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Lectures on DG-categories

Toén Bertrand

1 Introduction

The purpose of these four lectures is to provide an introduction to the theory of
dg-categories.

There are several possible point of views to present the subject, and my choice
has been to emphasised its relations with the localization problem (in the sense of
category theory). In the same way than the notion of complexes can be introduced
for the need of derived functors, dg-categories will be introduced here for the need of
a "derived version” of the localization construction. The purpose of the first lecture
is precisely to remind the notion of the localization of a category and to try to explain
its bad behaviour throught several examples. In the second part of the first lecture |
will introduce the notion of dg-categories and quasi-equivalences, and explain how
they can be used in order to state a refined version of the notion of localization. The
existence and properties of this new localization will be studied in the next lectures.

The second lecture is concerned with reminders about model category theory, and
its applications to the study of dg-categories. The first part is a very brief overview of
the basic notions and results of the theory, and the second part presents the specific
model categories appearing in the context of dg-categories.

Lecture three goes into the heart of the subject and is concerned with the study of
the homotopy category of dg-categories. The key result is a description of the set of
morphisms in this homotopy category as the set of isomorphism classes of certain
objects in a derived category of bi-modules. This result possesses several important
consequences, such as the existence of localizations and of derived internal Homs
for dg-categories. The very last part of this third lecture presents the notion of trian-
gulated dg-categories, which is a refined (and better) version of the usual notion of
triangulated categories.

Toén Bertrand
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2 Toén Bertrand

The last lecture contains few applications of the general theory explaining how
the problems with localization mentioned in the first lecture are solved when work-
ing with dg-categories. We start to show that triangulated dg-categories have functo-
rial cones, unlike the case of triangulated categories. We also show that many invari-
ants (such as K-theory, Hochschild homology, ...) are invariant of dg-categories,
thought it is know that they are not invariant of triangulated categories. We also give
a gluing statement, providing a way to glue objects in dg-categories in a situation
where it is not possible to glue objects in derived categories. To finish | will present
the notion of saturated dg-categories and explain how they can be used in order to
define a "secondary K-theory”.

2 Lecture 1: Dg-categories and localization

The purpose of this first lecture is to explain one motivation for working with dg-
categories concerned with the localization construction in category theory (in the
sense of Gabriel-Zisman, see below). | will start by presenting some very concrete
problems often encountered when using the localization construction. In a second
part | will introduce the homotopy category of dg-categories, and propose it as a
setting in order to define a better behaved localization construction. This homotopy
category of dg-categories will be further studied in the next lectures.

2.1 The Gabriel-Zisman localization

Let C be a category anBbe a subset of the set of morphismssh A localization
of C with respect to & the data of a categoy 1C and a functor

|:c—S1c

satisfying the following property: for any categddythe functor induced by com-
position withl
I* : Hom(S!C,D) — Hom(C, D)

is fully faithful and its essential image consists of all functbrsC — D such that
f(s) is an isomorphism i for anys € S (hereHom(A, B) denotes the category of
functors from a categor# to another categori).

Using the definition it is not difficult to show that if a localization exists then it
is unique, up to an equivalence of categories, which is itself unique up to a unique
isomorphism. It can also be proved that a localization always exists. On possible

1 In these lectures | will not take into account set theory problems, and will do as if all categories
aresmallThese set theory problems can be solved for instance by fixing Grothendieck universes.
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proof of the existence of localizations is as follows. Ldte the category with two
objects 0 and 1 and a unique morphism0 — 1. In the same way, let be the
category with two objects 0 and 1 and with a unique isomorphisi®— 1. There
exists a natural functdr — 1 sending 0 to 0, 1 to 1 andto U. Let nowC be a
category ands be a set of morphisms i@. For anys € S, with sourcex € C and
targety € C, we define a functoig : | — C sending 0 tk, 1 toy anduto s. We get
this way a diagramm of categories and functors

0|

|—|S€S| — UST

We consider this as a diagramm in the category of categories (objects are categories
and morphisms are functors), and we form the push-out

C——C

g

USESI - |_|ST

It is not hard to show that for any categddythe category of functoidom(C’, D) is
isomorphicto the full sub-category aflom(C, D) consiting of all functors sending
elements o5to isomorphisms i. In particular, the induced funct@ — C’ is a
localization in the sense we defined above.

The only non-obvious point with this argument is the fact that the category of
categories possesses push-outs and even all kind of limits and colimits. One possi-
ble way to see this is by noticing that the category of small categories is monadic
over the category of (oriented) graphs, and to use a general result of existence of
colimits in monadic categories (see e.g. [EKMM, II-Prop. 7.4]).

In general localization are extremely difficult to describe in a useful manner, and
the existence of localizations does not say much in practice (thought it is sometimes
useful to know that they exist). The push-out constructions mentioned above can be
explicited to give a description of the localizati@. Explicitly, C' has the same
objects a<€ itself. Morphisms between two objectandy in C' are represented by
strings of arrows irC

X X1 X2 X3 e Xn Y,

for which all the arrows going backwards are assumed to BeTo get the right set

of morphisms irC’ we need to say when two such strings define the same morphism
(see [G-Z§l.1.1] for details). This description for the localization is rather concrete,
however it is most often useless in practice.
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The following short list of examples show that localized categories are often en-
countered and provide interesting categories in general.

Examples:

1. If all morphisms inS are isomorphisms then the identity functor— C is a
localization.

2. If Sconsists of all morphisms i@, thenS~C is the groupoid completion .
WhenC has a unique objet with a monold of endomorphisms, the® 1C has
unique object with the grould ™ as automorphism$/ " is the group completion
of the monoidV).

3. LetR be a ring andC(R) be the category of (unbounded) complexes dwer
Its objects are families oR-modules{E"}cz together with maps" : E" —
E™1 such thad™1d" = 0. Morphisms are simply families of morphisms com-
muting with thed’s. Finally, for E € C(R), we can define it:1-th cohomol-
ogy by H"(E) := Ker(d")/Im(d"~), which is anR-module. The construction
E — H"(E) provides a functoH" from C(R) to R-modules.

A morphismf : E— F in C(R) is called aquasi-isomorphisnif for all i € Z
the induced map . _ ‘
H'(f):H'(E) — H'(F)

is an isomorphism. We les be the set of quasi-isomorphisms@{R). Then

S IC(R) is the derived categoryof R and is denoted by (R). Understanding

the hidden structures of derived categories is one of the main objectives of dg-
category theory.

Any R-moduleM can be considered as a complex concentrated in degree 0, and
thus as an object iB(R). More generally, ifr € Z, we can consider objed[n]

which the complex concentrated in degra and with valuedv. It can be shown

that for twoR-modulesM andN there exists a natural isomorphism

Hompr) (M, N[n]) ~ Ext"(M,N).

