 135 000 to 250 000 ha in less than 5 decades - and its ability to 73 

invade unburned disturbed areas in the southern hemisphere (Richardson, 2000). After a fire, 74 

recruitment of Aleppo pine, like other post-fire regenerating serotinous pines, is generally 75 

profuse though variable (Pausas et al., 2004a) and has been studied in depth (e.g. Trabaud et 76 

al., 1985, Daskalakou and Thanos 1996, Arianoutsou and Ne’eman 2000).  In contrast, in the 77 

absence of fire, seedlings rarely establish beneath pine canopy and various explanations have 78 

been suggested such as light limitation, seed predation, needle layer effect (Arianoutsou and 79 

Ne’eman, 2000, Nathan and Ne’eman, 2004). Some studies performed on Pinus pinaster, 80 

another European Mediterranean pine with similar ecological traits, also showed the 81 

importance of percentage of litter cover on natural regeneration (Rodríguez-García et al., 82 

2010) as well as the influence of coarse woody debris on post-fire recruitment (Castro et al., 83 

2011). As no clear single key factor has been put forward to explain lack of regeneration of 84 

Aleppo pine in fire-free conditions, recruitment has been depicted as fairly unpredictable 85 

(Nathan and Ne’eman, 2004). In the course of succession in mesic or sub-humid areas, 86 

Aleppo pine is progressively replaced by hardwood species, mostly oaks such as Quercus ilex 87 

and Quercus pubescens, leading first to mixed stands and then to pure oak stands (Barbéro et 88 
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al., 1998; Zavala et al., 2000). Therefore, in the absence of external disturbances, elimination 89 

of the Aleppo pine is likely to occur over the long term.  However, maintaining Aleppo pine, 90 

in pure or mixed stands, is of importance for forest managers for both economic and 91 

ecological reasons. In productive areas with low fire risk, managers can target forest 92 

production by favouring pines, whereas in more fire-prone landscapes, pines and hardwood 93 

species (especially oaks) can be combined to take advantage of the faster growth of pines and 94 

the high resprouting capacity of oaks for fire resilience (Pausas et al., 2004b).   95 

Like other pine species, regeneration of Aleppo pine is challenging in fire-free conditions and 96 

previous studies in natural coniferous mature stands of the temperate and boreal zones have 97 

shown that successful recruitment, early growth and survival can be strongly influenced by 98 

soil preparation and ground vegetation control treatments (e.g. see reviews by Balandier et al., 99 

2006 and Wiensczyk et al., 2011). However, experiments testing impacts of such treatments 100 

in coniferous Mediterranean stands are scant (Prévosto and Ripert, 2008), even though 101 

silvicultural treatments may gain importance in the future for ensuring regeneration under 102 

climatic changes (Scarascia-Mugnozza et al., 2000; Spiecker, 2003). 103 

In a previous field experiment, we showed that adapted site preparation treatments could have 104 

positive effects on pine regeneration over a short period after treatment application (Prévosto 105 

and Ripert, 2008). In this study, we sought to determine whether these first results held over a 106 

longer period of observation, and how variations in soil and climatic site conditions could 107 

influence seedling establishment, by integrating the results of two other field experimental 108 

sites. More specifically, our objectives were (i) to determine the impacts of vegetation and 109 

soil treatments on pine regeneration including emergence, survival and growth and (ii) to 110 

explain how these treatments determined soil cover conditions, which in turn influence pine 111 

recruitment. 112 
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 113 

Materials and Methods 114 

 115 

Site description 116 

 117 

Three experimental sites located in southern France (Fig. 1) were selected along a gradient of 118 

soil fertility. The first and least productive site (Barbentane) is located on a gentle north-119 

facing slope (altitude 105 m) and has a meso-Mediterranean climate characterised by a dry, 120 

hot summer. Mean annual rainfall, computed over the period 1961–96, is 673 mm and the 121 

mean annual temperature is 14 °C (Table 1). Soils are shallow calcareous, 10 to 20 cm deep, 122 

with a heavy stone load. The vegetation is dominated by a mature 90–100-year-old Aleppo 123 

pine forest (dominant height 12 m) with a weakly developed shrub layer composed of Buxus 124 

