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GAUSSIAN LOWER BOUND FOR THE NEUMANN GREEN FUNCTION OF A

GENERAL PARABOLIC OPERATOR

MOURAD CHOULLI AND LAURENT KAYSER

Abstract. Based on the fact that the Neumann Green function can be constructed as a perturbation of
the fundamental solution by a single-layer potential, we establish a Gaussian lower bound for the Neumann
Green function for a general parabolic operator. We build our analysis on classical tools coming from the
construction of a fundamental solution of a general parabolic operator by means of the so-called parametrix
method. At the same time we provide a simple proof for Gaussian two-sided bounds for the fundamental
solution.
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1. Introduction

Let Ω be a bounded domain of Rn with C1,1-smooth boundary. Let t0 < t1, we set Q = Ω× (t0, t1) and
we consider the second order differential operator

L = aij(x, t)∂
2
ij + bk(x, t)∂k + c(x, t)− ∂t.

Here and henceforth we use the usual Einstein summation convention for repeated indices.

We make the following assumptions on the coefficients of L:

(i) the matrix (aij(x, t)) is symmetric for any (x, t) ∈ Q,

(ii) aij ∈ W 1,∞(Q), bk, c ∈ C([t0, t1], C
1(Ω)),

(iii) aij(x)ξiξj ≥ λ|ξ|2, (x, t) ∈ Q, ξ ∈ R
n,

(iv) ‖aij‖W 1,∞(Q) + ‖bk‖L∞(Q) + ‖c‖L∞(Q) ≤ A,

where λ > 0 and A > 0 are two given constants.

These assumptions are surely not the best possible if one wants to construct a fundamental solution or a
Green function. But they are sufficient to carry out our analysis.

Since we will use the fundamental solution in the whole space, we begin by extending the coefficients of

L in a neighborhood Ω̃ of Ω to coefficients having the same regularity. We observe that this is possible in
view of the regularity of Ω. For sake of simplicity, we keep the same symbols for the extended coefficients.
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2 MOURAD CHOULLI AND LAURENT KAYSER

We may also assume that the ellipticity condition holds for the extended coefficients with the same constant

λ. Pick ψ ∈ C∞
0 (Ω̃) satisfying 0 ≤ ψ ≤ 1 and ψ = 1 in a neighborhood of Ω. We set

ãij = aijψ + λδij(1 − ψ), b̃k = bkψ, c̃ = cψ

and
L̃ = ãij(x, t)∂

2
ij + b̃k(x, t)∂k + c̃(x, t)− ∂t.

Clearly, the coefficients of L̃ satisfy the same assumptions as those of L. So in the sequel we will use the

same symbol L for L or its extension L̃.

We recall that the function

G (x, t) = (4πt)−n/2e−
|x|2

4t , x ∈ R
n, t > 0,

is usually called the Gaussian Kernel. We set

Gc(x, t) = c−1
G (

√
cx, t), c > 0.

It is important to observe that the map c→ Gc is non increasing.

We are interested in establishing a Gaussian lower bound for the Neumann Green function associated to
the operator L. More specifically, denoting by G the Neumann Green function for L, we want to prove an
estimate of the form

GC(x − ξ, t− τ) ≤ G(x, t; ξ, τ), (x, t; ξ, τ) ∈ Q2, t > τ,

where the constant C depends only on Ω, λ, T = t1 − t0 and A.

We succeed in proving that the above Gaussian lower bound holds true provided that Ω satisfies the chain
condition. That is, there exists a constant c > 0 such that for any two points x, y ∈ Ω and for any positive
integer m there exists a sequence (xi)0≤i≤m of points in Ω such that x0 = x, xm = y and

|xi+1 − xi| ≤
c

m
|x− y|, i = 0, . . . ,m− 1.

The sequence (xi)0≤i≤m is referred to as a chain connecting x and y.

We see that any convex subset of Rn satisfies the chain condition with c = 1. In two dimensional case, the

spherical shell C = B(0, 2) \B(0, 1) has the chain property with c =
√
2. This follows from the fact that any

two points of C can be connected by a broken line consisting of two segments parallel to axes of coordinates.

We point out that a C1,1-smooth domain does not possess necessarily the chain condition.

To our knowledge a Gaussian lower bound has never been established before for the Neumann Green
function of a general parabolic operator. Moreover, even in the case of parabolic operators with time-
independent coefficients, we can quote only three references: [5] when the domain is convex, [10] for smooth
domains and [22] for a compact Riemannian manifold with boundary whose Ricci curvature is bounded from
above and its boundary is convex.

A Gaussian upper bound for a general parabolic operator in divergence form was proved by Daners [11].
In [8], Choi and Kim obtained a Gaussian upper bound for a system of operators in divergence form under
the assumption that the corresponding Neumann boundary value problem possesses a De Giorgi-Nash-Moser
type estimate at the boundary. In [4], the authors established a gaussian upper bound for a Neumann Green
function corresponding to a time-dependent domain.

The problem is quite different for a Dirichlet Green function since the latter vanishes on the boundary.
One can prove in an obvious manner, with the help of the parabolic maximum principle, that a Dirichlet
Green function is non negative and dominated pointwise by a fundamental solution and so it has a Gaussian
upper bound. Aronson [2, Theorem 8, page 670] established an interior Gaussian lower bound for a Dirichlet
Green function. It is worthwhile to mention that [2, Theorem 8, page 670] can be used to extend the results of
[15, Section 3] to a general parabolic operator. In other words, one can obtain a proof of a continuity theorem
by Nash [25] and Moser-Harnack inequality [24] for a general divergence form parabolic operator, since they
rely on two-sided Gaussian bounds for the fundamental solution. Later, Cho [6], Cho, Kim and Park [7]
extended this result to a global weighted Gaussian lower bound involving the distance to the boundary. A
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Gaussian lower bound for a Dirichlet Green function when the Euclidian distance is changed by a geodesic
distance was proved by van den Berg [31, 32].

