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Modeling and diagnosis of dynamic systems from timed
observations

Ismail Fakhfakh 1 and Marc Le Goc 2 and Lucile Torres 2 and Corinne Curt 1

Abstract. This paper proposes the use of the Timed Observation

theory as a powerful framework for model-based diagnosis. In fact,

this theory provides a global formalism for modeling a dynamic sys-

tem (TOM4D), for characterizing and computing diagnoses of the

system under investigation

1 INTRODUCTION

In the last two decades model-based diagnosis has been an important

research area where numerous new methodologies and formalisms

have been proposed, studied and experimented ([3] and [9]). This

is motivated by the practical need for ensuring the correct and safe

functioning of large complex systems. These frameworks have been

created (i) to provide semantics for the diagnosis problem solving,

(ii) to analyze the properties and to characterize the diagnosis rea-

soning and (iii) to give modeling principles.

In dynamic systems, the observation is timed unlike in static sys-

tems where the observations are given at only one point of time. This

is restrictive in several fields. The extension of the problem poses

many problems with the existing approaches. Since (Reiter, 1987),

most of the frameworks are based on the logic formalism. Despite of

the important contributions in the domain of temporal logics, there is

still a difficulty to take into account the time of the observations in

the diagnosis reasoning. Later, the Discret Event System formalism

has been used to diagnose dynamic systems [1]. One basic difficulty

that arises is then the definition of the observations. Cordier [4] pro-

poses to slice off the flow of the measurements into temporal win-

dows to define the observations within these slices and to compute

the diagnosis incrementally using the observations of the successive

slices. This approach is applied only to D.E.S and is seldom used

in real cases. One of the problems with this kind of approach is to

define the size of the slices so that the relevant observations can be

perceived: there is no a priori reason for the observations to be syn-

chronized with the slicing algorithm. In other words, the slicing algo-

rithm can mask pertinent observations and, within a slice, the obser-

vations must be ordered to be taken into account in a model. These

difficulties are classical with discrete time systems. To avoid these

problems, Le Goc [8] proposes to define observations time-stamped

with clocks in time continuous. The Timed Observation Theory of Le

Goc [8] provides a general mathematical framework for modeling

dynamic processes from timed data. The application of this frame-

work to diagnosis has given birth to a modeling methodology for

diagnosis TOM4D (Timed Observation Theory for Diagnosis). The

aim of the modeling methodology is to provide an efficient diagnosis
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based on models built at the same abstraction level as these of the

experts.

In this paper, after a brief presentation of the Timed Observation

Theory and the TOM4D method (Sections 2 and 3), we show how

TOM4D supports the modeling of complex physical systems. In sec-

tions 4 and 5, we show how the models can be used to characterize

the diagnosis and we demonstrate that the diagnosis can be computed

easier using the TOM4D models (section 6). We apply the modeling

approach and the diagnosis algorithm to an hydraulic system. Finally,

Section 7 provides conclusions and proposes some perspectives to

this work.

2 THEORY OF TIMED OBSERVATIONS

Le Goc’s Timed Observation Theory extends Shannon’s Theory of

Communication to timed data and offers a unique frame for Markov

Chains and Poisson Theories. It also extends the Logical Theory

of Diagnosis to timed observations. This theory considers that the

timed messages of a serie are written in a database by a program

called a Monitoring Cognitive agent (MCA), which monitors a dy-

namic sytem. A dynamic system is a process Pr(t)={x1(t), x2(t),

..., xn(t)} defined as an arbitrary set made of time functions xi(t)
defined on the real set denoted ℜ (i.e. ∀ t ∈ ℜ , xi(t) ∈ ℜ).

This theory defines a timed observation in the following way [8].

Given a set Pr(t)={x1(t), x2(t), ..., xn(t)} of time functions the

evolution of which are observed by a program Θ; let X = {x1, x2,

..., xn} be the corresponding set of variable names; let ∆= ∪
∀xi∈X

∆xi
each ∆xi

={δi
1, δi

2, ..., δi
m} being a set of constants denoting

the possible values for xi; let Γ={tk}tk∈ℜ be a set of arbitrary time

instants.

