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ABSTRACT

It is now well-known that the size of the model
is the bottleneck when using model-based ap-
proaches to diagnose complex systems. To an-
swer this problem, decompositional and multi-
modeling approaches have been proposed. In
this paper, we propose a multi-modeling method
called TOM4D (Timed Observations Modeling
for Diagnosis) able to cope with dynamic as-
pects. It relies on four models: perception, struc-
tural, functional and behavior models. The be-
havior model is described through system compo-
nent models as a set of component behavior mod-
els and the global diagnosis is computed from
the component diagnoses (also called local diag-
noses).
Another problem, which is far less considered,
is the size of the diagnosis itself. However, it
can also be huge enough, especially when deal-
ing with dynamic system. To solve this problem,
we propose in this paper to use The Timed Obser-
vation Theory.
In this context, we characterize the diagnosis us-
ing TOM4D and the timed observation theory.
We show their relevance to get a tractable rep-
resentation of diagnosis. To illustrate the impact
on the diagnosis size, experimental results on a
hydraulic example are given.

1 INTRODUCTION

Diagnosis is concerned with the development of algo-
rithms and techniques to determine why a correctly de-
signed system does not work as expected. The compu-
tation is based on observations, which provide infor-
mation on the current behavior. The aim of diagnosis
is to detect and identify the reason for any unexpected
behavior, and to isolate the parts which fail in a system.

The systems to be diagnosed can be of different
types, like static or dynamic systems, or systems that
work with discrete or continuous domains. Moreover,
the information of the system, from which the diagno-
sis is performed, can be qualitative, logic or quantita-
tive. The diagnoser depends essentially on the man-

ner in which (i) the observations are presented (ii) the
system is modeled. In fact, in dynamic systems, the
observation is timed unlike in static systems where the
observations are given at only one point of time. The
Timed Observation Theory of Le Goc (Le Goc, 2006)
provides a general mathematical framework for mod-
eling dynamic processes from timed data. This theory
is important because it can be applied to all observed
systems. The extension of this framework has given
birth to a modeling approach for diagnosis based on
timed observation theory called TOM4D. The aim of
the modeling approach is to have an efficient diagnosis
based on the constructed models.

For complex and large systems, the impossibility of
defining a global behavior model makes it necessary
to build the behavior model by breaking down and de-
scribing the behaviors of each component of the sys-
tem. We extend the TOM4D method to cope with de-
compositional approach. In this case, diagnoses are
computed locally for each component before being
merged to obtain a global diagnosis.

In this paper, after a brief presentation of the Timed
Observation Theory and the TOM4D method (Sec-
tions 2 and 3), we show how TOM4D supports the
modeling of complex physical systems. In section 4,
we show how the models can be used to characterize
the diagnosis. Then, we demonstrate that the diagno-
sis can be computed from the TOM4D models. We
apply the modeling approach and the diagnosis algo-
rithm to an hydraulic system. Section 5 provide an
application of our approach to the hydraulic system.
Finally, Section 6 provides conclusions and proposes
some perspectives of this work.

2 TIMED OBSERVATION THEORY

This theory defines a dynamic system as a process
Pr(t)={x1(t), x2(t), ..., xn(t)} of timed functions
xi(t) defined on R (i.e. signals provided by sensors).

A timed observation is a couple (δi, tk) which corre-

sponds to the assignation of a predicate θ(xi, δi
j , tk)

where δi
j is constant and tk ∈ R a time stamp. When

making an abuse of language, such a predicate can al-

ways be interpreted as the predicate EQUALS(xi, δi
j ,
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tk) (i.e. xi(tk) = δi
j). A monitoring program Θ(X , ∆)

is a program Θ that analyzes the set of time functions
xi(t) associated to the set of variables X ={xi}i=1,...,n

. The aim of a monitoring program is to write timed

observations (δi, tk) in a database whenever a time
function xi(t) ∈ X(t) satisfies some predicate θ(.. ,..
,..). This leads to define the Observation class as fol-
lows:

Definition 1 (An observation class). Let X be a set
of variable names of a process Pr(t)={x1(t), x2(t),
..., xn(t)} and let ∆= ∪

xi∈X
∆xi

be such that ∆xi
is a

set of values assumable by the variable xi ∈ X via a

program Θ. An observation class Ci={(xi, δi
j), (xi+1,

δi+1

j+1
), ..., (xi+n, δi+n

j+n} is a set of couple (xi, δi
j) as-

sociating a variable xi, eventually unknown, with a

constant δi
j .