For parabolic operators with time-independent coefficients, a fundamental solution or a Green function is
reduced to a heat kernel. We mention that there is a tremendous literature dealing with Gaussian bounds
for heat kernels. We quote the classical books by Davies [12], Grigor’yan [17], Ouhabaz [27] Saloff-Coste [29]
and Stroock [30], but of course there are many other references on the subject.

As we said in the summary, the main ingredient in our analysis relies on the classical construction of
the fundamental solution by means of the so-called parametrix method. We revisit this construction in the
next section and we derive from it Gaussian two-sided bounds for the fundamental solution. In Section 3,
we prove a Gaussian lower bound for the Neumann Green function. To do so, we construct the Neumann
Green function as a perturbation of the fundamental solution by a single-layer potential. The Gaussian lower
bound is then derived from the smoothing effect of the single-layer potential.

2. The parametrix method revisited

We are concerned in this section with Gaussian two-sided bounds for the fundamental solution of Lu = 0.
For a systematic study of fundamental solutions, we refer to the classical monographs by A. Friedman [16]
and O. A. Ladyzhenskaja, V. A. Solonnikov and N. N. Ural’tzeva [20].

In the sequel P = R
n × (t0, t1).

We recall that a fundamental solution of Lu = 0 in P is a function E(x, t; ξ, τ) which is C2,1 in P 2∩{t > τ},
which satisfies

LE(· , ·; ξ, τ) = 0 in R
n × {τ < t ≤ t1}, for any (ξ, τ) ∈ R

n × [t0, t1[

and, for any f ∈ C0(R
n),

lim
tցτ

∫

Rn

E(x, t; ξ, τ)f(ξ)dξ = f(x), x ∈ R
n.

In this definition, we can also take a larger class of functions f . Namely, a class of continuous functions
satisfying a certain growth condition at infinity (see for instance [16, formulas (6.1) and (6.2), page 22]).

The construction of a fundamental solution by means of the so-called parametrix method was initiated
by E. E. Levi [21]. Let a = (aij) be the inverse matrix of (aij), |a| the determinant of a and

Z(x, t; ξ, τ) = [4π(t− τ)]−n/2
√
|a(ξ, τ)|e−

a(ξ,τ)(x−ξ)·(x−ξ)
4(t−τ) , (x, t; ξ, τ) ∈ P 2 ∩ {t > τ}.

This function is called the parametrix. It satisfies

(2.1) L0Z(· , · , ξ, τ) = 0 in R
n × {τ < t ≤ t1} for any (ξ, τ) ∈ R

n × [t0, t1[,

where
L0 = aij(ξ, τ)∂

2
ij − ∂t.

When (ξ, τ) are fixed, L0 is considered as a constant coefficients operator with respect to (x, t).

In the parametrix method we seek E, a fundamental solution of Lu = 0 in P , of the form

(2.2) E(x, t; ξ, τ) = Z(x, t; ξ, τ) +

∫ t

τ

∫

Rn

Z(x, t; η, σ)Φ(η, σ; ξ, τ)dηdσ,

where Φ is to be determined in order to satisfy LE(· , · ; ξ, τ) = 0 for any (ξ, τ) ∈ R
n × [t0, t1[.

Following [16, Formulas (4.4) and (4.5), page 14], Φ is given by the series

Φ =

∞∑

ℓ=1

Φℓ,

where Φ1(x, t; ξ, τ) = LZ(x, t; ξ, τ) and

Φℓ+1(x, t; ξ, τ) =

∫ t

τ

∫

Rn

Φ1(x, t; η, σ)Φℓ(η, σ; ξ, τ)dηdσ, ℓ ≥ 1.

Here, for simplicity, we write LZ(x, t; ξ, τ) instead of [LZ(· , · ; ξ, τ)](x, t).
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Let di, 1 ≤ i ≤ n, given by

di = di(x, t; ξ, τ) = −a
ij(ξ, τ)(xj − ξj)

2(t− τ)
, (x, t; ξ, τ) ∈ P 2 ∩ {t > τ}.

Then

∂iZ = diZ, ∂2ijZ =

[
−a

ij(ξ, τ)

2(t− τ)
+ djdi

]
Z.

Therefore, taking into account (2.1), we get

LZ = LZ − L0Z =

{
(aij(x, t)− aij(ξ, τ))

[
−a

ij(ξ, τ)

2(t− τ)
+ djdi

]
+ bkdk + c

}
Z.

We write LZ = ΨZ, where

Ψ = (aij(x, t) − aij(ξ, τ))

[
−a

ij(ξ, τ)

2(t− τ)
+ djdi

]
+ bkdk + c.

Let

M = max
i,j

‖aij‖W 1,∞(Q), N = max(max
k

‖bk‖L∞(Q), ‖c‖L∞(Q), 1).

Since

|di| ≤
|x− ξ|

2λ(t− τ)
,

|aij(x, t) − aij(ξ, τ)| ≤M(|x− ξ|+ t− τ),

we have

(2.3) |Ψ(x, t; ξ, τ)| ≤ N
1√
t− τ

P

( |x− ξ|√
t− τ

)
.

Here P is a polynomial function of degree less than three whose coefficients depend only on M .

Unless otherwise stated, all the constants we use now do not depend on N .

In light of (2.3) we obtain

|LZ| ≤ CN(t− τ)−(n+1)/2P (ρ)e−(λ/4)ρ2

= CN(t− τ)−(n+1)/2
[
P (η)e−(λ/8)ρ2

]
e−(λ/8)ρ2

,

with

ρ =
|x− ξ|√
t− τ

.

But the function ρ ∈ (0,+∞) −→ P (ρ)e−(λ/8)ρ2

is bounded. Consequently,

(2.4) |Φ1(x, t; ξ, τ)| = |LZ(x, t; ξ, τ)| ≤ NC̃(t− τ)−(n+1)/2e−
λ∗|x−ξ|2

t−τ ,

where λ∗ = λ/8.