sempervirens, Quercus ilex and Quercus coccifera. Brachypodium retusum is the most 125 

abundant species in the herbaceous layer. 126 

Figure 1 127 

The second site (Saint-Cannat, altitude 245 m) lays on a flat area with a climate comparable 128 

to that of the first site: mean rainfall 620 mm and mean temperature 13.3 °C. Soils are also 129 

calcareous but deeper (30 cm) than in the first site and the limestone bedrock is more 130 

fractured. These features, plus the fact that the area had been cultivated in the past, gives a 131 

higher soil fertility than in Barbentane. The vegetation is composed of a 60–90-year-old 132 

Aleppo pine tree layer (dominant height 15 m), a developed shrub layer dominated by 133 

Q. coccifera and secondarily by Ulex parviflorus and Phillyrea angustifolia and a sparse 134 

herbaceous layer. 135 

The third site (Vaison-la-Romaine, hereafter Vaison, altitude 300m) is located on a gentle 136 

northeast-facing slope further north than the two previous sites. The climate is wetter (mean 137 

rainfall 761 mm) and colder (mean temperature 12.3°C). Soils are also deeper (30–50 cm), the 138 

bedrock being composed of a micritic limestone. A mature 70–90-year-old Aleppo pine stand 139 

(dominant height 16 m) forms the upper tree layer, the subcanopy layer was well developed 140 

and dominated by Q. pubescens and Q. ilex, and the herbaceous layer was composed mainly 141 

of Brachypodium phoenicoides. 142 

 143 

Table 1 144 

 145 

Treatments and experimental design 146 
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 147 

The three sites were all partially felled (regeneration cut) before treatment application during 148 

winter 2004–05 for Barbentane, winter 2002–03 for Vaison and winter 1990–91 for Saint-149 

Cannat (Table 1). The basal areas remaining after the cuts were respectively 12, 10 and 150 

9.5 m2/ha for Barbentane, Saint-Cannat and Vaison. Timber was removed in all sites, but 151 

logging slash, mainly composed of tree canopy branches, were either left on the ground 152 

(noted hereafter _S1) or removed (noted _S0) depending on sites and treatments (see below). 153 

 154 

Barbentane 155 

Treatments were applied during winter and early spring 2005. A complete description of all 156 

the treatments applied in this site is available in Prévosto and Ripert (2008). We recall below 157 

the main characteristics of the seven treatments used in this study. They consisted in (Table 158 

2): 159 

 160 

(i) Ground vegetation chopping: this mechanical treatment reduces all branches, shrubs 161 

and wood pieces up to 15 cm to small fragments; it was performed in the presence of 162 

slash (CHOP_S1), 163 

(ii)  Chopping followed by scarification of the soil in one direction in the presence of slash 164 

(SCA_S1), 165 

(iii)  Chopping followed by scarification of the soil in one direction with slash removed 166 

beforehand (SCA1_S0), 167 

(iv) Chopping followed by scarification in two perpendicular directions with slash left 168 

(SCA2_S1), 169 

(v) Controlled intense fire in the presence of slash, leaving only ashes on the soil 170 

(FIRE_S1),  171 

(vi) Controlled fire of low intensity without slash, ground vegetation and litter being only 172 

partially burned (FIRE_S0), 173 

(vii)  Control: no treatment applied (CONT). 174 

 175 

Treatments were applied on 200 m2 plots and replicated four times using four 2800 m2 blocks 176 

(one block included all the treatments). 177 

Saint-Cannat 178 

Four treatments were applied in 1995 and consisted of: 179 

 180 
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(i) Chopping with slash (CHOP_S1), 181 

(ii)  Chopping with slash followed by scarification (SCA1_S1), 182 

(iii)  Low-intensity controlled fire (FIRE_S0), 183 

(iv) Control (CONT). 184 

 185 

Treatments were applied on 200 m2 plots and replicated four times using four 1000 m2 blocks 186 

(one block included all the treatments). 187 

 188 

Vaison 189 

Five treatments were applied during winter 2004–05: 190 

 191 

(i) Chopping with slash (CHOP_S1) 192 

(ii)  Chopping without slash followed by soil scarification in one direction (SCA1_S0) 193 