Definition 1 (A Timed Observation). A timed observation o(tk) ≡
(δi

j , tk), made by a program θ when observing a time function xi(t)
at time tk ∈ Γ, is the assignation of the values v=xi, δv=δi

j and

t=tk to a predicate Θ(v, δv, t) so that: Θ(xi, δ
i
j , tk).

Conceptually, the θ program applies the spatial segmentation prin-

ciple: a value δi
j is assigned to a variable xi whenever the value of

its corresponding time function xi(t) enters in a range [ψi, ψi+1[,

where ψi is a threshold for xi(t) (i.e. ψi ∈ ℜ ). This means that the

values are assigned to the variables with a program (or a human) the

basic specification of which is the following (cf. [7] for examples of

more complex spatial segmentation algorithms):

∀ k ∈ N, xi(tk) ≥ ψi ∧ xi(tk−1)< ψi ⇒ o(tk) ≡ (δi
j , tk) ∧ tk ∈ Γ

In practice, each time tk the predicate Θ(xi, δ
i
j , tk) is assigned, the

program θ (or a human) writes a couple (δi
j , tk) in a database, a dat-

alog or a simple document. As a consequence, to any timed obser-

vation o(tk)≡ (δi
j , tk) corresponds an assigned predicate Θ(xi, δ

i
j ,
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tk). [8] shows that this predicate can always be interpreted as the

”Equal” predicate so that: Θ(xi, δ
i
j , tk) ≡ Equal(xi, δ

i
j , tk) ⇔ xi(tk)

∈ [ψi, ψi+1[. Such an assigned predicate is often represented in the

expert’s language under the form of the assignation of the value δi
j to

the variable xi at tk: xi(tk)=δi
j . The value δi

j can therefore then be

considered as a symbol denoting the range [ψi, ψi+1[. This leads to

define the notion of class of observations.

Definition 2. An observation class Ci={(xi, δ
i
j), (xi+1, δi+1

j+1), ...,

(xi+n, δi+n
j+n} is a set of couples (xi, δ

i
j) associating a variable xi,

eventually unknown, with a constant δi+k
j+k.

In other words, an observation class Ci associates variables xi ∈
X with constants δi

j ∈ ∆xi
. This leads to the following property:

Proposition 2.1. Each timed observation o(tk)≡ (δi
j , tk) corre-

sponds to an occurrence of an observation class Ci = {(xi, δ
i
j)}.

In practical applications, the observation classes are usually de-

fined as a singleton of the form Ci = {(xi, δ
i
j)}. These definition

allow defining a modeling methodology for diagnosis.

3 MODELING APPROACH FOR DIAGNOSIS :
TOM4D

TOM4D is a modeling methodology for dynamic systems focused

on timed observations. The objective of this methododology is to

produce a suitable model for dynamic process diagnosis from timed

observations and experts’ a priori knowledge. TOM4D relies on

the idea that experts use an implicit model to both formulate the

knowledge about the process and diagnose it. It is a multi-model ap-

proach that combines CommonKads templates [11] with the concep-

tual framework proposed in [12] and the tetrahedron of states (T.o.S),

[10], [2]. These elements are merged according to the Timed Obser-

vations Theory [8].

The TOM4D methodology is based on the notion of observation

class Ci = {(xi, δ
i
j)} and associates the variable xi of each observa-

tion class Ci with one and only one component ci. This means that

the values δi
j a variable xi can take over time is the result of a couple

(θ(∆xi
), xi(t)) made with a program θ(∆xi

) that observes the evo-

lutions of a time function xi(t) and write a timed observation o(tk)

≡ (δi
j , tk) whenever a predicate Θ(xi, δ

i
j , tk) is assigned. In other

words, xi(t) is the signal provided by some sensors associated with a

component ci. This allows to organize the available knowledge about

a process Pr(t) according to (i) a Perception Model PM(Pr(t))
defining the process as an arbitrary set made of time functions x−i(t)
and its operating goals and its normal and abnormal behaviors, (ii) a

Structural Model SM(Pr(t)) defining the components of the pro-

cess and their relations, (iii) a Functional Model FM(Pr(t)) defin-

ing the relations between the values of the process variables (i.e. their

definition domain) with a set of mathematical functions, and (iv) a

Behavior Model BM(Pr(t)) defining the timed observation classes

firing the evolutions of the time functions of Pr(t).