The following lemma will be useful in the sequel. Its proof is given in [16, page 15].

Lemma 2.1. Let c > 0 and −∞ < γ, β < n/2 + 1. Then

∫ t

τ

∫

Rn

(t− σ)−γe−
c|x−η|2

t−σ (σ − τ)−βe−
c|η−ξ|2

σ−τ dηdσ

=

(
4π

c

)n/2

B(n/2− γ + 1, n/2− β + 1)(t− τ)n/2+1−γ−βe−
c|x−ξ|2

t−τ ,

where B is the usual beta function.
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We want to show

(2.5) |Φℓ(x, t; ξ, τ)| ≤ (NC̃)ℓĈℓ−1(t− τ)−(n+2−ℓ)/2
ℓ−1∏

j=1

B(1/2, j/2)e−
λ∗|x−ξ|2

t−τ , ℓ ≥ 2.

Here C̃ is the same constant as in (2.4) and Ĉ =
(
4π
λ∗

)n/2
.

As

Φ2(x, t; ξ, τ) =

∫ t

τ

∫

Rn

Φ1(x, t; η, σ)Φ1(η, σ; ξ, τ)dηdσ,

estimate (2.4) and Lemma 2.1 with γ = β = n/2+1 show that (2.5) holds true with ℓ = 2. The general case
follows by an induction argument in ℓ. Indeed, using

Φℓ+1(x, t; ξ, τ) =

∫ t

τ

∫

Rn

Φ1(x, t; η, σ)Φℓ(η, σ; ξ, τ)dηdσ,

(2.4), (2.5) for ℓ and Lemma 2.1 with γ = n/2 + 1 and β = (n+ 2− ℓ)/2, we obtain easily that (2.5) holds
true with ℓ+ 1 in place of ℓ.

If Γ is the usual gamma function, we recall that

B(1/2, j/2) =
Γ(1/2)Γ(j/2)

Γ((j + 1)/2)
.

Therefore

(2.6)

ℓ−1∏

j=1

B(1/2, j/2) =
Γ(1/2)ℓ

Γ(ℓ/2)
=

√
π
ℓ

Γ(ℓ/2)
.

Hence, (2.4)-(2.6) entail

(2.7) |Φ(x, t; ξ, τ)| ≤
∑

ℓ≥1

|Φℓ(x, t; ξ, τ)| ≤ NC̃(1 + S)(t− τ)−(n+1)/2e−
λ∗|x−ξ|2

t−τ ,

with

S =
∑

ℓ≥1

[
CN(t− τ)1/2

]ℓ
/Γ((ℓ+ 1)/2).

We have Γ((ℓ + 1)/2) = Γ(m + 1/2) ≥ Γ(m) = (m − 1)! if ℓ = 2m and Γ((ℓ + 1)/2) = Γ(m + 1) = m! if
ℓ = 2m+ 1. Then

S =
1

Γ(3/2)
[CN(t− τ)1/2]2 +

∑

m≥2

1

Γ(m+ 1/2)

[
CN(t− τ)1/2

]2m
+

∑

m≥0

1

Γ(m+ 1)

[
CN(t− τ)1/2

]2m+1

≤ 1

Γ(3/2)
[CN(t− τ)1/2]2 +

∑

m≥2

1

(m− 1)!

[
CN(t− τ)1/2

]2m
+

∑

m≥0

1

m!

[
CN(t− τ)1/2

]2m+1

.

Whence
1 + S ≤ C̃eC̃N2(t−τ).

Plugging this estimate into (2.7), we obtain

(2.8) |Φ(x, t; ξ, τ)| ≤ C̃N(t− τ)−(n+1)/2e−
λ∗|x−ξ|2

t−τ
+C̃N2(t−τ).

With the help of Lemma 2.1, estimate (2.8) yields

(2.9)

∣∣∣∣
∫ t

τ

∫

Rn

Z(x, t; η, σ)Φ(η, σ; ξ, τ)dηdσ

∣∣∣∣ ≤ C̃N(t− τ)−(n−1)/2e−
λ∗|x−ξ|2

t−τ
+C̃N2(t−τ).

Noting that this inequality can be rewritten as
∣∣∣∣
∫ t

τ

∫

Rn

Z(x, t; η, σ)Φ(η, σ; ξ, τ)dηdσ

∣∣∣∣ ≤ C̃
[
N(t− τ)1/2e−C̃N2(t−τ)

]
(t− τ)−n/2e−

λ∗|x−ξ|2

t−τ
+2C̃N2(t−τ)
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and, using that ρ→ ρe−C̃ρ2

is a bounded function on [0,+∞), we obtain

(2.10)

∣∣∣∣
∫ t

τ

∫

Rn

Z(x, t; η, σ)Φ(η, σ; ξ, τ)dηdσ

∣∣∣∣ ≤ Ĉ(t− τ)−n/2e−
λ∗|x−ξ|2

t−τ
+2C̃N2(t−τ).

An immediate consequence of (2.10) is

(2.11) |E(x, t; ξ, τ)| ≤ C̃(t− τ)−n/2e−
λ∗|x−ξ|2

t−τ
+C̃N2(t−τ).

In the rest of this section, we forsake the explicit dependence on N . So the constants below may depend
on Ω, λ, A, and T .

From (2.9) we deduce in a straightforward manner that there exists δ > 0 such that

(2.12) E(x, t; ξ, τ) ≥ Ĉ(t− τ)−n/2, (x, t; ξ, τ) ∈ P 2, t > τ, C̃|x− ξ|2 < t− τ ≤ δ.

By [16, Theorem 11, page 44], E is positive. Moreover, E satisfies the following identity, usually called the
reproducing property,

(2.13) E(x, t; ξ, τ) =

∫

Rn

E(x, t; η, σ)E(η, σ; ξ, τ)dη, x, ξ ∈ R
n, t0 ≤ τ < σ < t ≤ t1.