In other words, an observation class Ci associates
variables xi ∈ X with constants δi

j ∈ ∆xi
. For sim-

plicity reasons, an observation class is usually defined

as a singleton Ci = {(xi, δi
j)}.

Proposition 2.1. is immediate consequences of defini-

tion 1 : each timed observation o(tk)≡ (δi
j , tk) corre-

sponds to an occurence of an Observation class Ci =

{(xi, δi
j)}.

3 MODELING FRAMEWORK FOR
DIAGNOSIS : TOM4D

3.1 General Presentation of TOM4D

TOM4D is a modeling method for dynamic systems
focused on timed observations. The objective of this
method is to produce a suitable model for dynamic
process diagnosis from timed observations and experts
a priori knowledge. TOM4D relies on the idea that
experts use an implicit model to both formulate the
knowledge about the process and diagnose it. It is
a multi-model approach that combines CommonKads
templates (Schreiber et al., 2000) with the conceptual
framework proposed in (Zanni et al., 2006) and the
tetrahedron of states (T.o.S), (Rosenberg and Karnopp,
1983), (Chittaro et al., 1993). These elements are
merged according to the Timed Observations Theory
(Le Goc, 2006).

These concepts of component, variable and obser-
vation class allow to organize the available knowl-
edge about a process Pr(t) according to a Struc-
tural Model SM(Pr(t)) defining the components of
the process and their relations, a Functional Model
FM(Pr(t) defining the values of the process vari-
ables (i.e. their definition domain) and the relations
between the variables values with a set of mathe-
matical functions, and a behavior Model BM(Pr(t))
defining the timed observation classes firing the evo-
lutions of the time functions of Pr(t). A complemen-
tary model, the Perception Model PM(Pr(t)) of the
process, specifies the process variables, the operating
goals and the normal and abnormal operating behav-
iors (cf. Figure 1). Consequently, a model M(P (t)) of
a process is a quadruplet M(Pr(t)) = < PM(Pr(t)),
SM(Pr(t)),FM(Pr(t)), BM(Pr(t)) >.

Figure 1: TOM4D Modeling Process

3.2 Improving representation in a
decompositional Approach

Real-world systems can often be seen as a set of inter-
connected components. Each component has a simple
behavior but the connections between the components
can lead to a complex global model. For this reason,
the size of a global model of the system is generally in-
tractable and no global model can be effectively built.

The TOM4D method associates a variable xk
i with one

and only one component ck. This allow to decom-
pose the dynamic process Pr as a set of subprocess
Prk representing the different variables of component
system ck. In the following, we give the definitions
of component and the properties the set of component
models must satisfy to get a safe representation of the
system model.

Definition 2 (system and components). A system can
be described by its set of components COMPS = {c1,
..., cn}. Each component ck is defined as a subprocess

Prk(t)={xk
1(t), xk

2(t), ..., xk
m(t)} of timed functions

xk
i (t). A system is viewed as a set of sub-process of

Pr(t) = {Pr1(t), ..., Prn(t)}

The representation of the Timed Observation The-
ory with the decompositional system is summarized in
Figure 2.

The idea is to describe the TOM4D approach at two
levels namely the components of the system (compo-
nent representation) and the system considered as a
whole (system representation). The following sections
provide a succinct description of the TOM4D approach
at two levels (component and global).

3.3 Model of a component

A model of the component ck is a quadruplet
M(Prk(t)) of a process Prk(t) : M(Pr(t)) =
< CPM(Prk(t)), CSM(Prk(t)),CFM(Prk(t)),
CBM(Prk(t)) >, where CPM, CSM, CFM, CBM
are respectively component perception model, com-
ponent structural model, component functional model
and component behavior model.
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Figure 2: Timed Observation Theory extend to decom-
positional approach

Component Structural Model
The interpretation of the knowledge base with the
T.O.S (Tetrahedron of States) allows to define an ab-
stract generic representation of the component. The
abstract model represent the structural model of the
component.

Component Functional Model
The Component Functional Model describes the rela-
tions between the values of the variables of the com-
ponent ck with mathematical functions.