Figure 1 describes the three main steps of the TOM4D modeling

process: Knowledge Interpretation, Process Definition and Generic

Modeling. The aim of this process is to produce a coherent generic

model M(Pr(t)) = < PM(Pr(t)), SM(Pr(t)), FM(Pr(t)),

BM(Pr(t))> from the available knowledge and data.

The Knowledge Interpretation step uses a CommonKADS tem-

plate to interpret and to organize the available knowledge about

a dynamic system. This knowledge is provided by a knowledge

source (an expert, a set of documents, etc) and when possible,

Figure 1. TOM4D Modeling Process

at least one scenario. This first step aims at producing a scenario

model M(Ω) =< SM(Ω), FM(Ω), BM(Ω) > of the system that

is coherent with the available knowledge about its evolution over

time. This model is used in the Process Definition step to provide

a definition of the process under the form of a perception model

PM(Pr(t)). This is made with the use of the tetrahedron of states to

provide a physical dimension to each variable of the process and with

the use of formal logic to define its operating goals and its normal

and abnormal behaviors. The aim of this step is to control the way

the semantics of the available knowledge is introduced in the model

to avoid the potential representation errors. The Perception Model

PM(t) defined, the Generic Modeling step aims at defining an ab-

stract representation of the dynamic system where the different terms

of the available knowledge are reified through a set of relations. This

paper being focused on the use of the resulting model BM(Pr(t)),

the interested reader is invited to see [9], [5] or [6] for further details

about TOM4D.

A TOM4D behavior modelBM(Pr(t)) describes the possible se-

quences of observation classes that can occur and therefore the dis-

cernible states between them.

Definition 3. A behavior model BM(Pr(t)) of a dynamic process

Pr(t) is a 3-tuple < S,C, γ > where:

• S = {s : X → ∆|s(xi) = δ, xi ∈ X, δ ∈ ∆} is a set of

functions which characterize the discernible states of the process

Pr(t),

• C is a set of observation classes, where an observation class as-

sociated with a variable xi ∈ X is a set Ci = {(xi, δ)|δ ∈ ∆xi}
containing only one element (i.e. a singleton),

• γ : S × C → S is a function of discernible state transition.

Given a sequence ω = {o(k)} of observation class occurrence

o(k) ≡ (δi, tk), a transition from a discernible state si to the dis-

cernible state sj is triggered when:

• there is an occurrence o(k) ≡ (δi, tk) of class Ci in ω;

• the current state s(t) of the finite state machine implementing

BM(Pr(t)) is the discernible state si (i.e. s(t) = si);

• there exists an assignment γ(Ck, si) = sj .
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The observation classes being singletons, an occurrence of an obser-

vation class (i.e. a timed observation o(k) ≡ (δy, tk)) corresponds

to the assignation of a particular value δy to a variable xi of Pr(t).

4 SEQUENTIAL BINARY RELATIONS

The important point is that a state transition in a finite state machine

implementing a TOM4D behavior model BM(Pr(t)) can occur if

and only if there exist two assignations si = γ(Cx, sk−1) and sk =
γ(Cy, si) in BM(Pr(t)).

Definition 4. Given a TOM4D behavior model BM(Pr(t)) =<
S,C, γ >, a sequential binary relation r(Cx, Cy, si) between two

observations classesCx andCy , labelled with a discernible state si,

exists iff: ∃sk−1, si, sk ∈ S, si = γ(Cx, sk−1) ∧ sk = γ(Cy, si).