We can then paraphrase the proof of [15, Theorem 2.7, page 334] to get a Gaussian lower bound for E when
0 < t − τ ≤ δ. To pass from t − τ ≤ δ to t − τ ≤ T , we use again an argument based on the reproducing
property. We detail the same argument in the proof of Theorem 3.1.

We sum up our analysis in the following theorem.

Theorem 2.1. The fundamental solution E satisfies the Gaussian two-sided bounds:

(2.14) GC(x− ξ, t− τ) ≤ E(x, t; ξ, τ) ≤ GC̃(x− ξ, t− τ), (x, t; ξ, τ) ∈ P 2 ∩ {t > τ}.
Remark 2.1. Let us assume that conditions (i)-(iv) above hold in all of the whole space R

n × R instead of
Q only. Taking into account the exponential term in N2 in (2.11), we prove, once again with the help of the
reproducing property, the following global estimate in time:

(2.15) e−κN2(t−τ)
GC(x− ξ, t− τ) ≤ E(x, t; ξ, τ) ≤ eκN

2(t−τ)
GC̃(x− ξ, t− τ),

for some constant κ > 0, where (x, t; ξ, τ) ∈ (Rn × R)2.

We point out that (2.15) does not give the two-sided Gaussian bounds by Fabes and Stroock [15] for the
divergence form operator ∂i(aij(x, t)∂j · ) − ∂t with (C∞-) smooth coefficients. This is not surprising since
the arguments we used for proving (2.15) are not well adapted to divergence form operator. We note however
that the approach developed in [15] for establishing Gaussian two-sided bounds is more involved.

Gaussian two-sided bounds were obtained by S. D. Eidel’man and F. O. Porper [13] when the coefficients
of L satisfy the uniform Dini condition with respect to x. The main tool in [13] is a parabolic Harnack
inequality. We refer also to [1], [14], [19] and [26], where the reader can find various results on bounds for
the fundamental solution.

We mentioned in the Introduction that the Moser-Harnack inequality in [15] can be extended to a general
divergence form parabolic operator. Let us show briefly how this Moser-Harnack inequality still holds for a
general parabolic operator. First, we recall that a Dirichlet Green function was constructed in [20, formula
(16.7), page 408] as a perturbation of the fundamental solution by a double-layer potential. Therefore, in
light of [20, formula (16.10), page 409] and [20, estimate (16.14), page 411], we can assert that [15, Lemma
5.1] remains true for our L. Next, paraphrasing the proofs of [15, Lemma 5.2 and Theorem 5.4] (more
detailed proofs are given in [30]), we can state the following Moser-Harnack inequality.

Theorem 2.2. Let η, µ, ̺ ∈ (0, 1). Then there is M > 0, depending on n, λ, A, η, µ and ̺ such that for all

(x, s) ∈ R
n × R, all R > 0 and all non negative u ∈ C2,1(B(x,R)× [s−R2, s]) satisfying Lu = 0 one has

u(y, t) ≤Mu(x, s) for all (y, t) ∈ B(x, ̺R)× [s− ηR2, s− µR2].



GAUSSIAN TYPE BOUNDS 7

3. Gaussian lower bound for the Neumann Green function

We recall that the derivative of U = U(x, t) at (x, t) ∈ ∂Ω× [t0, t1] in the conormal direction is given by

∂νU(x, t) = aij(x, t)nj(x)∂iU(x, t),

where n(x) = (n1(x), . . . ,nn(x)) is the unit outward normal vector at x.

For τ ∈ [t0, t1[, we set Qτ = Ω× (τ, t1), Στ = ∂Ω× (τ, t1) and we consider the Neumann initial-boundary
value problem (abbreviated to IBVP in the sequel) for the operator L:

(3.1)





Lu = 0 in Qτ ,
u(· , τ) = ψ in Ω,
∂νu = 0 on Στ .

From [16, Theorem 2, page 144] and its proof, for any ψ ∈ C∞
0 (Ω), the IBVP (3.1) has a unique solution

u ∈ C1,0(Qτ ) ∩ C2,1(Qτ ) given by

(3.2) u(x, t) =

∫ t

τ

∫

∂Ω

E(x, t; ξ, σ)ϕ(ξ, σ)dξdσ +

∫

Ω

E(x, t; ξ, τ)ψ(ξ)dξ.

Here

(3.3) ϕ(x, t) = Fτ (x, t) − 2
∑

ℓ≥1

∫ t

τ

∫

∂Ω

Mℓ(x, t; ξ, σ)Fτ (ξ, σ)dξdσ,

with

Fτ (x, t) = −2

∫

Ω

∂νE(x, t; ξ, τ)ψ(ξ)dξ,

M1 = −2∂νE,

Mℓ+1(x, t; ξ, τ) =

∫ t

τ

∫

∂Ω

M1(x, t; η, σ)Mℓ(η, σ; ξ, τ)dηdσ.

For (x, t) ∈ Στ and ξ ∈ Ω, let

N (x, t; ξ, τ) = −2∂νE(x, t; ξ, τ) − 2
∑

ℓ≥1

∫ t

τ

∫

∂Ω

Mℓ(x, t; η, σ)∂νE(η, σ; ξ, τ)dηdσ.

Assume for the moment (see the proof below) that

(3.4) ϕ(x, t) =

∫

Ω

N (x, t; ξ, τ)ψ(ξ)dξ.

We set

(3.5) G(x, t, ξ, τ) =

∫ t

τ

∫

∂Ω

E(x, t; η, σ)N (η, σ; ξ, τ)dηdσ + E(x, t; ξ, τ).

It follows from Fubini’s theorem that

(3.6) u(x, t) =

∫

Ω

G(x, t; ξ, τ)ψ(ξ)dξ.

The function G is called the Neumann Green function associated to the equation Lu = 0 in Q.

We have, for any 0 ≤ ψ ∈ C∞
0 (Ω), u ≥ 0, according to the maximum principle (see for instance [23,

Theorem 2.9, page 15] and remarks following it). Whence, G ≥ 0.