4. LetCatbe the category of categories: its objects are categories and its morphisms
are functors. We leSbe the set of categorical equivalences. The localization cat-
egory S ICat is called thehomotopy category of categoriel$ can be shown
quiete easily tha 'Cat is equivalent to the category whose objetcs are cate-
gories and whose morphismes are isomorphism classes of functors (see exercice
2).

5. LetTopbe the category of topological spaces and continuous maps. A morphism
f : X — Y is called awveak equivalenci it induces isomorphisms on all homo-
topy groups (with respect to all base points)Sienotes the set of weak equiv-
alences theS Topis called thenomotopy category of spacdscan be shown
thatS 1Topis equivalent to the category whose objects@vé-complexes and
whose morphisms are homotopy classes of continuous maps.

One comment before going on. Let us denoteHmyCat) the categons 'Cat
considered in exampl@l) above. LeC be a category an8be a set of morphisms



Lectures on DG-categories 5

in C. We define a functor
F : Ho(Cat) — Set

sending a categofy to the set of all isomorphism classes of functrs— D send-

ing Sto isomorphisms. The functd¥ is therefore a sub-functor of the functif
corepresented bg. Another way to consider localization is by stating that the func-
tor F is corepresentable by an objet'C € Ho(Cat). This last point of view is a

bit less precise as the original notion of localizations, as the oBje& satisfies a
universal property only on the level of isomorphism classes of functors and not on
the level of categories of functors themselves. However, this point of view is often
useful and enough in practice.

Exercice 1 Let C and D be two categories and S (resp. T) be a set of morphisms in
C (resp. in D) containing the identities.

1. Prove that the natural functor
CxD— (SC)x(T7!D)

is a localization of Cx D with respect to the set:ST. In other worddocaliza-
tions commutes with finite products
2. We assume that there exists two functors

f:C—D C—D:g

with f(S) C T and dT) C S. We also assume that there exists two natural trans-
formations h fg=-id and k: gf = id such that for any x C (resp. ye D) the
morphism Ky) : g(f(x)) — x (resp. Hy) : f(g(y)) —y)isin S (resp.in T). Prove
that the induced functors

f:s'c—T1D slc—TD:g

are equivalences inverse to each others.
3. If S consists of all morphisms in C and if C has a final or initial object then
C — x is a localization of C with respect to S.

Exercice 2 Let Cat be the category of categories and functor, and[@zt] be

the category whose objects are categories and whose morphism are isomorphism
classes of functors (i.e. Hggyy (C, D) is the set of isomorphism classes of objects

in Hom(C, D)). Show that the natural projection

Cat — [Cat]

is a localization of Cat along the subset of equivalences of categories (prove directly
that it has the correct universal property).
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2.2 Bad behavior of the Gabriel-Zisman localization

In these lectures we will be mainly interested in localized categories of the type
D(R) for some ringR (or some more general object, see lecture 2). | will therefore
explain the bad behaviour of the localization using examples of derived categories.
However, this bad behaviour is a general fact and also apply to other examples of
localized categories.

Thought the localization construction is useful to construct interesting new cat-
egories, the resulting localized categories are in general badly behaved. Often, the
category to be localized has some nice properties, such as the existence of limits and
colimits or being abelian, but these properties are lost after localization. Here is a
sample of problems often encountered in practice.

1. The derived catego(R) lacks the standard categorical constructions of limits
and colimits. There exists a hon-zero morphsnt,/2 — 7Z/2[1] in D(Z), cor-
responding to the non-zero elemen@nt}(Z/2,7Z/2) (recall thatExt (M,N) ~
[M,N[i]], whereN]i] is the complex whose only non-zero pariNsn degree—i,
and[—, —] denotes the morphisms I(R)). Suppose that the morphisethas a
kernel, i.e. that a fiber product

XHZ/Z

|

0——17Z/2[1]
exists inD(Z). Then, for any integel, we have a short exact sequence
0—— [Z,X[i]] — [2.2/2[i]] — [Z.2,/2]i + 1],
or in other words
00— H/(X) —=H!(Z/2) —= H*1(Z/2).

This implies thatX — Z/2 is a quasi-isomorphism, and thus an isomorphism
in D(Z). In particulare = 0, which is a contradiction.

A consequence of this is thBX(R) is not an abelian category, thought the cate-
gory of complexes itselE(R) is abelian.

2. The fact thaD(R) has no limits and colimits might not be a problem by itself,
as it is possible to think of interesting categories which does not have limits and
colimits (e.g. any non-trivial groupoid has no final object). However, the case of
D(R) is very frustating as it seems tHatR) is very close to have limits and col-
imits. For instance it is possbile to show ti2¢R) admitshomotopy limits and
homotopy colimitsn the following sense. For a categdrylet C(R)' be the cat-
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egory of functors from to C(R). A morphismf : F — G (i.e. a natural trans-
formation between two functofs,G : | — C(R)) is called alevelwise quasi-
isomorphisnif for anyi € | the induced morphismi(i) : F(i) — G(i) is a quasi-
isomorphism inC(R). We denote byD(R |) the categonC(R) localized along
levelwise quasi-isomorphisms. The constant diagram fur@®y — C(R)' is
compatibe with localizations on both sides and provides a functor

c:D(R) — D(R/I).
It can then by shown that the functohas a left and a right adjoint denoted by
Hocolim : D(R,1) — D(R) D(R) — D(R,I) : Holim;,

called thehomotopy colimitand thehomotopy limitfunctor. Homotopy limits

are colimits are very good replacement of the notions of limits and colimits, as
they are the best possible approximation of the colimit and limit functors that
are compatible with the notion of quasi-isomorphisms. However, this is quite
unsatisfactory as the categdpyfR, 1) depends on more than the categbiR)
alone (note thad (R, 1) is not equivalent td(R)'), and in general it is impossible

to recontrucD(R, 1) from D(R).

3. To the ringR is associated several invariants such aKitheory spectrum, its
Hochschild (resp. cyclic) homology . ... It is tempting to think that these invari-
ants can be directly defined on the level of derived categories, but this is not the
case (see [Sch]). However, it has been noticed that these invariants only depends
on R up to some notion of equivalence that is much weaker than the notion of
isomorphism. For instance, any func@(R) — D(R) which is induced by a
complex of(R, R )-bi-modules induces a map #nrtheory, Hochschild homology
and cyclic homology. However, it is not clear that any funddR) — D(R/)
comes from a complex qiR, R)-bi-modules (there are counter examples when
RandR are dg-algebras, see [Du-Sh, 2.5,6.8]). Definitely, the derived category
of complexes of R, R)-bi-modules is not equivalent to the category of functors
D(R) — D(R)). This is again an unsatisfactory situation and it is then quite dif-
ficult (if not impossible) to understand the true nature of these invariants (i.e. of
which mathematical structures are they trully invariants ?).

