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A Proof of identifiability

We prove identifiability in the special case corresponding to nobs = 0 and X(τ0) unobserved

which is the least favorable case. Let θ = (νk, k = 0, . . . ,K) and θ′ = (ν ′k, k = 0, . . . ,K) and

consider any distributions π and π′ on X(τ0), possibly depending on θ and θ′ . For N(τ) = 0,

integrating out X(τ0), we obtain

L(N(τ), T1, . . . , TN(τ);π, θ) = L(N(τ), X(τ0), T1, . . . , TN(τ), π
′, θ′) ⇔

e−µτEπ[e−ν0X(τ0)τ ] = e−µ
′τEπ′ [e−ν

′
0X(τ0)τ ] (1)

Similarly considering N(τ) = 1 and integrating out X(τ0) and Z1 we obtain

L(T1; θ, π) = ν0e
−ν0j0(τ+τ0−T1)e−µτEπ[X(τ0)e−ν0X(τ0)τ ] + e−µτEπ[e−ν0τX(τ0)]

∑K
k=1 e

−ν0(τ+τ0−T1)jkνk

Then L(T1; θ, π) = L(T1; θ′, πθ′) for all T1 ∈ [τ0, τ0+τ ] leads to the identifiability of the exponents

ν0jl for l = 0, · · · ,K since the jk’s are all different (see condition C) so that ν0 = ν ′0 and νk = ν ′k

for k ≥ 1. This proves identifiability of the coefficients νk even though the prior on X(τ0) may

be miss-specified.

Identifiability in the cases where X(τ0) and/or Z are observed is deduced directly from the

previous result.

B Asymptotic study of (X(t))t≥0: proof of Proposition 4 and

Theorem 1

In Proposition 4 we give an integral expression of the generating function of the j0-Yule process

with multi-size immigration described in Section 2 of the paper. More precisely, let X(t) by a
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branching process such that each particle gives birth to j0 particles at random time distributed

with E(ν0) and such that groups of jk immigrants arrive at random times distributed with E(νk),

for k = 1 . . .K. We assume that X(0) = x0.

B.1 Proof of Proposition 4

The proof of Proposition 4 can be divided into two parts. Indeed, from one part, the x0 particles

present at time 0 will give birth to x0 independent j0-Yule process (without immigration). Once

the processes derived from those particles have been taken into account, we can reduce the study

to a j0-Yule process with multi-size immigration starting from 0 particles.

In lemma 1, we recall the expression of the generating function of a j0-Yule process starting

with one particle and study its asymptotic distribution. The generating function of a j0-Yule

process with multi-size immigration starting with X(0) = 0 particle is then detailed. The proof

is similar to the one given in (1) but adapted to our particular case. In the particular case where

the sizes of the immigration groups are proportional to j0 we derive a explicit expression of the

limit distribution in subsection B.2.

Lemma 1. Let Y (t) be a branching process starting with Y (0) particle such that each particle

gives birth to j0 particles at interval time distributed with an exponential distribution of parameter

ν0. Then we have Ψ(s, t) = E[sY (t)] =
[
1− (1− s−j0) exp(ν0j0t)

]−Y (0)/j0. Moreover,

lim
t→∞

e−j0ν0tY (t) = Γ
(
Y (0)
j0

,
1
j0

)
(L)

Proof of Lemma 1 We first assume that Y (0) = 1. By construction of the process Y (t),
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Qi,j(h) = P (Y (t+ h) = j|Y (t) = i) only depends on h, i, j. When h is small, Qi,j(h) verifies:

Qi,j(h) =


ν0ih+ o(h) if j = i+ j0

1− ν0ih+ o(h) if j = i

o(h) if j /∈ {i, i+ j0}

(2)

We now derive a partial differential equation fulfilled by the probability-generating function.