(iii)  Chopping with slash followed by soil scarification in one direction (SCA1_S1) 194 

(iv) Chopping with slash followed by soil scarification in two perpendicular directions 195 

(SCA2_S1), 196 

(v) Control (CONT). 197 

 198 

Treatments were applied on plots from 600 to 2000 m2 (mean 1120 m2) and replicated four 199 

times, except for the control, which was replicated twice, using four blocks (one block 200 

included all the treatments) ranging from 4000 to 6900 m2. 201 

 202 

Table 2 203 

 204 

Sampling and measurements 205 

 206 

In all three sites, sampling was done in each plot using 1 m2 subplots regularly installed along 207 

2 to 5 transects. In Barbentane, 15 subplots were used per plot, except in the control (10 208 

subplots), resulting in a total of 400 subplots for the whole experiment. In Saint-Cannat, 36 209 

subplots were used per plot (total 576 subplots) and Vaison 20 to 21 subplots per plot (total 210 

369 subplots). 211 

In each subplot, live pine seedlings were counted and soil surface description was carried out 212 

at the end of the growing season at years 1 to 6 after the end of the treatments in Barbentane, 213 

at years 1, 3, 9 and 16 in Saint-Cannat and at years 1, 2, 3 and 6 in Vaison. 214 
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Soil surface description consisted in visually estimating the cover in bare soil, grass, shrub, 215 

and litter using an abundance dominance coefficient derived from the Braun-Blanquet 216 

method: 1 presence, 2 < 5%, 3 = [5–25%[, 4 = [25–50%[, 5 = [50–75%[, 6 = [75–100%]. For 217 

subsequent computations the centre of each class was used. In each site, during the last count 218 

we measured seedling height and stem diameter of all seedlings older than 1 year. 219 

 220 

Data analysis 221 

 222 

Pine density did not meet ANOVA conditions even after mathematical transformations, as our 223 

data sets exhibited over-dispersion and an excessive number of zeros. Previous analyses (not 224 

shown) demonstrated that density was adequately modelled by a negative binomial law. We 225 

therefore ran generalised linear models (GLM) for each site using a negative binomial 226 

relationships to test the effects of treatment used a categorical variable, time and soil cover 227 

conditions used as quantitative variables (procedure ‘glm.nb’ of the ‘MASS’ package, R 228 

software). If treatment effect was found significant, we then used non-parametric multiple 229 

comparisons following the method proposed by Siegel and Castellan (1988) to detect 230 

significant differences (P < 0.05) among the treatments. To analyse the influence of the 231 

treatments and time on soil covers in bare soil, herb and shrub we also produced GLM models 232 

(procedure ‘glm’ of the ‘car’ package, R software). Height data were log-transformed to meet 233 

the conditions of normality and homogeneity of variances. Classical ANOVAs followed by 234 

Tukey post hoc tests were then performed to detect significant differences (P < 0.05) among 235 

the treatments. 236 
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Results 237 

 238 

Effects of treatments and soil surface conditions on pine density 239 

 240 

Pine density varied with time and was significantly influenced by the treatments in all sites 241 

(Table 3).  242 

Table 3 243 

Pine density peaked at 2–3 years for all sites (Fig.2) and then moderately decreased for 244 

Barbentane and Vaison. By contrast, density fell sharply in Saint-Cannat from 2.10 pines/m2 245 

at 3 years to 0.58 pines/m2 at 9 years (all treatments together), due to an infestation by the 246 

fungal plant pathogen Crumenolopsis sororia, which killed a large number of seedlings. 247 

 248 

Figure 2 249 

 250 

In all three sites, chopping followed by a single scarification emerged as the most favourable 251 

treatment. It was noteworthy that presence or absence slash did matter; pine density was 252 

higher with slash in Barbentane than without slash, whereas the reverse was true in Vaison. 253 

Surprisingly, chopping followed by a double scarification, tested in Vaison and Barbentane, 254 

led to lower pine densities than the previous treatment. It was also largely less favourable to 255 

regeneration than the high-intensity controlled fire treatment (FIRE_S1). This latter treatment 256 

proved to be as efficient as the single scarification treatment, although it was tested at only 257 

one site. By contrast, lower pine densities were recorded after low-intensity fire treatment 258 