A sequential binary relation between two observation classes

r(Cx, Cy, si) is an oriented (sequential) relation between two ob-

servation classes Cx = {(x, δx)} and Cy = {(y, δy)} that is

linked with a discernible state si. This latter can correspond to the

current state of a finite state machine implementing a TOM4D be-

havior model BM(Pr(t)) after observing an occurrence Cx(tk) =
(δx, tk) of the ”input” observation classCx and before observing the

occurrenceCy(tk+1) = (δy, tk+1) of the ”output” observation class

Cy .

The γ function defines then the possible sequential relations be-

tween two observation classes:

Proposition 4.1. Two assignments si = γ(Cx, sk−1) and sk =
γ(Cy, si) define a sequential binary relation r(Cx, Cy, sj) between

two classes Cx and Cy labelled with a discernible state si.

In other words, a TOM4D behavior model BM(Pr(t)) =<
S,C, γ > specifies a graph between the set C of observation classes.

This graph is used to control the diagnosis reasoning.

A class graph C-Graph is a set GC = {..., ri(C
x, Cy, sx,y), ...},

i = 1...n, of sequential binary relations of the form r(Ci, Co, sio)
between an input observation class Ci and an output observation

class Co labelled with a discernible state sio
. The C-Graph is built

from a TOM4D generic behavior model generated with the following

algorithm.

Algorithm: Generate-C-Graph GC = {ri}
input: a behavior Model BM(Pr(t)) =< S, C, γ >
output: a C-Graph GC = {ri}, ri ≡ r(Cx, Cy , si)
1.GC = Φ
2.∀si ∈ S
2.1.∃sn, sm ∈ S,
sn = γ(si, Cx) = sn ∧ sm = γ(sn, Cy)
⇒ GC = GC ∪ r(Cx, Cy , si);
3.ReturnGC

The C-Graph GC describes the complete process behavior in

terms of observation class. This means that a path in this graph de-

scribes a particular behavior of the process. Such a path correspond

to a suite of discernable states in the behavior model BM(Pr(t)).

So looking for a particular suite of discernable states in BM(Pr(t))
corresponds to look for a particular path in the associated C-Graph

GC :

Definition 5. A class path PC is a sub-graph of a C-Graph GC

made with a suite PC = (ri,i+1), i = 1...n of n sequential binarys

relation ri,i+1 of the form r(Ci, Ci+1, si,i+1).

In other words, the general form of a class path PC is

the following: ( r1(C
i1 , Ci2 , si1,i2), r2(C

i2 , Ci3 , si2,i3), ...,

rn(Cin , Cin+1 , sin,in+1
) ).

Because the timed observations provided by a MCA Θ(X,∆) are

the occurrences of the observation classes of the set C of a TOM4D

behavior model BM(Pr(t)), it is simpler to look for a class path in

the C-Graph and then to look for the corresponding state path, rather

that trying to directly build the suite of states from the suite of obser-

vations. This idea is the basis of the proposed diagnosis algorithm.

5 DIAGNOSING WITH C-GRAPHS

According to The timed Observation Theory [8], the timed observa-

tions are provided by a MCA θ(X,∆) that assumes the online super-

vision of a dynamic process Pr(t). Diagnosis is performed starting

from a sequence ω = {o(tk)} of timed observations and a TOM4D

process model M(Pr(t)). It consists in explaining the timed obser-

vations of ω written by MCA Θ(X,∆) during a period [t0, tn].

Figure 2. Diagnosis Engine

Consequently, the diagnosis aims at generating the minimal set D

of class paths PC that are compatible with the timed observations of

ω (cf. Figure 2) and the C-Graph derived from the behavior model

BM(Pr(t)) of the TOM4D process model M(Pr(t)).