From the uniqueness of the solution of the IBVP (3.1), we have also
∫

Ω

G(x, t; ξ, τ)ψ(ξ)dξ =

∫

Ω

G(x, t; η, σ)dη

∫

Ω

G(η, σ; ξ, τ)ψ(ξ)dξ for any ψ ∈ C∞
0 (Ω), τ < σ < t.
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Therefore,

(3.7) G(x, t; ξ, τ) =

∫

Ω

G(x, t; η, σ)G(η, σ; ξ, τ)dη, τ < σ < t.

That is, G has the reproducing property.

We note that when c = 0, G satisfies in addition
∫

Ω

G(x, t; ξ, τ)dξ = 1.

The key point in the proof of our Gaussian lower bound for G is the following lemma.

Lemma 3.1. For 1/2 < µ < n
2 , we have

(3.8) |N (x, t; ξ, τ)| ≤ C(t− τ)−µ|x− ξ|−n+2µ, (x, t) ∈ Στ , ξ ∈ Ω, x 6= ξ.

The lemma below appears in [16, page 137] as Lemma 1. It is needed for proving Lemma 3.1.

Lemma 3.2. Let 0 < a, b < n− 1 with a+ b 6= n− 1. Then

(3.9)

∫

∂Ω

|x− η|−a|η − ξ|−bdη ≤
{

Ĉ|x− ξ|n−1−(a+b) if a+ b > n− 1

Ĉ if a+ b < n− 1.

Proof of Lemma 3.1. Since Ω is of class C1,1, we obtain by paraphrasing the proof of [16, formula (2.12),
page 137]:

|∂νE(x, t; ξ, τ)| ≤ C(t− τ)−µ|x− ξ|−n+2µ,

for any µ > 0, and then

(3.10) |M1(x, t; ξ, τ)| ≤ C(t− τ)−µ|x− ξ|−n+2µ.

We assume first that 1/2 < µ < 1. Since

|M2(x, t; ξ, τ)| ≤
∫ t

τ

∫

∂Ω

|M1(x, t; η, σ)||M1(η, σ; ξ, τ)|dηdσ,

Hence, (3.10) leads

(3.11) |M2(x, t; ξ, τ)| ≤ C2

∫ t

τ

(t− σ)−µ(σ − τ)−µdσ

∫

∂Ω

|x− η|−n+2µ|ξ − η|−n+2µdη.

By Lemma 3.2,

(3.12)

∫

∂Ω

|x− η|−n+2µ|ξ − η|−n+2µdη ≤
{
Ĉ|x− ξ|−n+4µ−1 if n ≥ 3 or n = 2 and 1

2 < µ < 3
4 ,

Ĉ if n = 2 and 3
4 < µ < 1.

On the other hand

(3.13)

∫ t

τ

(t− σ)−µ(σ − τ)−µdσ = (t− τ)−µ+(1−µ)

∫ 1

0

s−µ(1 − s)1−µds = (t− τ)−µ+(1−µ)B(1− µ, 1− µ).

We plug (3.12) and (3.13) into (3.11), and we obtain

|M2(x, t; ξ, τ)| ≤ C2Ĉ(t− τ)−µ+(1−µ)B(1− µ, 1− µ)|x− ξ|−n+2µ+(2µ−1), if n ≥ 3 or n = 2 and
1

2
< µ <

3

4

and

|M2(x, t; ξ, τ)| ≤ C2Ĉ(t− τ)−µ+(1−µ)B(1 − µ, 1− µ), if n = 2 and
3

4
< µ < 1.

Let ℓ(n) be the smallest integer ℓ so that n+ 1 < 2ℓ and fix n+1
2ℓ(n) < µ < 1. Then an induction argument

yields

|Mℓ(x, t; ξ, τ)| ≤ CℓĈℓ−1(t− τ)−µ+(ℓ−1)(1−µ) Γ(1− µ)ℓ

Γ(ℓ(1− µ))
, ℓ ≥ ℓ(n).
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By Stirling’s formula

Γ(ℓ(1− µ)) ∼ (e−1(ℓ(1− µ)− 1))ℓ(1−µ)−1
√
2π(ℓ(1− µ)− 1)) as ℓ→ +∞,

implying that the series

S =
∑

ℓ≥ℓ(n)

CℓĈℓ−1T−µ+(ℓ−1)(1−µ) Γ(1− µ)ℓ

Γ(ℓ(1− µ))

converges.

Clearly,

|N (x, t; ξ, τ)| ≤
ℓ(n)−1∑

ℓ=1

|Mℓ(x, t; ξ, τ)| + S.

Therefore, it is enough to prove that

Ñ (x, t; ξ, τ) =

ℓ(n)−1∑

ℓ=1

|Mℓ(x, t; ξ, τ)|

satisfies (3.8). To this end, we observe that

|M2(x, t; ξ, τ)| ≤
∫ (τ+t)/2

τ

∫

∂Ω

|M1(x, t; η, σ)||M1(η, σ; ξ, τ)|dηdσ

+

∫ t

(τ+t)/2

∫

∂Ω

|M1(x, t; η, σ)||M1(η, σ; ξ, τ)|dηdσ.

Assume that 1/2 < µ < n/2 and pick 1/2 < α < min(1, (n/2− µ) + 1/2). From Lemma 3.2, we have
∫ (τ+t)/2

τ

∫

∂Ω

|M1(x, t; η, σ)||M1(η, σ; ξ, τ)|dηdσ ≤ C2

∫ (τ+t)/2

τ

(σ − τ)−α(t− σ)−µdσ

∫

∂Ω

|x− η|−n+2µ|ξ − η|−n+2αdη

≤ C2

(
t− τ

2

)−µ ∫ (τ+t)/2

τ

(σ − τ)−αdσ|x − ξ|−n+2µ+2α−1

≤ C2

(
t− τ

2

)−µ−α+1

|x− ξ|−n+2µ+2α−1

≤ C′(t− τ)−µ|x− ξ|−n+2µ.