Using the fact that Y (t) take its values in {j0k + 1, k ∈ N} we have:

Ψ(s, t) = E[sY (t)] =
∑
k∈N

P (Y (t) = j0k + 1|Y (0) = 1)sj0k+1 =
∑
k∈N

Q1,j0k+1(t)sj0k+1 (3)

Using a backward-equation we derive an expression for Q1,j0k+1(t) = P (Y (t) = j0k+1). Indeed,

Q1,j0k+1(t+h) = P (Y (t+h) = j0k+1|Y (0) = 1) = Q1,j0k+1(t)(1−ν0h)+Qj0+1,j0k+1(t)ν0h+o(h)

using (2). We directly obtain the following ODE:

Q′1,j0k+1(t) = lim
h→0

Q1,j0k+1(t+ h)−Q1,j0k+1(t)
h

= −ν0Q1,j0k+1(t) + ν0Qj0+1,j0k+1(t) (4)

We now derive from (4) and (3) a partial differential equation for Ψ(s, t)

∂

∂t
Ψ(s, t) = s

∑
k∈N

Q′1,j0k+1(t)(sj0)k =
∞∑
k=1

sj0k+1 [−ν0Q1,j0k+1(t) + ν0Qj0+1,j0k+1(t)]

= −ν0Ψ(s, t) + ν0

∞∑
k=1

sj0k+1Qj0+1,j0k+1(t) (5)

∑∞
k=1 s

j0k+1Qj0+1,j0k+1(t) is the probability-generating function of a process with the same

division mechanism as Y (t) by which would start with j0 + 1 particles. By properties inherent

to branching processes, this is equivalent to the sum of j0 + 1 independent processes starting

with one particle. As a consequence, let Y1, . . . Yj0+1 by independent processes distributed as Z,
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we have:

∞∑
k=1

sj0k+1Qj0+1,j0k+1(t) = E[sY1(t)+···+Yj0+1(t)] = E[sY (t)]j0+1 = Ψ(s, t)j0+1

As a consequence the partial differential equation (5) becomes : ∂
∂tΨ(s, t) = ν0Ψ(s, t)(Ψj0(s, t)−

1) with Ψ(s, 0) = s. The solution of this equation is :

Ψ(s, t) =
[
1− eν0j0t(1− s−j0)

]−1/j0

We now study the asymptotic distribution of Z̃(t) = e−ν0j0tY (t) through its moments-generating

function :

ΦZ̃(t)(θ) = E[eθZ̃(t)] = E[eθe
−ν0j0tY (t)] = E[(eθe

−ν0j0t)Y (t)] = E[sY (t)
t ] = Ψ(st, t)

where st = eθe
−ν0j0t 't→∞ 1 + θe−ν0j0t. We easily obtain the following limit

lim
t→∞

ΦZ̃(t)(θ) =
1

(1− j0θ)1/j0

and recognize the moment generating function of the Γ
(

1
j0
, 1
j0

)
.

Now, if the process starts with Y (0) = X(0) particles, each of them initiates a j0-Yule process

which is independent of the other ones, leading to :

Ψ(s, t) =
[
1− (1− s−j0) exp(ν0j0t)

]−X(0)/j0

and

lim
t→∞

e−j0ν0tY (t) = Γ
(
X(0)
j0

,
1
j0

)
(L)

We now use Lemma 1 to study the distribution of X(t), the number of particles issued from the

multi-immigration j0- Yule process described in the paper. We first assume that X(0) = 0. Let

φ(s, t) denote the probability-generating function function of (X(t))t≥0
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φ(s, t) = E[sX(t)] =
∞∑
n=0

Pn(t)sn

where Pn(t) = P (X(t) = n) is the probability to have n particles at time t. This probability

can be decomposed into :

Pn(t) = Pn|0(t)m0(t) +
∞∑
k=1

Pn|k(t)mk(t) (6)

where mk(t) is the probability that k immigration groups arrived in the time interval [0, t) and

Pn|k(t) denotes the probability there are n particles at time t given that k immigration groups

arrived during [0, t). Moreover Pn|0(t) = δn0 because X(0) = 0.

Using the independence of the immigration events, Pn|k(t) can also be decomposed as :

Pn|k(t) =
∑

i1+···+ik=n
Ui1(t) . . . Uik(t) (7)

where Um(t) denotes the probability that an immigration group leads (by the branching mech-

anism) to m particles at time t given that the group immigrates during the interval [0, t).

Combining (7) and (6), we can rewrite the probability-generating function φ(s, t):

φ(s, t) =
∞∑
n=0

Pn(t)sn = m0(t) +
∞∑
n=0

sn
∞∑
k=1

mk(t)
∑

i1+···+ik=n
Ui1(t) . . . Uik(t)

=
∞∑
k=0

mk(t)

( ∞∑
n=0

snUn(t)

)k

Denoting J(s, t) =
∑∞

n=0 s
nUn(t), we obtain:

φ(s, t) =
∞∑
k=0

mk(t)Jk(s, t) (8)

where mk(t) is the probability that k immigration groups arrived in the time interval [0, t).