(FIRE_S0, Barbentane and Saint-Cannat) and after the chopping treatment (all sites). Lastly, 259 

the absence of any interventions in the control prevented seedlings becoming established or 260 

only at a very low density. 261 

Herb cover emerged as the most significant soil surface descriptor influencing pine density in 262 

all sites whereas shrub an soil cover had a contrasting and less significant influence (Table 3). 263 

Herb cover, mainly composed of grass species in particular Brachypodium retusum in 264 

Barbentane and Saint-Cannat and Brachypodium phoenicoides in Vaison, exerted a clear 265 

detrimental influence on pine density. 266 

 267 

 268 

 269 

 270 
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Influence of treatments on soil surface conditions 271 

 272 

Treatments and time strongly influenced soil surface conditions (Table 4).  273 

Table 4 274 

As expected, bare soil cover was higher in the scarification treatments (single or double) and 275 

in the high-intensity controlled fire treatment than in the other treatments (Fig. 3). It strongly 276 

decreased with time for all the sites, falling in three years from 24% to 5% in Barbentane (all 277 

treatment included), from 10% to 4% in Saint-Cannat and from 62% to 16% in Vaison. The 278 

decrease was less pronounced in the following years, but after 6 years (9 years for Saint-279 

Cannat) soil cover was less than 3% in all sites. 280 

In contrast to bare soil cover, herb cover sharply increased in the years following treatment 281 

application at all the sites. However, the increase was moderate from 3 years to 9 years in 282 

Saint-Cannat (from 29% to 33%) and then fell to 7%, whereas it was more pronounced in 283 

Barbentane and Vaison, reaching respective mean values of 43% and 51%. Scarification 284 

treatments proved more favourable to herb cover development than the chopping and the 285 

control treatments for Vaison and Saint-Cannat, whereas only the high-intensity controlled 286 

fire treatment constantly reduced herb cover in Barbentane (29% vs. 46% for the other 287 

treatments).  288 

Shrub cover gradually increased with time in all sites and for all treatments except for the 289 

control treatment, where the increase was null or moderate. Shrub cover was higher in Saint-290 

Cannat (69% at 9 years) than in Barbentane (35% at 6 years) and Vaison (45% at 6 years), 291 

related to a weaker herb development as seen above. Chopping in Saint-Cannat and Vaison 292 

and high-intensity controlled fire in Barbentane were the treatments most favourable to shrub 293 

development. In contrast, scarification and low-intensity controlled fire were less favourable 294 

to shrub cover (see also Table 4). 295 

 296 

Figure 3 297 

 298 

 299 

 300 

 301 

 302 

 303 

 304 
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Seedling dimensions 305 

 306 

Six years after the end of treatments, height was greater in the treatments with scarification 307 

than in the other treatments in Barbentane and Vaison (Fig. 4). This positive effect of 308 

scarification was still noted after 16 years in Saint-Cannat. We recorded similar results when 309 

examining seedling mean stem diameter (data not shown). 310 

 311 

Figure 4 312 
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Discussion 313 

 314 

Seedling density 315 

 316 

There are now a considerable number of studies on Aleppo pine post-fire regeneration 317 

(e.g. Arianoutsou and Ne’eman, 2000; Nathan and Ne’eman, 2004; Daskalakou and Thanos, 318 

2010), but to our knowledge this is the first one that focuses on pine regeneration in fire-free 319 

conditions using long-term permanent field experiments.  320 

Mean pine densities found in this study a few years after treatment application (i.e., 1.06, 0.70 321 

and 0.57 pines/m2 for the three sites at 6–9 years) were comparable to those usually recorded 322 

in post-fire conditions. For instance, 1.24 pines/m2 were reported by Pausas et al. (2004a) in 323 

eastern Spain 8–9 years after fires, 1.00 pines/m2 in 8-year-old post-fire woodlands in NE 324 

Spain (Papió, 1994 reported in Pausas et al., 2004a) and 0.3–0.5 pines/m2 by Trabaud et al. 325 

