Automatic skeletal muscle segmentation through random walks and graph-based seed placement

Abstract : In this paper we propose a novel skeletal muscle segmentation method driven from discrete optimization. We introduce a graphical model that is able to automatically determine appropriate seed positions with respect to the different muscle classes. This is achieved by taking into account the expected local visual and geometric properties of the seeds through a pair-wise Markov Random Field. The outcome of this optimization process is fed to a powerful graphbased diffusion segmentation method (random walker) that is able to produce very promising results through a fully automated approach. Validation on challenging data sets demonstrates the potentials of our method.
Type de document :
Communication dans un congrès
International Symposium Biomedical Imaging (ISBI), May 2012, Barcelone, Spain. pp.1036--1039, 2012
Liste complète des métadonnées

Littérature citée [9 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-00773616
Contributeur : Pierre-Yves Baudin <>
Soumis le : mardi 5 février 2013 - 14:07:47
Dernière modification le : vendredi 15 février 2019 - 13:58:09
Document(s) archivé(s) le : samedi 1 avril 2017 - 04:27:34

Fichier

article_reviewed.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00773616, version 1

Citation

Pierre-Yves Baudin, Noura Azzabou, Pierre Carlier, Nikos Paragios. Automatic skeletal muscle segmentation through random walks and graph-based seed placement. International Symposium Biomedical Imaging (ISBI), May 2012, Barcelone, Spain. pp.1036--1039, 2012. 〈hal-00773616〉

Partager

Métriques

Consultations de la notice

1078

Téléchargements de fichiers

359