Definition 6 (Diagnosis Definition). Given a C-Graph GC =
{..., r(Cx, Cy, si), ...} and a suite ω = {o(t0), ..., o(tn)} of n + 1
timed observations recorded during the period [t0, tn], a diagnosis

at time t ∈ [t0, tn] is the minimal set D(t) = {PC} of class paths

PC that are consistent with GC and ω.

(ω,GC) → D(tn) (1)

The algorithm of computing the minimal set D of class path PC

from a C-graph GC and a sequence ω of timed observations is made

with a loop on each timed observation o(k) ∈ ω and acts with three

main steps: (i) remove the paths of D that are no more coherent

with o(k), (ii) extend each path in the resulting set D with the right

sequential relations from GC and (iii) initialize the set D when it is

empty (at the first loop or if there are no more paths that are coherent

with ω. The algorithm also uses three functions: ”obsClassOf(o)”

to get the class of a timed observation, ”rightestRelationOf(P )”

to get the right most sequential binary relations of a class path and

”rightRelations(r(Ci, Co, sio), GC)” to get the set of sequential
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binary relation corresponding to the successor of a particular

sequential binary relation r(Ci, Co, sio) in a C-Graph GC .

Algorithm: Generate-Class-Path
input : a C-Graph GC and a sequence ω = {o(tk)} of n
timed observations
Output : a set D of class paths consistent GC and ω

1.D ← {φ}
//Loop on the timed observations of ω
//Γ(ω) is the set of time-stamp of the timed observations of ω
2.∀tk ∈ Γ(ω)
//Compute the set C of the classes occured at tk
2.1.∀o(tk) ≡ (δi, tk) ∈ ω, ObsClassOf(o(tk)) ∈ C
//Compute D for the set C at time tk
2.2.D = computeD(D, GC , C)
3.ReturnD

Algorithm: computeD
input : a set D of C-Path, a C-Graph GC and a set C of ob-
servation classes
Output : the upated set D

1.d← {φ}
//Loop on the observation classes of C
2.∀c ∈ C
2.1.d← d ∪ computeCPaths(D, GC , c)
3.D ← d
//If D is empty, initialise D with C and GC

4.D = {φ} ⇒ D ← initCPath(GC , C)
5.ReturnD

Algorithm: computeCPaths
input : a set D of C-Paths, a C-Graph GC and an observation
class c
Output : the updated set D

1.D1 = {φ} //Working set of C-Path
//Remove from D the paths that are not compatible with c
2.∀P ∈ D

2.2.r(Ci, Co, sio)← rightestRelationOf(P )
2.3.Co = c⇒ D1 = D1 + P
3.D ← D1 //D contains the C-Paths compatible with c
//Extends each path of D with the right sequential relations
4.D1 = {φ} //Reset the working set D1

4.∀P ∈ D

4.1.r(Ci, Co, sio)← rightestRelationOf(P )
//Get the relations from GC

4.2.R = rightRelations(r(Ci, Co, sio), GC)
4.3.∀r ∈ R
4.3.1.P1 = P + r //Create a new extended path for P
4.3.2.D1 = D1 + P1 //Add the new path in D1

5.ReturnD1

The next section illustrates this algorithm on the (simple) device

of Figure 3 studied in [3]. It is to note that this algorithm can easily be

extended to simultaneous timed observations that can occur in large

and complex systems. In other hand, the lack of timed observations

leads the algorithm to remove the C-Paths that are no more consistent

with the suite of timed observations. It can also be extended to use

the functional model FM(Pr(t)) to distinguish between a true lack

of timed observation and an inconsistency between the sequence of

timed observations and the behavior model BM(Pr(t)).

6 APPLICATION

[3] describes the example with the following terms: the system is

formed by a pump P which delivers water to a tank TA via a pipe PI;

another tank CO is used as a collector for water that may leak from

Algorithm: initCPath
input : a C-Graph GC and a set C of observation classes
Output : a set D of sequential binary relations consistent with
C

1.∀c ∈ C

1.1∀r(Ci, Co, sio) ∈ GC ,

1.2Co = c⇒ {r(Ci, Co, sio)} ∈ D
2.ReturnD

the pipe. The pump is always on and supplied of water. The pipe PI

can be ok (delivering to the tank the water it receives from the pump)

or leaking (in this case we assume that it delivers to the tank a low

output when receiving a normal or low input, and no output when

receiving no input). The tanks TA and CO are simply receive water.