(1985) in SE France. However, variations in densities recorded among our different 326 

treatments and sites (min. 0.05 to max. 2.33 pines/m2) were far narrower than those reported 327 

in post-fire studies; e.g., Pausas et al. 2004a recorded variations from 0.006 to 20.4 pines/m2 328 

and Tsitoni (1997) from 0.3 to 17  pines/m2. Natural regeneration in fire-free conditions was 329 

in fact subject to less variability of the abiotic and biotic factors; in particular, seed rain was 330 

more controlled. Seed source was assured in our experiments by mature trees only, which 331 

occurred in similar proportions in the different sites (basal areas 9.5–12 m2/ha). By contrast, 332 

in post-fire conditions, seed rain was largely dependent on fire conditions and stand 333 

characteristics. The release, after a fire event, of large aerial seed bank canopies of dense 334 

mature pine stands may lead, in conjunction with favourable climatic conditions, to the 335 

establishment of a “single massive wave” of seedlings during the first post-fire rainy season 336 

(Daskalakou and Thanos, 2004, 2010). By contrast, seed rain can be greatly reduced in young 337 

and sparse stands, thus severely limiting pine recruitment. This process explains the much 338 

higher fluctuations of densities recorded in post-fire studies than in our less variable 339 

conditions. It also explains why our pine densities peaked later (2–3 years) than in post-fire 340 

conditions where densities usually peaked in the first year following the fire (e.g. Daskalakou 341 

and Thanos, 2010). 342 

 343 

 344 

 345 

 346 
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Influence of treatments 347 

 348 

This study confirmed the influence of site preparation treatments on pine establishment, a 349 

finding that was previously established in one site (Barbentane) over a shorter period (3 years) 350 

(Prévosto and Ripert, 2008).  Chopping followed by a single scarification (i.e. scarification in 351 

one direction) clearly appeared as the most favourable treatment in all three sites. Aleppo 352 

pines, like other pines species of temperate or boreal areas, require substantial disturbance of 353 

the forest floor to become successfully established (e.g. Beland et al., 2000; Nilsson et al., 354 

2006; Wiensczyk et al., 2011). Scarification was associated with greater bare soil abundance 355 

and a temporal reduction of the herb cover, a factor that was clearly favourable to pine 356 

recruitment for all three sites. However, the presence of slash before the treatment application, 357 

tested in two sites, played either a positive (Barbentane) or negative (Vaison) role on pine 358 

density. The role of slash in pine recruitment is imperfectly known and diverse. Slash can 359 

exert a positive influence on pine regeneration by reducing soil temperature (Devine and 360 

Harrington, 2007) (although this advantage can shift to a disadvantage in colder areas), by 361 

increasing the number of cones offering an additional seed source, by improving soil moisture 362 

and by curbing vegetation competition (Johansson et al., 2006). Slash can also act as nurse 363 

objects that can improve microclimatic conditions and enhance pine seedling recruitment 364 

(Castro et al., 2011). Conversely, heavy slash loads can reduce the effectiveness of 365 

scarification (Landhäusser, 2009), create an unfavourable fluffy soil layer and possibly 366 

enhance release of autotoxic compounds (Fernandez et al., 2008). In the Barbentane site, the 367 

positive effect of slash can be explained by limitation of herb cover (20% cover after 3 years 368 

instead of 32% without slash) as herb cover was clearly detrimental to pine establishment. In 369 

Vaison, explanations for the positive effect of slash removal were, however, less easy to find, 370 

although soil cover was slightly increased in the first year following this operation (79% vs. 371 

63%).  372 

Surprisingly, chopping followed by a double scarification with slash presence was less 373 

(Barbentane) or no more (Vaison) favourable than a single scarification with slash. The 374 

possible positive effect linked to cones in the slash could have been suppressed by a deeper 375 

burial of the cones by more intense scarification. Also, double scarification was of less benefit 376 

to shrub development, which in turn could influence seedling survival positively. In the harsh 377 

abiotic conditions prevailing in Barbentane, the outcome of seedling-shrub interactions were 378 

likely to result in facilitation due to attenuation of extreme temperature fluctuations and 379 
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excessive solar radiation on young pine seedling developing beneath shrub cover (Castro et 380 

al., 2002; Valladares et al., 2005) 381 

The controlled fire treatments showed a contrasting effect on pine recruitment depending on 382 

the presence or absence of slash. The low-intensity fire in the absence of slash produced less 383 

bare soil, particularly in Saint-Cannat, and favoured herb layer development; these two factors 384 

being unfavourable to pine regeneration. The herb layer was dominated by the grass 385 

