
HAL Id: hal-00776337
https://inria.hal.science/hal-00776337

Submitted on 15 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Project Presentation: Algorithmic Structuring and
Compression of Proofs (ASCOP)

Stefan Hetzl

To cite this version:
Stefan Hetzl. Project Presentation: Algorithmic Structuring and Compression of Proofs (ASCOP).
Conferences on Intelligent Computer Mathematics (CICM) 2012, Jul 2012, Bremen, Germany. �hal-
00776337�

https://inria.hal.science/hal-00776337
https://hal.archives-ouvertes.fr


Project Presentation: Algorithmic Structuring
and Compression of Proofs (ASCOP)

Stefan Hetzl

Institute of Discrete Mathematics and Geometry
Vienna University of Technology

Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
hetzl@logic.at

Abstract. Computer-generated proofs are typically analytic, i.e. they
essentially consist only of formulas which are present in the theorem that
is shown. In contrast, mathematical proofs written by humans almost
never are: they are highly structured due to the use of lemmas.
The ASCOP-project aims at developing algorithms and software which
structure and abbreviate analytic proofs by computing useful lemmas.
These algorithms will be based on recent groundbreaking results estab-
lishing a new connection between proof theory and formal language the-
ory. This connection allows the application of efficient algorithms based
on formal grammars to structure and compress proofs.

1 Introduction

Proofs are the most important carriers of mathematical knowledge. Logic has
endowed us with formal languages for proofs which make them amenable to al-
gorithmic treatment. From the early days of automated deduction to the current
state of the art in automated and interactive theorem proving we have witnessed
a huge increase in the ability of computers to search for, formalise and work with
proofs. Due to the continuing formalisation of computer science (e.g. in areas
such as hardware and software verification) the importance of formal proofs will
grow further.

Formal proofs which are generated automatically are usually difficult or even
impossible to understand for a human reader. This is due to several reasons:
one is a potentially extreme length as in the well-known cases of the four colour
theorem or the Kepler conjecture. But one need not go that far to make this
point, a quick glance at the output of most of the current automated theorem
provers may very well suffice to demonstrate this difficulty. In such cases, where
mere size is not problematic, one faces logical issues such as the use of deduction
formats more suited for finding than for representing proofs as well as engineering
issues such as user interfaces.

Below all these aspects however is lurking a reason of a much more fun-
damental nature: computer-generated proofs are analytic, i.e. they essentially
only contain such formulas which are already present in the theorem that is
shown. In contrast, human-generated mathematical proofs almost never are; in



a well-structured proof the final result is usually derived from lemmas. Indeed,
the computer-generated part of the proof of the four colour theorem as well as
that of the the Kepler conjecture is – from the logical point of view – essentially
the verification of a huge case distinction by calculations, a typical form of an
analytic proof. With increasing automation in many areas, the share of such
proofs can be expected to grow, another recent example being the solution to
the Sudoku Minimum Number of Clues problem [15].

Such inscrutable analytic proofs do carry mathematical knowledge, after all
they show that the theorem is true. However they carry this knowledge only
in an implicit form which renders it inaccessible (to a human reader). The aim
of the ASCOP-project is to develop methods and software which makes this
knowledge accessible by making it explicit in the form of new lemmas.

2 Theoretical Foundations

Since the very beginning of structural proof theory, marked by the seminal
work [6], it is well understood that arbitrary proofs can be transformed into
analytic proofs and how to do it. This process: cut-elimination, has been the
central axis of the development of proof theory in the 20th century (the infer-
ence rule cut formalises the use of a lemma in a proof). The approach of the
ASCOP-project is to develop algorithms which reverse this process: starting
from an analytic proof (e.g. one that has been generated algorithmically) the
task is to transform it into a shorter and more structured proof of the same
theorem by the introduction of cuts which – on the mathematical level – repre-
sent lemmas. An algorithmic reversal of cut-elimination is rendered possible by
recent groundbreaking results (like [10, 8] and [12], see also [9]) that establish a
new connection between proof theory and formal language theory.

For explaining this connection, let us first consider one of the most most fun-
damental results about first-order logic: Herbrand’s theorem [7]. In its simplest
form it states that ∃xA, for a quantifier-free formula A, is valid iff there are
terms t1, . . . , tn s.t.

∨
n

i=1
A[x\ti] is a propositional tautology. A disjunction of

instances of a formula which is a tautology is therefore also often called Herbrand-

disjunction. This theorem can be greatly generalised (see e.g. [16]), for expository
purposes we stick to formulas of the form ∃xA here. A Herbrand-disjunction cor-
responds to a cut-free proof in the sense that ∃xA has a cut-free proof with n
quantifier inferences iff it has a Herbrand-disjunction with n disjuncts. We write
H(π) for the set of disjuncts of the Herbrand-disjunction induced by the proof
π.