We assume that three sensors are available (see the eyes in Figure

3): flowp measures the flow from the pump, which can be normal

(nrmp), low (lowp), or zero (zrop); levelTA measures the level of

the water in TA, which can be normal (nrmta), low (lowta), or zero

(zrota); levelCO records the presence of water in CO, either present

(preco) or absent (absco).

Figure 3. Hydraulic system

According to the TOM4D methodology, the system is a hydraulic

process Pr(t) = {x1(t), x2(t), x3(t)} made with three variables (cf.

the hydraulic T.o.S): x1(t) is a volume variable, x2(t) and x3(t) are

two outflow variables. The analysis of the system description shows

that x2(t) represents a normal outflow and x3(t) represents an ab-

normal outflow corresponding to water leakage. Table 1 shows the

variable-value association and the physical interpretation of the vari-

ables. The corresponding set of observation classes is given in Table

2 and the discernible states are provided in Table 3. The reader in-

terested with the application of the TOM4D methodology on this

example is invited to refer to [5].

Variables Physical value Abstract
x interpretation interpretation value δi

normal, 2,
x1 V olume low, 1,

zero 0

normal, 2,
x2 normal

outflow
low, 1,

zero 0

x3 abnormal
outflow

presence, 2,

absence 1

Table 1. Variable-Value Association for the Hydraulic System
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C1
1

= {(x1,0)} C1
2

= {(x1,1)} C1
3

= {(x1, 2)}

C2
1

= {(x2,0)} C2
2

= {(x2,1)} C2
3

= {(x2,2)}

C3
1

= {(x3,1)} C3
2

= {(x3,2)}

Table 2. Timed Observation Classes

States x1 x2 x3 States x1 x2 x3

s0 0 0 1 s1 1 0 1
s2 2 0 1 s4 1 1 1
s5 2 1 1 s8 2 2 1
s9 0 0 2 s10 1 0 2

s11 2 0 2 s13 1 1 2

s14 2 1 2 s17 2 2 2

Table 3. The set of discernible states for the Hydraulic System

Figure 4 shows a graphical representation of the behavior model

BM(Pr(t)) of the hydraulic system. The ”Generate−C−Graph”

algorithm of section 4 produce the C-Graph GC of Figure 5.

Figure 4. behavior Model of the hydraulic system

To illustrate the ”Generate − Class − Path” algorithm of the

previous section, let us consider the following sequence of timed ob-

servations: ω = { ox2
(t0) ≡ (1, t0), ox3

(t1) ≡ (2, t1), ox2
(t2) ≡ (0,

t2) , ox1
(t3) ≡ (2, t3)} (We consider that ti ≤ ti+1). According to

the table 2, the observation class associated to the first timed obser-

vation ox2
(t0) of ω is C2

2 . The set D being empty, the two first steps

of the algorithm do nothing but the third step initializes D with the

Algorithm ”initCPath” that is to say finds the set of binary relation

that are of the form r(C0, C2
2 , si0 ) so that D = { {r(C1

2 ,C2
2 , s1)},

{r(C2
1 ,C2

2 , s1)}, {r(C2
1 ,C2

2 , s2)}, {r(C1
3 ,C2

2 , s2)}, {r(C2
3 ,C2

2 , s8)},

{r(C2
1 ,C2

2 , s11)}, {r(C3
2 ,C2

2 , s11)}, {r(C1
3 ,C2

2 , s11)}, {r(C2
1 ,C2

2 ,

s10)}, {r(C3
2 ,C2

2 , s10)}, {r(C1
2 ,C2

2 , s10)}}.