B. retusum, a rhizomatous perennial plant that is very competitive for water (Clary et al., 386 

2004) and can successfully compete with pine seedlings (Pausas et al., 2003, Maestre et al., 387 

2004). By contrast, the intense fire observed in the presence of slash was able to damage the 388 

root system of this plant and also reduce soil seed banks of herbaceous species. Reduction of 389 

the competiting herb layer thus resulted in enhanced pine recruitment. Controlled burning is 390 

usually restricted to fire prevention in the European Mediterranean area, but this study 391 

showed that if applied to reach a sufficient fire intensity, this method can be a valuable tool 392 

for stand regeneration. Besides, our results on the effect of controlled fire on pine 393 

regeneration are perfectly in line with studies performed in northern areas (e.g. Tellier et al., 394 

1995; Hille and den Ouden, 2004; Hancock et al., 2009), these studies also emphasising the 395 

correlation between fire intensity and regeneration success. 396 

Chopping in our study is, with low-intensity controlled fire, an inappropriate treatment for 397 

forest regeneration. Disturbances generated by this treatment did not produce enough bare soil 398 

and also, by removing only the aerial part of the ground vegetation, it did not prevent a 399 

relatively fast redevelopment of the competing herb layer. 400 

 401 

Soil scarification clearly has a positive effect on seedling growth even after 16 years (site of 402 

Saint-Cannat). This result has been obtained with other pine species in northern areas 403 

(e.g. Bedford and Sutton, 2000; Mattsson and Bergsten, 2003; Landhäuser, 2009), but not in 404 

Aleppo pine forests. Better growth after scarification could be explained by improved nutrient 405 

and water status of the seedlings (Wetzel and Burgess, 2001) rather than by competition 406 

limitation. Growth amelioration was not recorded in the high-intensity controlled fire, 407 

although this treatment more severely limited the development of the competitive grass layer. 408 

The fact that double scarification was less favourable than single scarification has no 409 

straightforward explanation. More intense scarification could lead to a fluffy soil structure 410 

enriched with rocks and gravel and could therefore decrease soil water capacity. However, 411 

further studies are needed to assess more clearly the impact of scarification treatments on soil 412 

properties and resource availability for the plant in Mediterranean regions. 413 
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 414 

 415 

Conclusion 416 

 417 

Aleppo pine recruitment has been almost exclusively studied after wildfires, whereas renewal 418 

of ageing stands in fire-free conditions has been largely ignored. In productive areas with a 419 

strong silvicultural focus, there is a need to develop techniques of natural regeneration that 420 

provide high seedling densities to produce wood for the lumber and pulp industry (Béland et 421 

al., 2000; Landhausser, 2009). In less productive areas, where different objectives are 422 

preferred (e.g. conservation, recreation), pine regeneration can still be needed to maintain pine 423 

in pure or in mixed stands.  This study confirms that, as for other northern pine species, soil 424 

surface disturbance is the major driver for natural pine seedling establishment and therefore 425 

that site preparation treatments matter (e.g., see reviews by Balandier et al., 2006 and 426 

Wiensczyk et al., 2011). In particular, treatments are essential to reduce herb competition (at 427 

least temporarily) and allow pine recruitment. 428 

Treatments such as chopping alone or controlled fire of low intensity are of low efficiency, as 429 

they do not favour pine establishment and do not reduce ground vegetation competition 430 

significantly. By contrast, chopping followed by moderate scarification clearly enhances pine 431 

installation and growth in all sites conditions. Scarification does not need to be very intense, 432 

and can even be detrimental to pine regeneration. Whether slash should be left or removed 433 

before treatments is debatable, as different results were obtained according to site conditions. 434 

This point requires further study to elucidate the influence of slash on abiotic and biotic 435 

micro-factors. Controlled fire of high intensity is to our knowledge not used in southern 436 