4. Another important problem with the categorB&R) is its non local nature. To
explain this letP! be the projective line (e.g. ovéf). As a schemé? is the
push-out

Spe&[X, X~ —— Sped|[T]

| |

Sped,[U] P,

whereT is sent toX andU is sent toX 1. According to the push-out square, the
category of quasi-coherent sheavesPdrcan be described as the (2-categorical)
pull-back
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QCohPt) —— Mod(Z([T])

| |

Mod(Z[U]) — Mod(Z[X,X~1)).

In other words, a quasi-coherent module Bhis the same thing as a triple
(M,N,u), whereM (resp.N) is aZ[T]-module (respZ[U]-module), andu is
an isomorphism

Ut M@z Z[X, X 2 N@gy Z[X, X ]

of Z[X,X~1]-modules. This property is extremely useful in order to reduce prob-
lems of quasi-coherent sheaves on schemes to problems of modules over rings.
Unfortunately, this property is lost when passing to the derived categories. The
square

choh(Pl) - D(Z[T])

| |

D(Z[U]) — D(Z[X,X™)),

is not cartesian (in the 2-categorical sense) anymore (e.g. there exists non zero
morphismsy — ¢/(—2)[1] that go to zero as a morphismMZ[U]) x pzx x-1))
D(Z[T])). The derived categories of the affine piece®bfdoes not determine
the derived category of quasi-coherent sheaveBlon

The list of problems above suggests the existence of a some sort of categorical
structure lying in between the category of comple®éR) and its derived category
D(R), which is rather close t®(R) (i.e. in which the quasi-isomorphisms are in-
verted in some sense), but for whi¢t) — (4) above are no longer a problem. There
exist several possible approaches, and my purpose is to present one of them using
dg-categories.

Exercice 3 Let | = BN be the category with a unique objectind with the monoid
N of natural numbers as endomorphism of this object. There is a bijection between
the set of functors from | to a category C and the set of p@irk), where x in an
object in C and h is an endomorphism of x.

Let R be a commutative ring.

1. Show that there is a natural equivalence of categories
D(R1) ~ D(RX]),

where OR, ) is the derived category of I-diagram of complexes of R-modules as
described in example (2) above. Deduce from this tH& D is never an abelian
category (unless R 0).

2. Prove that OR) is abelian when R is a field (show that®) is equivalent to the
category ofZ-graded R-vector spaces).



Lectures on DG-categories 9

3. Deduce that DR,1) and D(R)' can not be equivalent in general.

4. Let now | be category with two objedsand 1 and a unique morphism froth
to 0. Using a similar approach as above show thatRDl) and D(R)' are not
equivalent in general.

2.3 Dg-categories

We now fix a base commutative ritkgUnless specified, all the modules and tensor
products will be ovek.

We start by recalling thatdg-category T(overk) consists of the following data.

e A set of object®Oh(T), also sometimes denoted Byitself.

e For any pair of objectgx,y) € Ob(T)? a complexT (x,y) € C(K).

e Forany triple(x,y, z) € Ob(T)® a composition morphismyy,: T(XY)®T(y,2) —
T(x,2).

e For any objeck € Ob(T), a morphisme, : k — T(x,X).

These data are required to satisfy the following associativity and unit conditions.

1. (Associativity) For any four objeci(s,y,zt) in T, the following diagram

id®pty 2,
THY) @TH2@T(Zt) — = T(xy) @ T(yt)

Ux,y.z@id i i Mxyt

T(x,2)®@T(zt) T(x,1)

Hxzt
commutes.
2. (Unit) For any(x,y) € Ob(T)? the two morphisms

T(xY) ~kaTxy) 225 T x) @ T(XY) —2% T(x,y)

ideey Iixy,
TO0Y) 2 T(xy) @k —=T(xY) @ T(%y) —> T (xY)
are equal to the identities.

In a more explicit way, a dg-categofycan also be described as follows. It has a
set of object©Ob(T). For any two objectg andy, and anyn € Z it has ak-module
T(x,y)", thought as morphisms of degnérom x to y. For three objectg, y andz,
and any integers andmthere is a composition map

Txy)"xT(y.2" — T(x2)"™"
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which is bilinear and associative. For any objedhere is an elemem € T (x,x)°,
which is a unit for the composition. For any two objegtandy there is a differ-
ential d :T(x,y)" — T(x,y)™*1, such that 8 = 0. And finally, we have the graded
Leibnitz rule

d(fog)=d(f)og+(-1)"fod(g),

for f andg two composable morphisms, withof degreem. Note that this implies
that de) = 0, and thus thag is always a zero cycle in the compl&xx, x).

Examples:

1. A very simple example is the opposite dg-categb?y of a dg-categoryl. The
set of objects off °P is the same as the one ®f and we set

TOP(xy) :=T(y.x)
together with the obvious composition maps
TYX)@T(z2y)=T(Zy)@T(¥.x) — T(zX),

where the firstisomorphism is the symmetry isomorphism of the monoidal struc-
ture on the category of complexes (see [BéX.4.1] for the signs rule).

2. A fundamental example of dg-category okeis the given by considering the
category of complexes ové&iitself. Indeed, we define a dg-categ@tk) by set-
ting its set of objects to be the set of complexek-afodules. For two complexes
E andF, we defineC(k)(E,F) to be the complesHon*(E,F) of morphisms
from E to F. Recall, that for any € Z the k-module of elements of degrein
Hom*(E,F) is given by

Hon'(E,F) := |;|Hom(Ei,F‘+”).

The differential
d:Hon'(E,F) — Hon"(E,F)

sends a family{ f'};; to the family {do f' — (—=1)"f"*1od};cz. Note that the
zero cycle inHom'*(E, F) are precisely the morphisms of complexes frBrnto
F. The composition of morphisms induces composition morphisms

Hon''(E,F) x Hon"(E,F) — HonT"™(E,F).

It is easy to check that these data defines a dg-cat€tféay

3. There is slight generalization of the previous example for the categ@Ry
of complexes of (leftfR-modules, whereR is any associative and unit&t
algebra. Indeed, for two complexes RfmodulesE andF, there is a complex
Hom*(E,F) defined as in the previous example. The only difference is that now
Hom*(E,F) is only a complex ok-modules and not dR-modules in general (ex-
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cept wherR is commutative). These complexe define a dg-cateGoR) whose
objects are complexes BEmodules. o

4. A far reaching generalization of the two previous examples is the case of com-
plexes of objects in ank-linear Grothendieck category (i.e. an abelian cocom-
plete category with a small a generator and for which filtered colimits are exact,
or equivalently localizations of modules categories, see [G-P]). Indeed, for such
a categoryer and two complexek andF of objects ine/, we define a complex
of k-modulesHont (E,F) as above

Hon!'(E,F) := |;|Hom(Ei,|=i+”),

with the differential given by the same formula as in exari@le The composi-
tion of morphisms induce morphisms

Hont'(E,F) x Hom"(F,G) — Honm""™(E, G).