The observation class of the second timed observation ox3
(t1) ≡

(2, t1), ox2
(t2) being C3

2 , the next step of the algorithm removes the

paths of D that are no more coherent with ox3
(t1) and extends the

rest of paths with the right sequential relations from GC (cf. Figure

Figure 5. C-Graph of the hydraulic system

5) so that

D = { {r(C1
2 , C

2
2 , s1), r(C

2
2 , C

3
2 , s4)},

{r(C2
1 , C

2
2 , s1), r(C

2
2 , C

3
2 , s4)}, {r(C2

1 , C
2
2 , s11), r(C

2
2 , C

3
2 , s14)},

{r(C2
1 , C

2
2 , s2), r(C

2
2 , C

3
2 , s5)}, {r(C1

3 , C
2
2 , s2), r(C

2
2 , C

3
2 , s8)},

{r(C2
3 , C

2
2 , s5), r(C

2
2 , C

3
2 , s5)} }. Doing so, the algorithm finds

only two C-Paths that are consistent with all the timed observations

of ω (cf. Fig 6). The dark circle means that the new observation class

is inconsistent with the defined C-Path (there is no relation between

the last observation class and the new observation class).

Figure 6. P C consistent with the ω and BM

D(t) = {PC1 , PC2} = { {r0(C1
2 , C2

2 , s1), r1(C2
2 , C3

2 , s4), r2(C3
2 ,

C2
1 , s13), r3(C2

1 ,C1
3 , s10)}, {r0(C2

1 ,C2
2 , s1), r1(C2

2 ,C3
2 , s4), r2(C3

2 ,
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C2
1 , s13), r3(C2

1 , C1
3 , s10)}} and the state Path corresponding is S-

Path = {s1, s4, s13, s10, s11}. The interpretation of the results with

the behavior model shows that the system passed from the ok mode

(the grey states in Figure 4) : states (s1, s4) to leaking mode (the dark

states in Figure 4) : states (s13, s10, s11).

7 CONCLUSION

This paper proposes an algorithm to diagnose dynamic systems

modeled with the TOM4D methodology according to the Theory

of Timed observations of [8]. This alogorithm is a preliminary

work since we have not exploited all the potentialities of the theory.

In particular, this algorithm does not consider the lack of timed

observations that can occur in large and complex systems. An

extension is under consideration with the idea to use the function

model FM(Pr(t)) to discriminate between a true lack and an

inconsistency.

On other hand, with large and complex systems, the impossibility to

define a global behavior model obliges to model the behavior in a

decompositional way with the description of the behaviors of each

component of the system. Another extension to the proposed algo-

rithm aims at computing the diagnosis locally for each component

before merging the local diagnosis to get a global diagnosis. In the

D.E.S. approaches, the diagnoses are merged using the events which

are common with the local diagnosis. According to the TOM4D

methodology, the observations classes are not common between two

components because, by construction, each variable xi is associated

with one and only one component ci. Consequently, the idea is to

use the functional model FM(Pr(t)) to define the relation between

the observation classes and to merge the local diagnosis.
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[9] M. Le Goc, E. Masse, and C. Curt, ‘Modeling processes from timed
observations’, in 3rd International Conference on Software and Data

Technologies, ICSoft, (2008).
[10] R. Rosenberg and D. Karnopp, ‘Introduction to physical system dynam-

ics’, in McGraw-Hill, Inc. New York, NY, USA., (1983).
[11] Th. Schreiber, J. M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R.

Shadbolt, W. Van de Velde, and B. J. Wielinga, ‘Publication, knowl-
edge engineering and management the commonkads methodology’,
MIT Press, (2000).

[12] C. Zanni, M. Le Goc, and C. Frydmann, ‘A conceptual framework for
the analysis, classification and choice of knowledge-based system’, in
International Journal of Knowledge-based and Intelligent Engineering

Systems, 10, pp. 113–138. Kluwer Academic Publishers, (2006).

in : ECAI Workshop - Diagnostic REAsoning: Model Analysis and Performance (DREAMAP), Montpellier, France, 27/08/2012 