Component behavior Model
The component behavior Model BM(Prk(t)) of a
sub-process Prk(t) describes its operating modes with
a set of states and observation classes triggering the
state transitions. The behavior model is the key com-
ponent of the multimodeling approach, notably be-
cause the diagnosis reasoning process is based on this
model. The behavior model is defined as follow:

Definition 3 (Component behavior Model). Let Xk be
a set of observable variables of a component ck. A
component behavior model CBM(Prk(t)) of this one

is a 3-tuple < Sk, Ck, γk > such that,

• Sk is a set of system states defined as Sk = {sk:

Xk → ∆xk
i as sk(xk

i ) = δxk
i , xk

i ∈ Xk, δxk
i ∈

∆xk
i },

• Ck is a set of observation classes where an obser-
vation class is a set of discrete events; in partic-
ular, an observation class associated with a vari-

able xk
i ∈ Xk is a set Cxk

i = { (xk
i , δ) as δ ∈

∆xk
i },

• γk: Sk × Ck → Sk is a function of state transi-
tion.

Figure 3: TOM4D presented in decompositional ap-
proach

3.4 Model of a System

The model of a system is M(Pr(t)) = < M(Pr1(t)),
...,M(Prn(t)), FGM(Pr(t)), SGM(Pr(t)) >,
where M(Prk(t)) = < CPM(Prk(t)),
CSM(Prk(t)), CFM(Prk(t)), CBM(Prk(t))
> is the Process Model of the component ck,
SGM(Pr(t)) is the global structural model and
FGM(Pr(t)) is the global functional model. The
global model M(Pr(t)) is built to be a decomposition
of the component models M(Prk(t)). The relations
between the different component models M(Prk(t))
is provided by the variables and defined in the Global
Functional Model and the Global Structural Model
(cf. Figure 3).

Global Structural Model
The Global Structural Model describes relations be-
tween the components of the system and the relations
between the components and the variables.

Global Functional Model
The Functional Model describes the relations between
the values of the variables of different components
with mathematical functions.

4 DIAGNOSIS

4.1 Diagnosis characterization

This section provides a characterization of diagnosis
in terms of TOM4D method and Timed Observations
Theory. The system we consider is decompositional
systems composed of n components (represented by
n behavior models) which interact each other. We
start by characterizing the diagnosis for one compo-
nent then we generalize the algorithm for the whole of
the system.

Each components behavior model CBM(Prk(t))
is described as a set of states and the possible transi-
tions between them. A state transition is triggered by
the occurrence of a timed observation : according to
the Timed Observations Theory, such an occurrence is
recorded when a variable assumes a new value. A state
path (S-Path) of the component ck between two states

sk
i and sk

j is a suite (sk
i , sk

i+1, ..., s
k
j ) of (j − i + 1)

states linking the initial state sk
i to the final state sk

j in

a behavior model CBM(Prk(t)). This fact leads to

3
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the following definition of a state path in a behavior
model:

Definition 4 (S-Path). Let CBM(Prk(t)) = ≺ Sk,

Ck, γk ≻ a behavior model of the process Prk(t) rep-
resenting the component ck. A State Path is a suite

Sk
i,j = (sk

i , sk
i+1, ..., s

k
j ) of (j− i+1) states linking the

initial state sk
i to the final state sk

j .

The observations ω can generally be deccomposed
as follows: ω = {ω1, . . . ,ωn} such that ωk contains
the timed observations from the component ck. Local
diagnosis for the component ck is performed starting
from a set of local timed observations ωk and the com-
ponent behavior model CBM(Prk(t)) of the com-
ponent ck defined in TOM4D method. It consists in
explaining the observations sent by the ωk during the
period [t0, tn]. The set of S-Path consistent with the
BM(Prk(t)) represents the possible states occupied
by the component during the period [t0, tn]. Conse-
quently, the local diagnosis is represented by a set of
S-Path, each S-Path of which represents a possible or-
der of states of the component ck in different instances
t ∈ [t0, tn].

Definition 5 (Local diagnosis definition). Given the
component Behavior Model CBM(Prk(t)) of the
component ck and the local observations ωk =
{o(t0), ..., o(tn)} contains n + 1 timed observations
from the component ck recorded during the period

[t0, tn] a diagnosis Dck
(t) = {Sk

i,j} is the mininal set

of S-Path Sk
i,j consistent with CBM(Prk(t)) and ωk.