Similarly, ∫ t

(τ+t)/2

∫

∂Ω

|M1(x, t; η, σ)||M1(η, σ; ξ, τ)|dηdσ ≤ C(t− τ)−µ|x− ξ|−n+2µ.

Thus, M2 satisfies (3.8). We repeat the previous argument to deduce that also Ñ obeys (3.8). �

Proof of (3.4). Let

Nk(x, t; ξ, τ) = −2∂νE(x, t; ξ, τ) − 2

k∑

ℓ≥1

∫ t

τ

∫

∂Ω

Mℓ(x, t; η, σ)∂νE(η, σ; ξ, τ)dηdσ,

ϕk(x, t) = −2Fτ (x, t)− 2
k∑

ℓ≥1

∫ t

τ

∫

∂Ω

Mℓ(x, t; ξ, σ)Fτ (ξ, σ)dξdσ.

In light of Lemma 3.2 and with the help of Lebesgue’s dominated convergence theorem, we can assert that
∫

Ω

Nk(x, t; ξ, τ)ψ(ξ)dξ −→
∫

Ω

N (x, t; ξ, τ)ψ(ξ)dξ as k −→ +∞.
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According to Funini’s theorem

ϕk(x, t) =

∫

Ω

Nk(x, t; ξ, τ)ψ(ξ)dξ.

But ϕk(x, t) → ϕ(x, t) when k tends to infinity. Then the uniqueness of the limit yields

ϕ(x, t) =

∫

Ω

N (x, t; ξ, τ)ψ(ξ)dξ.

�

We are now ready to prove

Theorem 3.1. Under the assumption that Ω obeys the chain condition, the Neumann Green function G
satisfies the Gaussian lower bound:

(3.14) GC(x− ξ, t− τ) ≤ G(x, t; ξ, τ), (x, t; ξ, τ) ∈ Q2 ∩ {t > τ}.
Proof. Let

G0(x, t; ξ, τ) =

∫ t

τ

∫

∂Ω

E(x, t; η, σ)N (η, σ; ξ, τ)dηdσ.

From the Gaussian upper bound for E we obtain in a straightforward way that, for any β > 0,

|E(x, t; ξ, τ)| ≤ C(t− τ)−β |x− ξ|−n+2β.

On the other hand, by Lemma 3.1,

|N (η, σ; ξ, τ)| ≤ C(t− τ)−µ|x− ξ|−n+2µ.

where 1
2 < µ < n

2 .

We fix 0 < ǫ < 1
2 and 0 < α < 1

2 . In the preceding inequalities, we take µ = n
2 − ǫ and β = 1 + ǫ− α. In

light of the fact that −n+ 2µ+ 2β − 1 = 1− 2α > 0, we get from Lemma 3.2

|G0(x, t; ξ, τ)| ≤ C(t− τ)−n/2+α.

But, we know from (2.12) that

E(x, t; ξ, τ) ≥ C(t− τ)−n/2, (x, t; ξ, τ) ∈ P 2, t > τ, Ĉ|x− ξ|2 < t− τ.

Hence,

G(x, t; ξ, τ) ≥ E(x, t; ξ, τ) − |G0(x, t; ξ, τ)|
≥ C(t− τ)−n/2(1− C̃(t− τ)α), t > τ, Ĉ|x− ξ|2 < t− τ.

Consequently, we find δ > 0 so that

G(x, t; ξ, τ) ≥ C(t− τ)−n/2, (x, t; ξ, τ) ∈ Q2, 0 < t− τ ≤ δ, C̃|x− ξ|2 < t− τ.

Or equivalently

(3.15) G(x, t; ξ, τ) ≥ C(t− τ)−n/2, (x, t; ξ, τ) ∈ Q2, 0 < t− τ ≤ δ, |x− ξ| < Ĉ(t− τ)1/2.

As Ω has the chain condition, there exists a constant c > 0, independent on x and ξ, such that for any
positive integer k there exists a sequence (xi)0≤i≤k of points in Ω so that x0 = x, xk = ξ and

(3.16) |xi+1 − xi| ≤
c

k
|x− ξ|, 0 ≤ i ≤ k − 1.

When 2c|x − ξ| ≤ Ĉ(t − τ)1/2 (implying |x − ξ| ≤ Ĉ(t − τ)1/2), (3.14) follows immediately from (3.15).

Therefore we may assume that 2c|x−ξ| > Ĉ(t−τ)1/2. We choose m ≥ 2 to be the smallest integer satisfying

2c
|x− y|
m1/2

≤ Ĉ(t− τ)1/2.
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Let (xi)0≤i≤m be the sequence given by (3.16) when k = m and

r =
1

4
Ĉ

(
t− τ

m

)1/2

.

In light of the reproducing property and the positivity of G, we obtain

G(x, t; ξ, τ) =

∫

Ω

. . .

∫

Ω

G

(
x, t; ξ1,

(m− 1)t+ τ

m

)
. . . G

(
ξm−1,

t+ (m− 1)τ

m
; ξ, τ

)
dξ1 . . . dξm−1

≥
∫

B(x1,r)∩Ω

. . .

∫

B(xm−1,r)∩Ω

G

(
x, t; ξ1,

(m− 1)t+ τ

m

)
. . .

. . . G

(
ξm−1,

t+ (m− 1)τ

m
; ξ, τ

)
dξ1 . . . dξm−1.(3.17)

Using that Ω is C1,1-smooth, we obtain from the result in Appendix A: there exist two positive constants
d and r0 such that, for any z ∈ Ω and 0 < ρ ≤ r0,

(3.18) dρn ≤ |B(z, ρ) ∩ Ω|.
We mention that Choi and Kim [8] observed that this condition is necessary for domains having a De
Giorgi-Nash-Moser type estimate at the boundary.

In the sequel, replacing Ĉ by a smaller constant, we may assume that r ≤ r0.