It is easy to check that these data define a dg-category whose objects are com-
plexes ing7. It will be denoted byC(«7).

5. From a dg-category, we can construct a usual categ@¥(T). Its objects are
the same the one df, and for two such objects andy the set of morphism
betweerx andy in Z°(T) is defined to be the set of 0-cyclesTix, x) (i.e. degre
zero morphismd € T(x,x)o such that df) = 0. The Liebnitz rule implies that
the composition of two 0-cycles is again a 0-cycle, and thus we have induced
composition maps

Z°(T(xy)) x Z°(T(y.2)) — Z°(T (x,2).

These composition maps define the cated®T ). The categorZ®(T) is often
named thainderlying category of TWe observe that%(T) is more precisely a
k-linear category (i.e. thal omssets are endowed witttmodule structures such
that the composition maps are bilinear).

For instance, lete be a Grothendieck category af.</) its associated dg-
category of complexes as defined in exan@leabove. The underlying category
of C(«/) is then isomorphic to the usual categ@fwr') of complexes and mor-
phisms of complexes in/.

6. Conversely, ifC is ak-linear category we vie\C€ as a dg-category in a rather
obvious way. The set of objects is the same of the or@, @ind the complex of
morphisms fronx to y is simply the complexC(x,y)[0], which isC(x,y) in degre
0 and 0 elsewhere.

7. A dg-categoryT with a unique object is essentially the same thing as a dg-
algebra. Indeed, i is the unique object the composition law ®(x, x) induces
a unital and associative dg-algebra structurd ¢x1 x). Conversely, iB is a uni-
tal and associative dg-algebra we can construct a dg-catdganigh a unique
objectx and withT (x,x) := B. The multiplication inB is then used to define the
composition o (X, X).
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8. Here is now a non-trivial example of a dg-category arising from geometry. In
this examplek = R. Let X be a differential manifold (sa¥’®). Recall that a flat
vector bundle orX consists the data of a smooth (real) vector buidlen X
together with a connexion

0:A%(X,V) — AY(X,V),

(whereA"(X,V) is the space of smootiforms onX with coefficients ifv) such
that[J? = 0. For two such flat bundle®, /) and(W, Oy ) we define a complex
AI*DR(VaW) by

Al*DR(va)n = An(xamvaw))a

whereHom(V, W) is the vector bundle of morphisms fravhto W. The differen-
tial
d: ABR(V, W) — ABRH(V.W)

is defined by sending ® f to d(w) ® f + (—1)"w A O(f). Here,O(f) is the
1-form with coefficients irHom(V,W) defined by

O(f) := Owo f — (f®id) o Oy.

The fact thatd3 = 0Z, = 0 implies thatAi(V,W) is a complex. Moreover, we
define a composition

ABR(U7V) X ABR(VaW) - Aner(UaW)
for three flat bundled, V andwW by
(0 f).(0®g9):=(0r0)2(fog).

It is easy to check that these data defines a dg-catélgm(X) (overR) whose
objects are flat bundles 0% and whose complex of morphisms frdiw, Oy ) to
(W, Ow) are the complexe&jz(V,W).
By construction the underlying categoryTr(X) is the category of flat bundles
and flat maps. By the famous Riemann-Hilbert correspondence (see [De] for the
analog statement in the complex analytic case) this category is thus equivalent to
the category of finite dimensional linear representations of the fundamental group
of X. Moreover, for two flat bundlegv, Oy ) and(W, Oy ), corresponding to two
local systemd ; andL,, the cohomology groupi’ (Tor(X)) = H' (A5r(V,W))
is isomorphic to the Ext grouBixt (L1, L,), computed in the category of abelian
sheaves oveX. Therefore, we see that even wheéis simply connected the dg-
categoryTpr(X) contains interesting informations about the cohomolog¥ of
(even thought the underlying categoryTei(X) is simply the category of finite
dimensional vector spaces).

9. The previous example has the following complex analog. Now we=et, and
X be a complex manifold. We define a dg-categfsyi (X) in the following way.
The objects offpe (X) are the holomorphic complex vector bundlesXnFor
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two such holomorphic bundlés andW we let
Tool (X) (VW) 1= Apgi (V, W),

whereAj, (V,W) is the Dolbeault complex with coefficients in the vector bundle
of morphisms fronV toW. Explicitely,

Aic:])ol (Va W) = A07q (X ) M‘(V»W))

is the space of0,q)-forms onX with coefficients in the holomorphic bundle
Hom(V,W) of morphisms fronV to W. The differential

1
Agm V,\W) — q:| (V,W)

is the operatod, sendingn ® f to
Aoz f):=d(0)®f+(-1)%Ad(f),
whered(f) is defined by
d(f)=adwo f—(f®id)ody,
with
v AO(X,V) — APL(X V) aw: A%(X,W) — A%L(X W)

being the operators induced by the holomorphic structure¥ @mdW (see
[Gr-Ha, Chap 0 §5]). As in the previous example we can define a composition

Ai*DOI (va) X AEO|(V7W) — A (U 7W)

for three holomorphic bundled, V andW on X. These data defines a dg-
categoryTpo (X) (overmathbbQ.
By construction, the underlying category®, (X) has objects the holomorphic
vector bundles, and the morphisms in this category arestienorphisms of
complex vector bundle$ : V — W satisfyingd(f) = 0, or equivalently the
holomorphic morphisms. Moroever, for two holomorphic vector bundlesd
W the cohomology groupl (Tpei (X)) is isomorphic tExt,, (7, #), thei-th ext-
group between the associated sheaves of holomorphic sections (or equivalently
the ext-group in the category of holomorphic coherent sheaves). For instance, if
1 is the trivial vector bundle of rank 1 antlis any holomorphic vector bundle,
we have _ '

HI(TDO<17V)) = HIIDOI (X’V)7

thei-th Dolbeault cohomology group &f.

The dg-categoryipe (X) is important as it provides a rather explicit model for
the derived category of coherent sheaves<otndeed, the homotopy category
[Tool (X)] (see definition 1) is equivalent to the full sub-categoryff,(X), the
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bounded coherent derived categoryXgfwhose objects are holomorphic vector
bundles. Also, for two such holomorphic vector bundieandW and alli we
have . .

HO"bgoh(x)(V7W[i]) ~ H'(Tpol (X)(V,W)) ~ Exty, (¥, #).

Here is one last example of a dg-category in the topological context. We construct

a dg-categonydgTop whose set of objects is the set of all topological spaces.
For two such topological spacésandY, we define a complex of morphisms
dgTogX,Y) in the following way. We first considéd ont* (X,Y), the simplicial
set (see [Ho1] for the notion of simplicial sets) of continuous maps betwWeen
andY: by definition the set afi-simplicies inHont (X, Y) is the set of continuous
mapsX x A" — Y, whereA™ := {x € [0,1]""1/ 5 x = 1 is the standard simplex
of dimensionn in R"*, The face and degeneracy operatorgloit (X,Y) are
defined using the face embeddings{0 < n)

d:A" — ANt
X = (X0,---,%-1,0,%,...X%),

and the natural projections Qi < n)

S : An+l N AN
X = (Xo,...,Xi+Xi+1,Xi+2,...,Xn+1).