ωk, CBM(Prk(t))) → Dck
(t) (1)

These diagnoses represent the component behaviors
that are consistent with the local observations. Only
the S-Path leading the system to explain all the obser-
vations timed are those of interest for our local diag-
nosis purpose.

As a consequence, the global diagnosis D(t) is a
combination of each local diagnosis Dci

(t) at different
instance of diagnosis:

Definition 6 (Global diagnosis definition). Given a set
of n local diagnosis {Dc1

, ..., Dck
, ..., Dcm

} describ-
ing the possible states occupied by the different com-

ponents ck during the period [t0, tn], noted Sk. A
global diagnosis D for the system is the set of state

paths S = S1 × .... × Sm consistent with the TOM4D
models.

Dc1
(t), ..., Dcm

(t), GFM(Pr(t)), GSM(Pr(t))

→ D(t)

In other words, the global diagnosis correspond ex-
actly to the Cartesian product of the different possible
states of the components at different instance and con-
sistent with the global functional and global structural
model of the system.

A dynamic system must continuously operate in the
face of changing conditions. In the context of diag-
nosis, the dynamic system provides continuously new
observations for its variables. According to the Timed
Observation Theory, a new observation correponds to
the appearance of a timed observation. Each timed ob-
servation corresponds to an occurence of an Observa-
tion class. A change of state is determinated by the

occurrence of an observation class, that is to say when
a variable assumes a new value.

As a consequence, the diagnosis D(tk) reasoning
process must be triggered by each timed observation of
a suite ω = {o(t0), ...,o(tn)} during the period [t0, tn]
in order to produce the minimal set of possible state
paths that are consistent with the timed observations
o(tk) ∈ ω. We will propose an incremental proce-
dure to compute a diagnosis for a system description
(M(Pr(t)), ω) and its successive new timed observa-
tions according to the presented definitions.

4.2 Diagnosis Algorithm

The algorithm to compute a diagnosis given a TOM4D
model M(Pr(t)) and a suite ω = {o(t0), ...,o(tn)} of
n + 1 timed observations recorded during the period
[t0, tn] is graphically represented in Fig 4.

Figure 4: principle of calculating the global diagnosis
of a dynamic system decomposed

Step 1 : Compute the set of timed observations at
t = tk
The first step of the algorithm applies the supperpo-
sition theorem of the Timed Observation Theory for
each time tk ∈ [t0, tn]. This theorem allows to de-
compose the suite ω in a set {ω1, ..., ω2, ..., ωm} of m
suites ωi of (local) timed observations where each ωi

corresponds to the set of the timed observations of a
component ci.

Step 2 : Compute Local Diagnosis at t = tk
The aim of the second step is to compute the local
diagnosis ωi(k), CBM(Pri(t)) → Dci

(tk) for each
component ci ∈ C at time tk.

Step 3 : Compute Global Diagnosis at t = tk
At each time tk, the diagnosis algorithm aims then to

compute each local diagnosis Dci
(tk)={Si

h,m} and to

combine each path sets {Si
h,m} to build a unique path

set D(tk) = Si,j corresponding to the global diagnosis

D(tk).

Definition 7 (Global Diagnosis Composition at a time

t = tk). Given two local diagnosis Dci
(tk) = {Si

h,m}

4
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Figure 5: Hydraulic system

and Dcj
(tk)= {Sj

z,l} (corresponds respectively to the

components ci and cj), the global diagnosis D(tk) re-

sulting of the combinaison of Dci
(tk) and Dcj

(tk) is

the S where: S = S
j
h,m × Sk

z,l.

This definition, that will be illustrated, can be easily
generalised to any number of local diagnosis.

Step 4 : concatenation operation
Finally, to compute a global diagnosis The global di-
agnosis D in [t0, tn] resulting from a sequence ω(k) of
timed observations, the suite of global diagnosis D(tk)
must be merge over time according to the following
definition:

Definition 8 (Merging Global Diagnosis). Given two

global diagnoses two diagnoses D(tk−1) = {Sj
n,m}

and D(tk)= {Si
k,l}, the global diagnosis D resulting

of the merging of D(tk−1) and D(tk) is S where:

∀s ∈ Sα,β ,∃Sα,k ∈ D(tk−1)and∃Sk,β ∈ D(tk)

∀c ∈ Cα,β ,∃Si,j ∈ {Sj
n,m} + {Si

k,l}

This last definition is used to merge all global diag-
nosis calculated at t < tk.