European pine forests as a tool for regeneration. This method merits further attention, as it 437 

opens a larger time-window for recruitment than the other treatments by increasing bare soil 438 

cover and by reducing competition on a long-term basis. 439 

 440 

 441 

 442 

 443 

 444 

 445 

 446 

 447 
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Table 1. Main ecological factors and stand characteristics (before and after the regeneration 619 

cut) for the three sites 620 

A = altitude, P = mean annual rainfall, T = mean annual temperature, G = pine basal area, N = 621 

pine density, Age = mean stand age, Ho = mean pine dominant height. 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 Site characteristics Initial stand 

(before cut) 

Date of 

cut 

Final stand 

 (after cut) 

 A 

(m) 

P 

(mm) 

T 

(°C) 

 

Soil G 

(m2/ha) 

N 

(nb/ha) 

Year Age 

(year) 

G 

(m2/ha) 

 

N 

(nb/ha) 

Ho 

(m) 

Barbentane 105 673 13.8 Superficial 

calcareous 

soil 

20 450 2003 90 12 180 13 

Saint-Cannat 245 620 13.3 Calcareous 

soil 

14 80 1991 90 10 60 15 

Vaison 300 761 12.3 Deep 

calcareous 

soil 

18 150 2002 85 9 92 16 
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Table 2. Types of treatments tested in the three sites, surface used for treatment application 631 

(plot size) and total number of subplots used each year for seedlings counting. Abbreviations 632 

are: CONT: control, CHOP: chopping, SCA1: chopping + soil scarification in one direction, 633 

SCA2: chopping + soil scarification in two directions; FIRE: controlled fire, _S0: no slash, 634 

_S1: presence of slash prior to the treatment application. 635 

 636 

 637 

 638 

 CONT CHOP_S1 FIRE_S0 FIRE_S1 SCA1_S0 SCA1_S1 SCA2_S1 Plot 

size 

(m2) 

Nb of 1m2 

subplots 

sampled/year 

Barbentane ×××× ×××× ×××× ×××× ×××× ×××× ×××× 200 400 

Saint-Cannat ×××× ×××× ××××   ××××  200 576 

Vaison ×××× ××××   ×××× ×××× ×××× 600-
2000 

369 

 639 
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 24 

Table 3. Results of the generalised linear models:  pine density as function of treatments, time 640 

(in years) and soil surface conditions (in %). Intercept values are not shown, P values are 641 

coded: *** (P<0.001), ** (0.001<P<0.01), * (0.01<P<0.05) and ns (not significant, P>0.05). 642 

Treatments’ abbreviations: see Table 2. 643 

 644 

 645 

 Barbentane  Saint-Cannat  Vaison 

 df deviance P  df deviance P  P deviance P 

Treatments 6 551.5 ***  3 892.3 ***  4 156.5 *** 

Time 1 36.1 ***  1 370.0 ***  1 4.8 * 

Herb cover 1 167.2 ***  1 31.6 ***  1 11.0 *** 

Bare soil cover 1 45.9 ***  1 2.1 ns  1 2.2 ns 

Shrub cover 1 1.3 ns  1 1.7 ns  1 4.0 * 

 Estim. SE P  Estim. SE P  Estim. SE P 

SCA1_S0 0.479 0.106 ***   1.065 0.089 ***  1.182 0.158 *** 

SCA1_S1 1.218 0.098 ***       0.500 0.161 ** 

FIRE_S0 -0.022 0.112 ns  -0.756 0.104 ***     

FIRE_S1 1.066 0.104 ***          

CONT_S0 -0.895 0.128 ***   -1.373 0.117 ***  -2.500 0.533 *** 

SCA2_S1 0.791 0.102 ***       0.443 0.162 ** 

Time -0.087 0.021 ***   -0.123 0.007 ***  0.163 0.038 *** 

Herb cover -0.018 0.001 ***   -0.007 0.002 ***  -0.007 0.002 ** 

Bare soil cover -0.015 0.002 ***   0.004 0.003 ns  0.002 0.003 ns 

Shrub cover 0.002 0.002 ns  0.002 0.001 ns  -0.005 0.002 * 

Deviance  

explained (%) 