Now, for any two topological spacésandY we set
dgTogX,Y) := C.(Hom*(X,Y)),

the homology chain complex ¢fon? (X,Y) with coefficients ink. Explicitly,
Cn(Hom*(X,Y)) is the freek-module generated by continuous mapsX x
A" — Y. The differential of such a map is given by the formula

d(f)= 3 (~1)d(f),

0<i<n

whered;(f) is the mapX x A"~ — Y obtained by composition

id xd f
Xx ATl ——=Xx A" ——=Y.

For three topological spaces Y andZ, there exists a composition morphism at
the level of simplicial sets of continuous maps

Hont (X,Y) x Hon? (Y,Z) — Hon? (X, Z).
This induces a morphism on the level of chain complexes

C.(Honm? (X,Y) x Hon?' (Y,Z)) — C.(Hont*(X,Z)).
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Composing this morphism with the famous Eilenberg-MacLane map (see [May,

§29])
C.(Honm*(X,Y)) ®C,(Hont' (Y,Z)) — C.(Honm*(X,Y) x Horm*(Y,2))
defines a composition
dgTogX,Y)®dgTofY,Z) — dgTofX,Z).

The fact that the Eilenberg-MacLane morphisms are associative and unital (they
are even more commutative, see [M&g9]) implies that this defines a dg-
categorydgTop

For two dg-categorie¥ andT’, amorphism of dg-categorig®r simply adg-
functon f : T — T’ consists of the following data.

e A map of setsf : Ob(T) — Ob(T").
e For any pair of objectgx,y) € Ob(T)?, a morphism irC(k)

fx,y . T(X7y) - T/(f(X), f(y))
These data are required to satisfy the following associativity and unit conditions.

1. For any(x,y,t) € Ob(T)?3 the following diagram

Hxy,z

Txy)®T(y,2) T(x2)

fxy® fy,zl \L fxz

T'(f(), f(y) @ T'(F(y), f(2)) v T'(f(x),1(2)

commutes.
2. For anyx € Ob(T), the following diagram

commutes.
Examples:

1. LetT be any dg-category ande T be an object. We define a dg-functor

f=h:T — C(k)
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in the following way (recall tha€(k) is the dg-category of complexes over
The map on the set of objects sends an objeef to the complexT (x,y). For
two objectsy andzin T we define a morphism

fyz: T(y,2) — C(K)(f(y), f(x)) = Hom" (T (x,y), T (x,2)),
which by definition is the adjoint to the composition morphism
mx,y,z : T(va) ®T(y7 Z) - T(Xv Z)'

The associativity and unit condition on composition morphisms imply that
this defines a morphism of dg-categories

h: T — C(k).

Dually, we can also define a morphism of dg-categories

by sendingy to T(y, x).
. For any dg-categorV there exists a dg-functor

T TP — C(Kk),
sending a pair of objectéx,y) to the complexT (y,x). Here, T ® T°P denotes
the dg-category whose set of object©is(T) x Ob(T’), and whose complex of
morphisms are given by

(TOTP)((xY),(X.Y)) =TxX)@T(Y,y).

We refer to exercice 4 arg#t.2 for more details about the tensor product of dg-
categories.

. LetR and S be two associative and unitilalgebras, and : R — Sbe ak-
morphism. The morphisnf induces two functors

f*:C(R) —C(S) C(R)—C(S: f,,

adjoint to each others. The functéy sends a complex d&dmodules to the cor-
responding complex oR-modules obtained by forgetting the scalar fr@mo

R by the morphismf. Its left adjoint f* sends a complex dR-modulesE to
the complexS®gE. It is not difficult to show that the functor§, and f* are
compatible with the complex of morphisriom* and thus define morphisms of
dg-categories

f*:C(R)—C(S)  C(R)—C(S):f,.

More generally, iff : &/ — 2 is anyk-linear functor between Grothendieck
categories, there is an induced morphism of dg-categories
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4.

f:C(of) — C(B).

Letf: X — Y be a¥”-morphism between two differential manifolds. Then,
the pull-back for flat bundles and differential forms defines a morphism of dg-
categories constructed in our example 8

f*: TDR(Y) — TDR(X).

In the same way, if nowf is a holomorphic morphism between two complex
varieties, then there is a dg-functor

f* : Tooi (Y) — Tool(X)

ontained by pulling-back the holomorphic vector bundles and differential forms.

Dg-functors can be composed in an obvious manner, and dg-categories together

with dg-functors form a category denoted thg— caf; (or dg— cat if the base ring
kis clear).

For a dg-categoryl, we define a categoryf | in the following way. The set of

objects of[T] is the same as the set of objectslofFor two objects andy the set
of morphisms inT] is defined by

[TI(xy) == HO(T(xy)).

Finally, the composition of morphisms ji] is defined using the natural morphisms

HO(T (x,y)) @ HO(T (%,2)) — HAT(xy) ©T(¥,2))

composed with the morphism

HO(uxyz) : HO(T(x,y) @ T (y,2)) — HY(T(x,2)).

Definition 1. The categoryT] is called thehomotopy category of .T

N

Examples:

. If Cis ak-linear category considered as a dg-category as explained in our exam-

ple 6 above, thefC] is naturally isomorphic t€ itself.

. We havedT°P] = [T]°P for any dg-category .
. For ak-algebraR, the homotopy categof(R)] is usually denoted bl (R), and

is called thehomotopy category of complexes of R-modiesre generally, ife/
is a Grothendieck categoff(.«)] is the denoted bi (<), and is the homotopy

category of complexes .

. If X is a differentiable manifold, thefTpr(X)] coincides withz®(Tpr(X)) and

is isomorphic to the category of flat bundles and flat maps between them. As
we already mentioned, this last category is equivalent by the Riemann-Hilbert
correspondence to the category of local systemX.on
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When X is a complex manifold, we also have thdh (X)] coincides with
Z°%(Tpoi(X)) and is isomorphic to the category of holomorphic vector bundles
and holomorphic maps between them.

5. The categorydgTog is the category whose objects are topological spaces and
whose set of morphisms betwe¥nandY is the freek-module over the set of
homotopy classes of maps fronto Y.

One of the most important notion in dg-category theory is the notion of quasi-
equivalences, a mixture in between quasi-isomorphisms and categorical equiva-
lences.

Definition 2. Let f : T — T’ be a dg-functor between dg-categories

1. The morphismf is quasi-fully faithfulif for any two objectsx andy in T the
morphismfyy : T(x,y) — T'(f(x), f(y)) is a quasi-isomorphism of complexes.