5 APPLICATION CASE

We use an example to illustrate the notions mentioned
above. In this section we introduce a simple device
(see Fig 5) studied in (Console et al., 2000) that we
shall use as a running example throughout the paper.

The system is formed by a pump P which delivers
water to a tank TA via a pipe PI; another tank CO is
used as a collector for water that may leak from the
pipe. The pump is always on and supplied of water.
The pipe PI can be ok (delivering to the tank the water
it receives from the pump) or leaking (in this case we
assume that it delivers to the tank a low output when
receiving a normal or low input, and no output when
receiving no input). The tanks TA and CO simply re-
ceive water. We assume that three sensors are avail-
able (see the eyes in Figure 5): flowp measures the
flow from the pump, which can be normal (nrmp), low
(lowp), or zero (zrop); levelTA measures the level of
the water in TA, which can be normal (nrmta), low
(lowta), or zero (zrota); levelCO records the pres-
ence of water in CO, either present (preco) or absent
(absco).

In this paper we give the direct result for the analysis
of the system with TOM4D method (more details are
given in (Fakhfakh et al., 2012a)). The result of model-
ing of the hydraulic system with the TOM4D approach
means that the system is viewed as a set of sub-Process

Prk(t) : Pr(t) = {Pr1(t)(t), Pr2(t)(t), Pr3(t)(t),
Pr4(t)(t)} where Prk(t)(t) = {xk

1(t), xk
2(t), xk

3(t)}.
These variables are determined by the analysis using

the hydraulic tetrahedron of states where xk
1(t) is a

volume variable (V), xk
2(t) and xk

3(t) are two outflow

variables. xk
2(t) represents a normal outflow (Qs) and

xk
3(t) represents an abnormal outflow corresponding to

water leakage(Qf).
Table 1 shows the variable-value association and in-

terpretations, where there is no abnormal outflow for
the pump (c1), Tank TA (c3) and Tank CO (c3) nor
normal outflow for the c3 and c4.

COMPS X dimen- Value in ∆xk
j

ck sion Text

c1 x1
1 V nrm, low0,zro0 2,1,0

x1
2 Qs nrmp,lowp,zrop 2,1,0

c2 x2
1 V nrmpi,lowpi,zropi 2,1,0

x2
2 Qs nrm1,low1,zro1 2,1,0

x2
3 Qf pres2,abs2 1,2

c3 x3
1 V nrmTAlowTA,zroTA2,1,0

c4 x4
1 V presCO, absCO 1,2

Table 1: component-variable-value association

Strucural Model
The component structural model CSM(Prk(t)) is de-
signed as an abstract generic hydraulic component

making a relation between an input flow xk
1 , xk

2 and

xk
3 (cf. Figure 6 a). The Global structural model

GSM(P (t)) is a 3-tuple < COMPS, Rp, Rx > (cf.
Figure 6 b) where:

• COMPS={c1, c2, c3, c4} is the finite set of con-
stants denoting the system components,

• Rp is a set of equality predicates defin-
ing the interconnections between the compo-
nents. Rp={out(c1)=in(c2), out1(c2)=in(c3),
out2(c2)=in(c4)}

• Rx is a set of equality predicates linking
each variable. Rx={ out(c1)=x2

1, out(c3)=x3
1,

out(c4)=x4
1, out1(c2)=x2

2, out2(c2)=x2
3}.