Let ξ0 = x, ξi ∈ B(xi, r) and ξm = ξ. Then we have

|ξi+1 − ξi| ≤ |xi+1 − xi|+ 2r ≤ c
|x− ξ|
m

+ 2r ≤ c
|x− ξ|
m1/2

+ 2r ≤ 4r, 0 ≤ i ≤ m− 1.

Whence,

|ξi+1 − ξi| ≤ Ĉ

(
t− τ

m

)1/2

, 0 ≤ i ≤ m− 1.

It follows from (3.15) and (3.18) that

G(x, t; ξ, τ) ≥
∫

B(x1,r)∩Ω

. . .

∫

B(xm−1,r)∩Ω

Cm

(
t− τ

m

)−nm/2

dξ1 . . . dξm−1

≥ (drn)m−1Cm

(
t− τ

m

)−nm/2

≥ dm−1

[
Ĉ2

16

(
t− τ

m

)]n(m−1)/2

Cm

(
t− τ

m

)−nm/2

≥ C̃Cm(t− τ)−n/2.

Hence

(3.19) G(x, t; ξ, τ) ≥ C̃e−Cm(t− τ)−n/2.

From the definition of m, we have

(3.20) m− 1 ≤
(
2c

Ĉ

)2 |x− y|2
t− τ

.

Finally, a combination of (3.19) and (3.20) leads to (3.14) when t− τ ≤ δ.

We complete the proof by showing that we can remove the assumption t − τ ≤ δ in (3.15). Let then
0 < t− τ ≤ T , such that t− τ > δ, and let m ≥ 2 be the smallest integer such that δ−1(t− τ) ≤ m. We set

(3.21) r = r0T
−1/2m−1/2(t− τ)1/2
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and we denote by p the smallest integer satisfying

2cD

rm
≤ p, with D = diam(Ω).

If we choose k = pm in (3.16), we obtain

|xi+1 − xi| ≤
c|x− ξ|
pm

≤ cD

pm
≤ r/2.

Let us denote by (3.17∗) the inequality (3.17) in which we take r/2 in place of r, with r given as in (3.21),
and m changed by pm.

Taking into account that

p < 1 + 2cDr−1
0 T 1/2δ−1/2 = p∗,

we get, for ξi ∈ B(xi, r), 1 ≤ i ≤ m− 1.

(3.22)
pm|ξi+1 − ξi|2

t− τ
≤ pmr2

t− τ
< p∗r20T

−1.

As (pm)−1(t− τ) ≤ δ, (3.14) holds true. Therefore, in light of (3.22), we obtain from (3.17∗)

G(x, t; ξ, τ) ≥
(
d
[
2−1r0T

−1/2m−1/2(t− τ)1/2
]n)pm−1

Cpm
[
(pm)−1(t− τ)

]−pnm/2

≥
(
d
[
2−1r0T

−1/2
]n)pm−1

Cpmmn/2ppnm/2(t− τ)−n/2

≥
(
d
[
2−1r0T

−1/2
]n)pm−1

(t− τ)−n/2

≥ C̃Ĉpm(t− τ)−n/2

≥ C̃e−pm| ln Ĉ|(t− τ)−n/2

≥ C̃e−p∗m∗| ln Ĉ|(t− τ)−n/2, with m∗ = δ−1T + 1.

This estimate completes the proof. �

Theorem 3.1 can be easily extended to a Robin Green function. Indeed, if we replace the Neumann
boundary condition by the following Robin boundary condition:

∂νu+ q(x, t)u = 0 in Στ ,

where q ∈ C(Στ ), then N has to be changed by

Nq(x, t; ξ, τ) = −2[∂νE(x, t; ξ, τ) + q(x, t)E(x, t; ξ, τ)]

− 2
∑

ℓ≥1

∫ t

τ

∫

∂Ω

Mℓ(x, t; η, σ)[∂νE(η, σ; ξ, τ) + q(η, σ)E(η, σ; ξ, τ)]dηdσ.

Here

M1(x, t; ξ, τ) = −2[∂νE(x, t; ξ, τ) + q(x, t)E(x, t; ξ, τ)]

Mℓ+1(x, t; ξ, τ) =

∫ t

τ

∫

∂Ω

M1(x, t; η, σ)Mℓ(η, σ; ξ, τ)dηdσ, ℓ ≥ 1.

Apart the positivity of the Green function, which can be obtained by an adaptation of [9, Proposition 3.2],
one can see without any difficulty, that the rest of our analysis holds true when N is replaced by Nq.

We already mentioned that, for parabolic operators with time-independent coefficients, a Neumann Green
function is nothing else but a Neumann heat kernel. Let us then consider a parabolic operator of the form

(3.23) L = ∂j(aij(x)∂i · ) + bk(x)∂k + c(x) − ∂t,



GAUSSIAN TYPE BOUNDS 13

so that the following assumptions are satisfied:

(i′) the matrix (aij(x)) is symmetric for any x ∈ Ω,

(ii′) aij ∈W 1,∞(Ω), ∂kaik, bk, c ∈ C1(Ω),

(iii′) aij(x)ξiξj ≥ λ|ξ|2, (x, t) ∈ Ω, ξ ∈ R
n,

(iv′) ‖aij‖W 1,∞(Ω) + ‖∂kaik + bk‖L∞(Ω) + ‖c‖L∞(Ω) ≤ A,

where λ > 0 and A > 0 are two given constants.

Here again, the assumptions on the coefficients of L are not necessarily the best possible.

Let a be the unbounded bilinear form defined by D(a) = H1(Ω) and

a(u, v) =

∫

Ω

aij∂iu∂jvdx+

∫

Ω

bk∂kuvdx+

∫

Ω

cuvdx, u, v ∈ D(a).

We associate to a the unbounded operator A given by

D(A) = {u ∈ L2(Ω); ∃v ∈ L2(Ω) : a(u, ϕ) = (v, ϕ)2, ϕ ∈ H1(Ω)}, Au := v.

Here (·, ·)2 denotes the usual scalar product of L2(Ω).