24.5    40.4    13.0   

 646 

 647 

 648 

 649 

 650 
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 25 

Table 4. Results of the generalised linear models: soil surface conditions as function of 651 

treatments and time (in year). Intercept values not shown, P values are coded: *** (P<0.001), 652 

** (0.001<P<0.01), * (0.01<P<0.05) and ns (not significant, P>0.05). Treatments’ 653 

abbreviations: see Table 2. 654 

 655 

 Barbentane  Saint-Cannat  Vaison 

Deviance 

(×103) 

Herb 

cover  

Soil 

cover 

Shrub 

cover 

 Herb 

cover 

Soil 

cover 

Shrub 

cover 

 Herb 

cover 

Soil 

cover 

Shrub 

cover 

Treatment 

 

56.5 

(***) 

54.9 

(***) 

110.9 

(***) 

 17.0 

(***) 

28.6 

(***) 

134.2 

(***) 

 108.2 

(***) 

112.0 

(***) 

123.0 

(***) 

Time 

 

353.1 

(***) 

130.8 

(***) 

141.6 

(***) 

 44.1 

(***) 

19.8 

(***) 

172.3 

(***) 

 381.6 

(***) 

658.5 

(***) 

230.9 

(***) 

Estimate Herb 

cover 

Soil 

cover 

Shrub 

cover 

 Herb 

cover 

Soil 

cover 

Shrub 

cover 

 Herb 

cover 

Soil 

cover 

Shrub 

cover 

SCA1_S0 2.38 

(ns) 

6.78 

(***) 

-0.13 

(ns) 

 4.47 

(**) 

7.90 

(***) 

-13.09 

(***) 

 14.39 

(***) 

18.56 

(***) 

-7.75 

(***) 

SCA1_S1 -5.01 

(**) 

6.13 

(***) 

3.35 

(*) 

     11.23 

(***) 

13.62 

(***) 

-4.68 

(**) 

FIRE_S0 1.65 

(ns) 

6.32 

(***) 

-1.49 

(ns) 

 3.87 

(**) 

1.53 

(*) 

-10.31 

(***) 

    

FIRE_S1 -11.94 

(***) 

13.85 

(***) 

4.34 

(**) 

        

CONT_S0 -4.47 

(*) 

-1.57 

(ns) 

17.60 

(***) 

 -2.08 

(ns) 

-1.25 

(*) 

5.76 

(***) 

 -20.27 

(***) 

5.16 

(*) 

20.46 

(***) 

SCA2_S1 0.72 

(ns) 

 

4.76 

(***) 

-4.36 

(**) 

     4.91 

(**) 

18.50 

(***) 

-6.66 

(***) 

Time 6.93 

(***) 

-4.22 

(***) 

4.39 

(***) 

 -0.75 

(***) 

-0.50 

(***) 

1.48 

(**) 

 7.78 

(***) 

-10.22 

(***) 

6.05 

(***) 

Deviance  

explained 

(%) 

23.0 36.7 23.0  4.4 15.8 16.5  32.6 53.0 30.0 

 656 
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Figure captions 657 

 658 

Figure1. Location of the three sites in southern France 659 

 660 

Figure 2. Changes in pine density (mean ± SE) with time for the different treatments at the 661 

three sites. Abbreviations are: CONT: control, CHOP: chopping, SCA1: chopping + soil 662 

scarification in one direction, SCA2: chopping + soil scarification in two directions; FIRE: 663 

controlled fire, S0: no slash, S1: presence of slash. 664 

 665 

Figure 3. Changes in soil, herb and shrub covers (mean ± SE) with time as a function of the 666 

treatments for the three sites. Stars indicate significant differences between the treatments at 667 

each year (* P < 0.05; ** P < 0.01, *** P < 0.001). See Fig.1 for treatment abbreviations. 668 

 669 

Figure 4. Seedling height (mean ± SE) as function of the treatments for the three sites. Height 670 

was computed for treatments with at least 30 seedlings (otherwise data not shown). Letters 671 

indicate statistical differences between the treatments. See Fig.1 for treatment abbreviations. 672 
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Fig. 1 673 
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Fig. 2 697 
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