Using the Poisson properties of our immigration process we have : mk(t) = e−µt (µt)
k

k! with
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µ = ν1 + · · ·+ νK and so by (8):

φ(s, t) =
∞∑
k=0

e−µt
(µt)k

k!
Jk(s, t) = e−µt exp{µtJ(s, t)} (9)

We now compute J(s, t) and to that purpose we first study Un(t). Recall that Un(t) is the

probability that an immigration group leads (by the branching mechanism) to n particles at

time t given that the group immigrates during the interval [0, t). As a consequence, using the

infinitesimal probabilities, Un(t) can be decomposed into :

Un(t) =
∫ t

0

K∑
k=1

rk(u)Q(n, t|jk, u)duN(u|t) (10)

where

• duN(u|t) is the conditional infinitesimal immigration rate i.e. the probability that there

is exactly one immigration group during the infinitesimal interval [u, u + du) ⊂ [0, t) given

there is exactly one immigration group in the interval [0, t). In the case of a Poisson process,

duN(u|t) = du
t

• rk(u) is the probablity that the immigration group is of size jk given that it arrived at time

u, k = 1, . . . ,K. Using the Poisson properties of our immigration process we have :

rk(u) =
νk

ν1 + · · ·+ νK
=
νk
µ

and so is independent of u.

• Q(n, t|jk, u) denotes the probability that an immigration occuring at time u and consisting of

jk particles leads to n particles at time t. Q(n, t|jk, u) only relies on the branching part of the

process and can be decomposed as previously:

Q(n, t|jk, u) =
∑

i1+···+ijk=n

Qi1(t− u) . . . Qijk (t− u) (11)
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where Qi(t) is the probability that one particle leads to i particles by division process in a period

of length t. Indeed, once arrived, each particle is the initial point of a branching process which

evolves independently during the remaining time t− u.

As a consequence, we can express J(s, t) as:

J(s, t) =
∞∑
n=0

snUn(t) =
∞∑
n=0

K∑
k=1

νk
µ
sn
∫ t

0
Q(n, t|jk, u)

du

t

=
K∑
k=1

νk
µ

∫ t

0

∞∑
n=0

sn
∑

i1+···+ijk=n

Qi1(t− u) . . . Qijk (t− u)
du

t

=
K∑
k=1

νk
µ

∫ t

0

[ ∞∑
n=0

snQn(t− u)

]jk
du

t
.

Let Ψ(s, t) =
∑∞

n=0 s
nQn(t) be the probability-generating function of a j0-Yule process without

immigration, starting with one particle, then

J(s, t) =
K∑
k=1

νk
µ

∫ t

0
(Ψ(s, t− u))jk

du

t
(12)

which combined with Lemma 1 leads to :

J(s, t) =
K∑
k=1

νk
µ

∫ t

0

[
1− (1− s−j0) exp(ν0j0(t− u))

]−jk/j0 du
t

Substituting v = (1− s−j0) exp(ν0j0(t− u)) into the integral gives :

∫ t

0

[
1− (1− s−j0) exp(ν0j0(t− u))

]−jk du
t

=
1

tν0j0

∫ (1− 1

sj0
) exp(ν0j0t)

1− 1

sj0

1
(1− v)jk/j0v

dv

and proposition 4 is proved.
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B.2 Proof of Theorem 1

Recall that assumption A states that ∀k ∈ {1 . . .K}, jkj0 = rk ∈ N∗. The usual decomposition of

1
(1−v)rkv into fractions leads to

∫ t

0

[
1− (1− s−j0) exp(ν0j0(t− τ))

]−jk/j0 dτ
t

=
1

tν0j0

[
log(v)− log(1− v) +

rk−1∑
l=1

1/l
(1− v)l

](1− 1

sj0
) exp(ν0j0t)

1− 1

sj0

.