We have ∫

Ω

bk∂kuu ≤ 2

λ

∫

Ω

|∇u|2 +
(
8 supk ‖bk‖L∞(Ω)

λ

)∫

Ω

u2, u ∈ H1(Ω).

This and (iii′) entail that a+κ is accretive for a sufficiently large κ > 0. Since a is clearly densely defined and
continuous on H1(Ω), we derive from [27, Theorem 1.52, page 29] that −A is the generator of an holomorphic
semigroup e−tA.

Let Q = Ω× (0, T ), Σ = ∂Ω× (0, T ), ψ ∈ C∞
0 (Ω) and u ∈ C1,0(Q) ∩ C2,1(Q) ([16, Theorem2, page 144])

be the unique solution of the IBVP

(3.24)





Lu = 0 in Q,
u(· , 0) = ψ in Ω,
∂νu = 0 on Σ.

By [3, Theorem 10.9, page 341], u ∈ L2(0, T ;H1(Ω) ∩ C([0, T ];L2(Ω)), u′ ∈ L2(0, T ; [H1(Ω)]′) and it is
the unique solution of

(3.25)

{
〈u′(t), v〉+ a(u(t), v) = 0 a.e. t ∈ [0, T ], v ∈ H1(Ω),
u(0) = ϕ

where 〈·, ·〉 is the duality pairing between H1(Ω) and its dual space [H1(Ω)]′.

We set ũ(t) = e−tAψ, t ≥ 0. By using ũ′(t) = Au(t), t ∈ [0, T ], we obtain in a straightforward manner

〈ũ′(t), v〉+ a(ũ(t), v) = 0, t ∈ [0, T ], v ∈ H1(Ω),

Using that u(0) = ũ(0), we get from the uniqueness of the solution of problem (3.25) that u = ũ. Hence,

e−tAψ(x) =

∫

Ω

G(x, t; ξ, 0)ψ(ξ)dξ, 0 < t ≤ T.

We rewrite this equality as follows:

e−tAψ(x) =

∫

Ω

K(x, ξ, t)ψ(ξ)dξ, 0 < t ≤ T.

The function

K(x, ξ, t) = G(x, t; ξ, 0)

is usually called the heat kernel of the semigroup e−tA.

We have as an immediate consequence of Theorem 3.1:
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Corollary 3.1. When Ω possesses the chain condition, the Neumann heat kernel K satisfies the Gaussian

lower bound:

(3.26) GC(x − ξ, t) ≤ K(x, ξ, t), (x, ξ) ∈ Ω2, 0 < t ≤ T.

A Gaussian lower bound for the Neumann heat kernel was proved in [10] when L is the Laplace operator.
The key point is the Hölder continuity of x −→ K(x, ξ, t) which relies on the fact that µ−A is an isomorphism
from Hs(Ω) into Hs−2(Ω), for large µ and s > n/2 + 1. We note that a quick examination of the proof in
[10] shows that this result can be extended to a divergence form operator with C∞-smooth coefficients.

We end this section by showing that we can obtain a strong maximum from Theorem 3.1. Let ψ ∈ C(Ω),
f ∈ C(Qτ ), g ∈ C(Στ ) and consider the IBVP

(3.27)





Lu = f in Qτ ,
u(· , τ) = ψ in Ω,
∂νu = g on Στ .

Corollary 3.2. We assume that ψ ≥ 0, f ≥ 0, g ≥ 0 and at least one of the functions ψ, f and g is non

identically equal to zero. If u ∈ C0,1(Qτ ) ∩ C2,1(Qτ ) is the solution of the IBVP (3.27), then

u > 0 in Ω×]τ, t1].

Proof. Follows from Theorem 3.1 since (see for instance [16, formula (3.5), page 144])

u(x, t) =

∫

Ω

G(x, t; ξ, τ)ψ(ξ)dξ +

∫ t

τ

∫

Ω

G(x, t; ξ, s)f(ξ, s)dξds +

∫ t

τ

∫

∂Ω

G(x, t; ξ, s)g(ξ, s)dSξds.

�

Appendix A

In this appendix we prove (3.18). Henceforth, Ω is a bounded domain of Rn with boundary Γ.

Following [18, Definition 2.4.1, page 50], we introduce the notation

C (y, ξ, ǫ) = {z ∈ R
n; (z − y) · ξ ≥ (cos ǫ)|z − y|, 0 < |y − z| < ǫ},

where y ∈ R
n, ξ ∈ S

n−1 and 0 < ǫ. That is, C(y, ξ, ǫ) is the cone, of dimension ǫ, with vertex y, aperture ǫ
and directed by ξ.

We say that Ω has the ǫ-cone property if

(A.1) for any x ∈ Γ, there exists ξx ∈ S
n−1 so that, for all y ∈ Ω ∩B(x, ǫ), C (y, ξx, ǫ) ⊂ Ω.

Assume that Ω has the ǫ-cone property, for some 0 < ǫ. By using the compactness of Γ, we find a
finite number of points of Γ, x1, . . . xp, so that Γ =

⋃
k [Γ ∩B(xk, ǫ/2)] and (A.1) is satisfied for each xi,

i = 1, . . . , p. Let K = Ω \⋃k B(xk, ǫ/2). Then, 0 < ̺ = dist(K,Γ)(< ǫ) and therefore, for each x ∈ K, we

have B(x, ̺) ⊂ Ω. We deduce from this observation that, for each x ∈ Ω and 0 < r < ̺, Ω∩B(x, r) contains
a cone of dimension r and aperture ǫ. It is then straightforward to get the following inequality:

|Ω ∩B(x, r)| ≥ crn, 0 < r < ̺,

for some constant c = c(n, ̺).

We complete the proof of (3.18) by using the following theorem.

Theorem A.1. Ω has the ǫ-cone property, for some 0 < ǫ, if and only if its boundary Γ is Lipschitz.

We refer to [18, Theorem 2.4.7, page 53] for a detailed proof of this theorem.
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