Figure 6: (a) component Structural Model
CSM(Prk(t)) (b) Global Structural Model
GSM(Pr(t))

5
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C
x1

1

1 = {(x1
1,0)} C

x1

1

2 = {(x1
1,1)} C

x1

1

3 = {(x1
1, 2)}

C
x1

2

1 = {(x1
2,0)} C

x1

2

2 = {(x1
2,1)} C

x1

2

3 = {(x1
2,2)}

C
x2

1

1 = {(x2
1,0)} C

x2

1

2 = {(x2
1,1)} C

x2

1

3 = {(x2
1, 2)}

C
x2

2

1 = {(x2
2,0)} C

x2

2

2 = {(x2
2,1)} C

x2

2

3 = {(x2
2,2)}

C
x2

3

1 = {(x2
3,1)} C

x2

3

2 = {(x2
3,2)}

C
x3

1

1 = {(x3
1,0)} C

x3

1

2 = {(x3
1,1)} C

x3

1

3 = {(x3
1,2)}

C
x4

1

1 = {(x4
1,1)} C

x4

1

2 = {(x4
1,2)}

Table 2: The Timed Observation Classes

Functional Model
A functional model FM is a 3-tuple < ∆, F , Rf >
where ∆ is the set of values assumable by the different
variables (∆x1

1
= {2, 1, 0}for example), F is a set of

functions define the relation between variables. Two
types of relations are defined :

• Relation between the different variables of the
same component are : f4(x1

1) = x1
2, f5(x2

1) = x2
2,

f6(x2
1) = x2

3 that determine the CFM ;

• Relation between the different variables belong-
ing to different components are: f1(x1

2) = x2
1,

f2(x2
3) = x4

1, f3(x2
2) = x3

1 that determine the
GFM ;

behavior Model
The set of system observation classes derived are given
in Table 2 and the set of states of the pipe, for example,
are represented in Table 3 (we represent only the sates
physically possible using the hydraulic T.o.S). Figure

States x2
1 x2

2 x2
3 States x2

1 x2
2 x2

3

s2
0 0 0 1 s2

1 1 0 1
s2
2 2 0 1 s2

4 1 1 1
s2
5 2 1 1 s2

8 2 2 1
s2
9 0 0 2 s2

10 1 0 2

s2
11 2 0 2 s2

13 1 1 2

s2
14 2 1 2 s2

17 2 2 2

Table 3: The pipe states

7 shows a graphic representation of the behavior model
of the different components of the hydraulic system.
The state transition function defines state s2

2 as the next

state when the system is in state s2
1 and an occurrence

of the C
x2

1

3 occurs (i.e. γ(s2
1, C

x2

1

3 ) = s2
2).

Diagnosis
Let us consider the sequence of timed observation ω =
{ ox2

2
(t0) ≡ (1, t0), ox3

1
(t0) ≡ (1, t0), ox2

3
(t1) ≡ (2,

t1), ox4

1
(t1) ≡ (2, t1), ox2

2
(t2) ≡ (0, t2) ,ox3

1
(t2) ≡ (0,

t2) , ox2

1
(t3) ≡ (2, t3)} (We consider that ti ≤ ti+1).

The application of the Algorithm defined in Figure 4
following the following steps,

Step 1 : Compute the set of timed observations at
t = tk
The result of this step is given in table 4 (where φ
means that there is no change of the variable value in

Figure 7: behavior Model of the hydraulic system

ti)

t=tk/cj ω1(k) ω2(k) ω3(k) ω4(k)
t0 φ {(x2

2, 1)} {(x3

1, 1)} φ

t1 φ {(x2

3, 2)} φ {(x4

1, 2)}
t2 φ {(x2

2, 0)} {(x3

1, 0)} φ

t3 φ {(x2

1, 2)} φ φ

Table 4: Cutting observations

Step 2 : Compute Local Diagnosis at t = tk
Table 5 gives the local diagnosis of c1, c2, c3 and
c4 components whose TOM4D component behav-
ior Model are respectively denoted CBM(Pr1(t)),
CBM(Pr2(t)), CBM(Pr3(t)) and CBM(Pr4(t)).

For example, let us consider the pipe (c2) compo-
nent. At t = t0, the x2

2 variable assumes the new
value 1 marking a state transition in the pipe. Con-
sidering its Behavior Model CBM(Pr2(t)) (cf. fig-
ure 7), the possible states of c2 after the occurence

of a the class C
x2

2

2 are defined with the state vector

(x2
1 = φ, x2

2 = 1, x2
3 = φ) (where φ denote any

value), that is to say s2
4, s2

5, s2
5, s2

13 and s2
14. Because

only these states have an input arrow labelled with the

class C
x2

2

1 , the possible state before the occurrence of a

timed observation of this class are respectively s2
1, s2

2,

s2
8, s2

10 and s2
11. As a consequence, the possible State

path (and the local diagnosis) for the c2 component at
time t = t0 are Dc2

(t0) = { (s2
1, s2

4), (s2
2, s2

5), (s2
8,

s2
5), (s2

10, s2
13), (s2

11, s2
14)Ṫhe same reasoning is made

at each time and for each component.