2. The morphisnf is quasi-essentially surjectivtthe induced functoff]: [T] —
[T’] is essentially surjective.

3. The morphismf is a quasi-equivalencd it is quasi-fully faithful and quasi-
essentially surjective.

We will be mainly interested in dg-categories up to quasi-equivalences. We there-
fore introduce the following category.

Definition 3. The homotopy category of dg-categorimssthe categorylg— cat lo-
calized along quasi-equivalences. It is denotedHx(dg— cat). Morphisms in
Ho(dg— cat) between two dg-categoridsandT’ will often be denoted by

[T7T/] = Hom-m(dg—cat) (Ta T/)‘

Note that the constructiof — [T] provides a functof—] : dg— cat — Cat,
which descends as a functor on homotoy categories

[~] : Ho(dg— cat) — Ho(Cat).

Remark 1. In the last section we have seen that the localization construction is not
well behaved, but in the definition above we considefdge- cat) which is ob-
tained by localization. Therefore, the category (dg— cat) will not be well be-
haved itself. In order to get the most powerful approach the category dat
should have been itself localized in a more refined maner (e.g. as a higher cate-
gory, see [To2§2]). We will not need such a evolved approach, and the category
Ho(dg— cat) will be enough for most of our purpose.

Examples:

1. Letf: T — T’ be a quasi-fully faithful dg-functor. We |&f; be the full (i.e.
with the same complex of morphisms that the dHg sub-dg-category of’
consisting of all objectg € T’ such thax is isomorphic in[T’] to an object in
the image of the induced functéf] : [T] — [T']. Then the induced dg-functor
T — Tj is a quasi-equivalence.



Lectures on DG-categories 19
2. Letf : R— She a morphism ok-algebras. If the morphism of dg-categories
f*:C(R) — C(9

is quasi-fully faithful then the morphisrh is an isomorphism. Indeed, if* is
quasi-fully faithful we have

Hont' (R R) — HonT'(S,5)

is a quasi-isomorphism. Evaluating this morphism of complexé$’ave find
that the induced morphism

R=~ H(Hont (R R)) — S= HO(Hon (S S)

is an isomorphism. This last morphism beihgself, we see that is an isomor-
phism.

3. Suppose thal is a dg-category such that for all objectsandy we have
H'(T(x,y)) = 0 for all i # 0. We are then going to show th@tand [T] are
isomorphic inHo(dg— cat). We first define a dg-categoffkg in the following
way. The dg-category<o possesses the same set of objects Thaself. For two
objectsx andy we let

Toox,y)":=T(xy)ifn<0  Tco(xy)":=0ifn>0

and
Too(x,y)? :=Z%(T(x,y)) = Ker(d : T(x,y)° = T(x,y)").

The differential oriT<o(x,y) is simply induced by the one an(x,y). Itis not hard
to see that the composition morphismsloinduces composition morphisms
n+m

Too(xy)" x T<o(y,2)™ — T<o0(x,2)

which makes these data into a dg-categbyy (this is because the composition
of two 0-cocycles is itself a 0-cocycle). Moreover, there is a natural dg-functor

Tco—T
which is the identity on the set of objects and the natural inclusions of complexes
T<o(X,y) CT(XY)
on the level of morphisms. Now, we consider the natural dg-functor
T<o — [T]
which is the identity on the set of objects and the natural projection

T<o(x,y) — H(T(x.¥)) =H%(T<0(x,y)) = T<o(%,¥)°/IM(T (x,y) " — T<o(x,y)°)
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on the level of morphisms. We thus have a diagram of dg-categories and dg-
functors
[T]<— T<co——T,

which by assumptions oh are all quasi-equivalences. This implies tliaand
[T] becomes isomorphic as objectsHio(dg— cat).

4. Suppose that : X — Y is a%* morphism between differentiable manifolds,
such that there exists anoth€f” morphismg: Y — X and two%™ morphisms

h: XxR— X K:iYXR—Y

with
hxxoy =9f oy =id  kywqoy = fg kv g1y =1id.

Then the dg-functor
f*: TDR(Y) — TDR(X)

is a quasi-equivalence. Indeed, we know tfTak(X)] is equivalent to the cate-
gory of linear representations of the fundamental groul.of herefore, as the
morphismf is in particular a homotopy equivalence it induces an isomorphisms
on the level of the fundamental groups, and thus the induced functor

f*: [Tor(Y)] — [Tor(X)]

is an equivalence of categories. The fact that the dg-funttds also quasi-
fully faithful follows from the homotopy invariance of de Rham cohomology,
and more precisely from the fact that the projectpnX x R — X induces a
guasi-equivalence of dg-categories

p* : TDR(X) — TDR(X X R).

We will not give more details in these notes.
As particular case of the above statement we see that the proj@&tien-
induces a quasi-equivalence

TDR(*) — TDR(Rn).

As Tpr(*) is itself isomorphic to the category of finite dimensional real vector
spaces, we see thatr(R") is quasi-equivalent to the category of finite dimen-
sional vector spaces.

5. Let nowX be a connected complex manifold apd X — * be the natural
projection. Then the induced dg-functor

P Tor(*) — Tpol (X)

is quasi-fully faithful if and only ifH' (X, &) = 0 for alli # 0 (hered is the sheaf
of holomorphic functions oiX). Indeed, all the vector bundles are trivial en
Moreover, for 1 and F two trivial vector bundles of rank ands on * we have
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Tool (X) (p*(17), p*(2%)) ~ Toal (X)(1,1)",

where 1 also denotes the trivial holomorphic bundleoitherefore p* is quasi-
fully faithful if and only if H'(Tpe(X))(1,1) = O for alli # 0. As we have

H' (Too (X)(1,1)) = Hpg (X, 1) = H'(X, ©)
this implies the statement. As an example, we see that
Tool (*) — Tpol (P")
is quasi-fully faithful (heréP" denotes the complex projective space), but
Tool (*) — Tool (E)

is not for any complex elliptic curve.
More generally, iff : X — Y is any proper holomorphic morphism between
complex manifolds, then the dg-functor

£ Tool (Y) — Tpoi (X)
is quasi-fully faithful if and only if we have
R'f.(0x) =0Vi>0,

whereR! f, (0x) denotes the higher direct images of the coherent shigabf
holomorphic functions oiX (see e.g. [Gr-Ha]). We will not prove this statement
in these notes. As a consequence we see fthag quasi-fully faithful if it is
a blow-up along a smooth complex sub-manifoldYgfor if it is a bundle in
complex projective spaces.

6. For more quasi-equivalence between dg-categories in the context of non-abelian
Hodge theory see [Si].

Exercice 4 1. LetT and Tbe two dg-categories. Show how to define a dg-category
T @ T’ whose set of objects is the product of the sets of objects of T and T’, and
for any two pairs(x,y) and (X,y)

(TRTH((XY),X,y)) =Ty T (X,y).