It is well-known that cut-elimination may increase the length of proofs consid-
erably, e.g. in first-order logic the growth rate is 2n where 20 = 1 and 2i+1 = 22i .
Now, if a large Herbrand-disjunction arose from eliminating the cuts of a small
proof, then this Herbrand-disjunction must necessarily contain a certain amount
of regularity / redundancy because it has a short description: the original proof
with cuts. While this observation is obvious, the question what that redundancy
is and how it can be characterised and detected is much less so.



This question has recently been answered in [10, 8] for the case of proofs with
Σ1-cuts, i.e. proofs whose cut formulas have a prenex normal form ∃xB where B
is quantifier-free (note that a cut on a formula ∀xB can easily be transformed to
a Σ1-cut by adding a negation and switching the left and right subproofs). In [10,
8] it is shown that a Herbrand-disjunction that arose from a proof π with Σ1-
cuts can be written as the language of a totally rigid acyclic tree grammar

that has the size of π. Rigid tree languages have been introduced in [13] with
applications in verification in mind (e.g. of cryptographic protocols as in [14]).
A rigid tree grammar differs from a regular tree grammar (see e.g. [5]) in that
it allows certain equality constraints. Totally rigid acyclic tree grammars are a
subclass of them, see [10, 8] for details. Such results that describe the structure
of Herbrand-disjunctions depending on the class of proofs with cut from which
they originate will be called structure theorems in the sequel.

proof π with cuts −→cut-elimination cut-free proof π∗

↓ ↓

grammar G(π) −→defines language L(G(π)) = H(π∗)

Fig. 1. Proofs and Tree Grammars

What has thus been obtained is a correspondence as depicted in Figure 1: on
the level of Herbrand-disjunctions, cut-elimination is nothing but the computa-
tion of the language of a totally rigid acyclic tree grammar. Consequently this
structure theorem tells us what we have to look for in a Herbrand-disjunction if
we want to abbreviate it using Σ1-cuts: we have to write it as the language

of a totally rigid acyclic tree grammar!

These results suggest the following systematic approach to the design of proof
compression algorithms: a first theoretical step consists in proving a structure
theorem for a particular class of proofs with cut. The proof compression algo-
rithm is then designed to start from a Herbrand-disjunction H and proceed in
two phases:

– First, a grammar that representsH is computed. This is a pure term problem
consisting of finding a minimal (w.r.t. the number of productions) grammar
for a given finite language (i.e. a trivial grammar). This problem is closely
related to automata minimisation, one of the most standard problems in
formal language theory.

– Secondly, cut formulas that realise this grammar in the form of a proof with
cuts are computed. In the case of a single Σ1-cut there is always a canonical
solution which is computable in linear time [11]. This property carries over
to an arbitrary number of Σ1-cuts and – a priori – there is no reason to
assume a different behaviour in the general case.

Furthermore, one obtains a completeness result of the following form: if there
is a proof with cuts that leads toH via cut-elimination, the above algorithm finds



it (note the contrast to the undecidability of k/l-compressibility [3]). Therefore
one also obtains a maximal compression: the algorithm finds the proof with the
smallest grammar that leads to a given cut-free proof.

A first proof-of-concept algorithm realising this approach for the class of
proofs having a single Σ1-cut is presented in [11].

3 Aims of the ASCOP-Project

The purpose of the ASCOP-project is to fully exploit the potential of this ap-
proach to structuring and compression of proofs. On the theoretical side, our
main aim is to extend the classes of lemmas that can be computed beyond those
in [11]. Preliminary investigations show that this extension is rather straightfor-
ward as long as the lemmas do not contain quantifier alternations. To treat those,
an extension of the theoretical results of [10, 8] is necessary first. As a bridge to
practical applications it will also be useful to generalise these algorithms to work
modulo simple theories such as equality for uninterpreted function symbols or
linear arithmetic.

We will implement these proof compression algorithms based on the GAPT-
project [1]. GAPT (Generic Architecture for Proofs) is a general framework for
proof-theoretic algorithms implemented in Scala. Its primary application is to
serve as a basis for the CERES-system [4], a system for the analysis of formalised
mathematical proofs based on resolution provers. As an appropriate frame for
these algorithms we envisage an implementation that allows to use the output
of a resolution theorem prover as input and to compute a sequent calculus proof
with cuts of the same theorem. Frequently, the user will primarily be interested
in the computed lemmas, viewing the complete proof being only an option for a
more detailed analysis. The existing graphical user interface of GAPT provides
an adequate basis for a sufficiently flexible user interaction. As a large-scale test
of our algorithms we plan to apply them as post-processing step to the output
of standard resolution provers on the TPTP library [17], as in [18].