Introducing the following notations :

J0(s, t) =
1

tν0j0
[log(v)− log(1− v)]

(1− 1

sj0
) exp(ν0j0t)

1− 1

sj0

= − 1
tν0j0

log
[
1− sj0(1− e−ν0j0t)

]
And for 1 ≤ l ≤ Rk − 1

Jl(s, t) =
1

tν0j0

[
1/l

(1− v)l

](1− 1

sj0
) exp(ν0j0t)

1− 1

sj0

=
1

tlν0j0

[(
1− (1− 1

sj0
)eν0j0t)

)−l
− slj0

]

we can write : J(s, t) = 1
µ

∑K
k=1 νk

∑rk−1
l=0 Jl(s, t). A rearrangement is the sums (using the fact

that r1 < r2 < · · · < rK) leads to :

J(s, t) = 1
µ (ν1 + · · ·+ νK)(J0(s, t) + J1(s, t) + · · ·+ Jr1−1(s, t))

+ 1
µ (ν2 + · · ·+ νK)(Jr1(s, t) + · · ·+ Jr2−1(s, t))

+ · · ·

+ 1
µ νK(JrK−1(s, t) + · · ·+ JrK−1(s, t))

Setting

αl =

 1 for 0 ≤ l ≤ r1 − 1

νk+···+νK
µ for any rk−1 ≤ l ≤ rk − 1 and for any k = 2 . . .K

we have the following expression for the probability-generating function of X(t):

φ(s, t) = e−µt exp{µtJ(s, t)} = exp

[
−µt+ µt

rK−1∑
l=0

αlJl(s, t)

]
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We can now study the asymptotic comportment of X̃(t) = e−ν0j0tX(t). Let ΦX̃(t)(θ) =

E[e−θX̃(t)] be the moment generating function of X̃(t). We have :

ΦX̃(t)(θ) = E[(eθe
−ν0j0t)X(t)] = φ(eθe

−ν0j0t
, t) = exp

[
−µt+ µt

rK−1∑
l=0

αlJl(st, t)

]
(13)

with st = exp
[
θe−ν0j0t

]
't→∞ 1 + θe−j0ν0t. We study the convergence of each term of the

product.

J0(st, t) = − 1
tν0j0

log
[
1− sj0t (1− e−ν0j0t)

]
and so exp [−µt+ µtJ0(st, t)] =

[
eν0j0t − sj0t (eν0j0t − 1)

] −µ
ν0j0 .

Using sj0t = eθj0e
−ν0j0t ≈t→∞ 1 + j0θe

−ν0j0t, we obtain :

exp [−µt+ µtJ0(st, t)] ≈t→∞ (1− j0θ)
−µ
ν0j0 .

We know consider the terms of the form φl(st, t) = exp [µtαlJl(st, t)]. We have

φl(st, t) = exp
[
µαl
lν0j0

[(
1− (1− s−j0t )eν0j0t

)−l
− sj0lt

]]
≈ t→∞ exp

[
µαl
lν0j0

[
(1− j0θ)−l − 1

]]

Finally for all θ ≤ 0,

lim
t→∞

E[eθX̃(t)] = (1− j0θ)
−µ
ν0j0

rK−1∏
l=1

exp
[
µαl
lν0j0

[
(1− j0θ)−l − 1

]]

= E[eθY0 ]
rK−1∏
l=1

E[eθYl ]

where Y0 ∼ Γ
(

µ
ν0j0

, 1
j0

)
with moment generating function equal to M(θ) = (1− j0θ)

−µ
ν0j0 . More-

over Yl is such that its moment generating function is exp
[
µαl
lν0j0

[
(1− j0θ)−l − 1

]]
which can be
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rewritten as

exp
[
µαl
lν0j0

[
(1− j0θ)−l − 1

]]
=

∞∑
k=0

exp
[
− µαl
lν0j0

](
µαl
lν0j0

)k 1
k!

1
(1− j0θ)kl

=
∞∑
k=0

ρl,k
1

(1− j0θ)kl

where ρkl = exp
[
− µαl
lν0j0

] (
µαl
lν0j0

)k
1
k! is the probability that a Poisson random variable of pa-

rameter µαl
lν0j0

is equal to k. So Yl is distributed with an infinite mixture of Γ
(
kl, 1

j0

)
with

Poisson weights. Finally, e−ν0j0tX(t) converges in distribution towards a sum of rK inde-

pendent variables
∑jK−1

l=0 Yl where the Y0 ∼ Γ
(

µ
ν0j0

, 1
j0

)
and Yl ∼

∑∞
k=0 ρklΓ

(
kl, 1

j0

)
with

ρkl = exp
[
− µαl
lν0j0

] (
µαl
lν0j0

)k
1
k! .
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