2. Show that the constructidif, T') — T @ T’ defines a symmetric monoidal struc-
ture on the category dg cat.

3. Show that the symmetric monoidal structgren dg— cat is closed (i.e. that for
any two dg-categories T and There exists a dg-category H@m T') together
with functorial isomorphisms

Hom(T”,Hom(T,T') ~ Hom(T" & T,T').
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Exercice 5 Let k— k' be a morphism of commutative rings, and-dga (resp.
dg-— caly) the categories of dg-categories over k (resp. over k

1. Show that there exists a forgetful functor
dg— caty — dg— catg

which consists of seing complexes oveag complexes over k using the mor-
phism k— K.
2. Show that this forgetful functor admits a left adjoint

— @K : dg—caty — dg— caijy.

3. Let1y be the dg-category over k with a single object and withakk-algebra
of endomorphisms of this object. Show that for any dg-category T over k, there
exists a natural isomorphism of dg-categories over k

Tk ~T®ly,

where the tensor product on the right is the one of dg-categories over k as de-
fined in exercice 4, and the left hand side is considered as an object-Href
throught the forgetful functor.

4. Show that the forgetful functor

dg— caty — dg— caf
also possesses a right adjoint
(—)¥/k: dg— cat, —> dg— caty

(show that for any Te dg— cal the dg-category Holy, T) can be naturally
endowed with a structure of dg-category ovér k

Exercice 6 Let T be a dg-category andaiZ®(T (x,y)) a morphism in its underlying
category. Show that the following four conditions are equivalent.

1. The image of uin (T (x,y)) is an isomorphism iffiT].
2. There exists & Z°(T(y,x)) and two elements & T(x,x)~%, k€ T(y,y)~* such
that
d(h) =vu—eg d(k) =uv—g.

3. For any object z T, the composition with u
—ou:T(z,x) — T(2y)

is a quasi-isomorphism of complexes.
4. For any object z T, the composition with u

Uo—:T(y,2) — T(x2)
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is a quasi-isomorphism of complexes.

Exercice 7 We denote by B the commutative k-dg-algebra whose underlying graded
k-algebra is a (graded commutative) polynomial algebra in two variab|¥s¥,

with X in degreed, Y in degree-1 and dY) = X2. We consider B as a dg-category
with a unique object.

1. Show that there exists a natural quasi-equivalence
p: B — Kk[X]/(X?) =: Kle],

where Ke] is the commutative algebra of dual numbers, considered as a dg-
category with a unique object.

2. Show that p does not admit a section in-dgpt. Deduce from this that unlike the
case of categories, there exists quasi-equivalences:TT’ in dg— cat such that
the inverse of f in H@g— cat) can not be represented by a dg-functdr¥ T
in dg— cat (i.e. quasi-inverses do not exist in general).

Exercice 8 Show that two k-linear categories are equivalent (as k-linear cate-
gories) if and only if they are isomorphic in Kag— cat).

2.4 Localizations as a dg-category

For ak-algebraR, the derived categorp(R) is defined as a localization of the
categoryC(R), and thus has a universal propertyHm(Cat). The purpose of this
series of lectures is to show thafR) can also be localized as a dg-categB(R)

in order to get an objedt(R) satisfying a universal property iHo(dg— cat). The
two objectd (R) andD(R) will be related by the formula

[L(R)] ~D(R),

and we will see that the extra informations encoded(iR) is enough in order to
solve all the problems mentioned§.1.

Let T be any dg-category arfbe a subset of morphisms in the categ@ry We
define a functor
Frs:Ho(dg— cat) — Ho(Cat)

sending a dg-categof’ to the subset of morphism$, T’ consisting of all mor-
phism f whose induced functoff] : [T] — [T’] sends morphisms db to iso-
morphisms in[T’]. Note that the functoff] is only determined as a morphism in
Ho(Cat), or in other words up to isomorphism. However, the property[tHatends
elements ofS to isomorphisms is preserved under isomorphisms of functors, and
thus only depends on the class|6f as a morphism iHo(Cat). The functorFr s is

a thus a subfunctor of the functfF, —] corepresented by.
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Definition 4. For T andSas above, #calization of T along $ a dg-categorysT
corepresenting the functéi s.

To state the previous definition in more concrete terms, a localization is the data
of a dg-category.sT and a dg-functol : T — LsT, such that for any dg-category
T’ the induced morphism

I [LsT, T'] — [T, T/]
is injective and identifies the left hand side with the sulbse(T’) C [T, T'].

An important first question is the existence of localization as above. We will see
that like localizations of categories they always exist. This, of course, requires to
know how to compute the s¢t, T’] of morphisms inHo(dg— cat). As the cate-
gory Ho(dg— cat) is itself defined by localization this is not an easy problem. We
will give a solution to this question in the next lectures, based on an approach using
model category theory.

3 Lecture 2: Model categories and dg-categories

The purpose of this second lecture is to study in more details the catdgody —

cat). Localizations of categories are very difficult to describe in general. The pur-
pose of model category theory is precisely to provide a general tool to describe lo-
calized categories. By definition, a model category is a category together with three
classes of morphisms, fibrations, cofibrations and (weak) equivalences satisfying
some axioms mimicking the topological notions of Serre fibrations, cofibrations and
weak equivalences. Whemi is a model category, wittV as equivalences, then the
localized categoryV—"'M possesses a very nice description in terms of homotopy
classes of morphisms between objects belonging to a certain class of nicer objects
called fibrant and cofibrant. A typical example is whén= Topis the category

of topological spaces andy is the notion of weak equivalences (see example 5 of
§2.1). Then all objects are fibrant, but the cofibrant objects are the retract of CW-
complexes. It is well known that the categaty 1Topis equivalent to the category

of CW-complexes and homotopy classes of continuous maps between them.

In this lecture, | will start by some brief reminders on model categories. | will
then explain how model category structures appear in the context of dg-categories
by describing the model category of dg-categories (due to G. Tabuada, [Tab]) and
the model category of dg-modules. We will also see how model categories can be
used in order to construct interesting dg-categories. In the next lecture these model
categories will be used in order to understand magsafdg— cat), and to prove
the existence of several important constructions such as localization and internal
Homs.
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3.1 Reminders on model categories

In this section we use the conventions of [Ho1] for the notion of model category. We
also refer the reader to this book for the proofs of the statements we will mention.

We letM be a category with arbitrary limits and colimits. Recall that a (closed)
model category structure d¥l is the data of three classes of morphism#/inthe
fibrationFib, the cofibratiorCo f and the equivalencé¥, satisfying the following
axioms (see [Ho1l]).

f

1.If X——=Y 9. Z are morphisms i, thenf, gandgf are all inW if and
only if two of them are irfW.