6
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Dci CBM(Pr1 CBM(Pr2 CBM(Pr3 CBM(Pr4

(tk) (t)) (t)) (t)) (t))
t0 φ Dc2(t0) = {

(s2

1, s2

4), (s2

2,
s2

5), (s2

8, s2

5),
(s2

10, s2

13),
(s2

11, s2

14)}

(s3

2, s3

1),
(s3

0, s3

1)
φ

t1 φ Dc2(t1) =
{ (s2

2, s2

11),
(s2

8, s2

17),
(s2

4, s2

13),
(s2

1, s2

10),
(s2

9, s2

0)}

φ Dc4(t1)
= { (s4

0,
s4

1) }

t2 φ Dc2(t2) =
{ (s2

5, s2

2),
(s2

11, s2

14),
(s2

4, s2

1) }

Dc3(t2)
= { (s3

1,
s3

0) }

φ

t3 φ Dc2(t3) =
{ (s2

1, s2

2),
(s2

10, s2

11) }

φ φ

Table 5: Local Diagnosis for different component

Step 3 : Compute Global Diagnosis at t = tk
In the running example, at t = t0, the possible states of
the components are given in Table 6. No information

COMPS possible state possible state
COMPS occupied at t < t0 occupied at t = t0

c1 φ φ

c2 s2

1, s2

2, s2

8, s2

10, s2

11 s2

4, s2

5, s2

5, s2

13, s2

14

c3 s3

1 s3

1

c4 s4

0 s4

0

Table 6: Possible states occupied by the different com-
ponents at t ∈ ]t0, t1]

about the c1 state. The possible state occupied by c1

is the set of possible states of c1. The global diagnosis
D(t1) is concerned with 4 × 4 × 2 × 1 = 32 possible
paths of different components. We use the functional
model to eliminate the physically impossible states and
to ensure consistency between the S-Paths calculated
for example, only s1 (x1

2) = s2 (x2
1) are kept (f4 de-

fined in the functional model as the identity function
(∀ t, x1

2(t) = x2
2(t) ). Only the state s1

4 is consistent
with the possible states of c1 at t0. Doing so lead we
define the global diagnosis D(ti) in different instance

for example D(t0)= { (s1
4 ∧ s2

4 ∧ s3
1 ∧ s4

0) ∨ (s1
4 ∧ s2

5

∧s3
1 ∧ s4

0 , (s1
4 ∧ s2

13 ∧ s3
1 ∧ s4

0), (s1
4 ∧ s2

14 ∧ s3
1 ∧ s4

0)
}

Step 4 : concatenation operation
The definition 8 is used to merge all global diagnosis
calculated at t < tk. The final global diagnosis re-
sulting the concatation of D(ti) a different instance :
D(t < t0), D(t0),D(t1),D(t2) → D(t3) is D(t3) = {(s1

1

∧ s2
11 ∧ s3

0 ∧ s4
1)}

6 CONCLUSION

We have shown that Timed Observation Theory (and
TOM4D in particular) are suitable techniques for

model-based diagnosis and for studying diagnostic
properties of dynamic systems. To the best of our
knowledge, similar approaches have been considered
in (Cordier and Grastien, 2007), (Baroni et al., 1999)
and (Console et al., 2000) . A Comparison between
PEPA, D.E.S approach and TOM4D is made in
(Fakhfakh et al., 2012b) . What we presented can
be regarded as a preliminary work since we have
not exploited all the potentialities of the theory. In
particular, we will investigate how more complex
properties concerning diagnosis can be defined and
verified within our approach.

A problem can be discussed when we have two
timed observations corresponding to one component
are simultaneous (came on the same instance tk). In
fact, two timed observations are associated to two ob-
servation classes in the same instance. Consequently,
the consistance with the CBM and the set of observa-
tions (such that we have defined in the article) is not
possible. Hence, another extension of our algorithm is
important to support the timed observations simultane-
ous.
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