The ASCOP-project envisages a varied range of applications. In the short
term we expect the system to be useful for improving the readability of the
output of automated theorem provers. We furthermore expect these simplifica-
tion and compression capabilities to be useful for the integration of automated
provers in proof assistants (such as sledgehammer in Isabelle [2]) as they allow
to break up automatically generated proofs into smaller pieces (thus facilitating
their replay by Isabelle’s trusted resolution prover metis). In the long term we
hope that these methods have the potential to compute mathematically mean-
ingful information from large and inscrutable analytic proofs such as that of the
four colour theorem, the Kepler conjecture, the Sudoku clues proof and other
similar proofs to be expected to surface in the future.

The reader interested in following the progress of the ASCOP-project is in-
vited to consult its website at http://www.logic.at/people/hetzl/ascop/.



References

1. Generic Architecture for Proofs (GAPT). http://code.google.com/p/gapt/
2. Sledgehammer. www.cl.cam.ac.uk/research/hvg/Isabelle/sledgehammer.html
3. Baaz, M., Zach, R.: Algorithmic Structuring of Cut-free Proofs. In: Computer

Science Logic (CSL) 1992. Lecture Notes in Computer Science, vol. 702, pp. 29–
42. Springer (1993)

4. Dunchev, T., Leitsch, A., Libal, T., Weller, D., Woltzenlogel Paleo, B.: System
Description: The Proof Transformation System CERES. In: Giesl, J., Hähnle, R.
(eds.) 5th International Joint Conference on Automated Reasoning (IJCAR). Lec-
ture Notes in Computer Science, vol. 6173, pp. 427–433. Springer (2010)

5. Gécseg, F., Steinby, M.: Tree Languages. In: Rozenberg, G., Salomaa, A. (eds.)
Handbook of Formal Languages: Volume 3: Beyond Words, pp. 1–68. Springer
(1997)

6. Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische
Zeitschrift 39(2), 176–210 (1934)

7. Herbrand, J.: Recherches sur la théorie de la démonstration. Ph.D. thesis, Univer-
sité de Paris (1930)

8. Hetzl, S.: Proofs as Tree Languages, submitted, preprint available at
http://hal.archives-ouvertes.fr/hal-00613713/

9. Hetzl, S.: On the form of witness terms. Archive for Mathematical Logic 49(5),
529–554 (2010)

10. Hetzl, S.: Applying Tree Languages in Proof Theory. In: Dediu, A.H., Mart́ın-Vide,
C. (eds.) Language and Automata Theory and Applications (LATA) 2012. Lecture
Notes in Computer Science, vol. 7183, pp. 301–312. Springer (2012)

11. Hetzl, S., Leitsch, A., Weller, D.: Towards Algorithmic Cut-Introduction. In: Logic
for Programming, Artificial Intelligence and Reasoning (LPAR-18). Lecture Notes
in Computer Science, vol. 7180, pp. 228–242. Springer (2012)

12. Hetzl, S., Straßburger, L.: Herbrand-Confluence for Cut-Elimination in Classical
First-Order Logic, submitted

13. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata. In: Dediu, A.H.,
Ionescu, A.M., Mart́ın-Vide, C. (eds.) Third International Conference on Language
and Automata Theory and Applications (LATA) 2009. Lecture Notes in Computer
Science, vol. 5457, pp. 446–457. Springer (2009)

14. Jacquemard, F., Klay, F., Vacher, C.: Rigid tree automata and applications. Infor-
mation and Computation 209, 486–512 (2011)

15. McGuire, G., Tugemann, B., Civario, G.: There is no 16-Clue Sudoku: Solving the
Sudoku Minimum Number of Clues Problem, http://arxiv.org/abs/1201.0749

16. Miller, D.: A Compact Representation of Proofs. Studia Logica 46(4), 347–370
(1987)

17. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure: The FOF
and CNF Parts, v3.5.0. Journal of Automated Reasoning 43(4), 337–362 (2009)

18. Vyskočil, J., Stanovský, D., Urban, J.: Automated Proof Compression by Invention
of New Definitions. In: Clark, E.M., Voronkov, A. (eds.) Logic for Programming,
Artifical Intelligence and Reasoning (LPAR-16). Lecture Notes in Computer Sci-
ence, vol. 6355, pp. 447–462. Springer (2010)