2. The fibrations, cofibrations and equivalences are all stable by retracts.

3. Let

f
A—X

il lp

be a commutative square M with i € Cof andp € Fib. If eitheri or pis also
in W then there exists a morphism B — X such thatph= g andhi = f.

4. Any morphismf : X — Y can be factorized in two ways ds= pi andf = qj,
with p € Fib, i € CofnW, g€ FibnW andj € Cof. Moreover, the existence of
these factorizations are required to be functoriaf .in

The morphisms ifCofNW are usually calledrivial cofibrationsand the mor-
phisms inFib "W trivial fibrations Objectsx such that — x is a cofibration are
calledcofibrant Dually, objectsy such thaty — x is a fibration are callefibrant

Exercice 9 Let M be a model category andA — B a morphism. We assume that
for all commutative square

X

l"

Y

)

f
R —

<2

—_—
¢}

with p a fibration (resp. a trivial fibration) there is a morphismB — X such that
ph=gand hi= f. Then i is a trivial cofibration (resp. a cofibration). (Hint: factor
i using axiom(4) and use the stability of Cof and W by retracts).

By definition, the homotopy category of a model categbhyis the localized
category
Ho(M) :=W~M.

A model category structure is a rather simple notion, but in practice it is never
easy to check that three given clasBés Co f andW satisfy the four axioms above.
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This can be explained by the fact that the existence of a model category structure on
M has a very important consequence on the localized cat&goM. For this, we
introduce the notion of homotopy between morphismMim the following way.
Two morphismsf,g: X — Y are callechomotopicif there exists a commutative
diagram inM

X

i f

I

|

satisfying the following two properties:

N%Z

1. There exists a morphism: C(X) — X, which belongs td=ib "W, such that
pi=pj=id.
2. The induced morphism
i| ] X X —cC(X)
is a cofibration.

When X is cofibrant andy is fibrant inM (i.e. 0 — X is a cofibration and
Y — x is a fibration), it can be shown that being homotopic as defined above is
an equivalence relation on the set of morphisms fiéno Y. This equivalence
relation is shown to be compatible with composition, which implies the existence of
a categonM®f/ ~, whose objects are cofibrant and fibrant objects and morphisms
are homotopy classes of morphisms.

It is easy to see that if two morphisnfisandg are homotopic irM then they are
equal inW~1M. Indeed, in the diagram above defining the notion of being homo-
topic, the image opin Ho(M) is an isomorphism. Therefore, so are the images of
and j. Moreover, the inverses of the images aihd j in Ho(M) are equal (because
equal to the image gf), which implies that andj have the same image kho(M).

This implies that the image df and ofg are also equal. From this, we deduce that
the localization functor
M — Ho(M)

restricted to the sub-category of cofibrant and fibrant objetsinduces a well
defined functor
MST/ ~— Ho(M).

The main statement of model category theory is that this last functor is an equiva-
lence of categories.

Our first main example of a model category will 6ék), the category of com-
plexes over some base commutative riad he fibrations are taken to be the sur-
jective morphisms, and the equivalences are taken to be the quasi-isomorphisms.
This determines the class of cofibrations as the morphisms having the correct lift-
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ing property. It is an important theorem that this defines a model category structure
on C(k) (see [Hol]). The homotopy category of this model category is by defini-
tion D(k) the derived category & Therefore, maps iD(k) can be described as
homotopy classes of morphisms between fibrant and cofibrant complexes. As the
cofibration objects ilC(k) are essentially the complexes of projective modules (see
[Hol]) and that every object is fibrant, this gives back essentially the usual way of
describing maps in derived categories.

Exercice 10 1. Prove that if E is a cofibrant object in(&€) then for any nc Z the
k-module B is projective.

2. Prove that if E is a complex which is bounded below (i.e. there igaunch that
E" = Ofor all n < np), and such that Eis projective for all n, then E is cofibrant.

3. Contemplate the example in [Hol, Rem. 2.3.7] of a complex of projective mod-
ules which is not a cofibrant object ink).

Here are few more examples of model categories.

Examples:

1. The categoryopof topological spaces is a model category whose equivalences
are the weak equivalences (i.e. continuous maps inducing isomorphisms on all
homotopy groups) and whose fibrations are the Serre fibrations (see [Ho1l, Def.
2.3.4]). All objects are fibrant for this model category, and the typical cofibrant
objects are the CW-complexes. Its homotopy catedgtwyTop) is also equiva-
lent to the category of CW-complexes and homotopy classes of continuous maps
between them.

2. For any model categoy and any (small) categorywe considetM' the cat-
egory ofl-diagrams inM (i.e. of functors froml to M). We define a morphism
f:F — Gin M' to be a fibration (resp. an equivalence) if for at | the
induced morphisnf; : F(i) — G(i) is a fibration (resp. an equivalence)Nh
When M satisfies a technical extra condition, precisely wihéns cofibrantly
generatedsee [Ho1§2.1]), then these notions define a model category structure
on M'. The constructiortM — M' is very useful as it allows to construct new
model categories from old ones.

3. LetCat be the category of categories. We define a morphis@anto be an
the set of objects. This defines a model category structu@ab(see [Jo-Ti]).

4. Let«/ be any Grothendieck category ahi= C() be its category of com-
plexes. Then it can be shown that there exists a model category structure on
M whose equivalences are the quasi-isomorphisms and the cofibrations are the
monomorphisms (see [Ho2]).

Exercice 11 Let M be model category and M@¥) be the category of morphisms
in M (objects are morphisms and morphisms are commutative squares in M). We
define a morphisnif,g) :u—v
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to be an equivalence (resp. a fibration) if both f and g are equivalences (resp. fi-
brations) in M. Show that this defines a model category structure or{MIprShow
moreover that a morphism as above is a cofibration if and only if f is cofibration
and the induced morphism
Bl JA —FB
A

are cofibrations in M.

Before going back to dg-catgeories we will need a more structured notion of a
model category structure, the notion 0€gk)-model category structureéSuppose
thatM is a model category. £(k)-model category structure dvl is the data of a
functor

—®—:Ck)xM —M

satisfying the following two conditions.

1. The functor® above defines a closétik)-module structure oM (see [Ho1l,
§4]). In other words, we are given functorial isomorphism#fiin

Ex(E'eX)~(ExE)®X k@ X ~ X

for anyE,E’ € C(k) andX € M (satisfying the usual associativity and unit con-
ditions). We are also given for two objectsandY in M a complexHom(X,Y) €
C(k), together with functorial isomorphisms of complexes

Hom(E,Hom(X,Y)) ~ HomE ® X,Y)

for E € C(k), andX,Y € M.
2. For any cofibration: E — E’ in C(k), and any cofibration : A— Bin M, the
induced morphism
E@B| |EE®A—E'©B
E®A
is a cofibration irM, which is moreover an equivalencs ir j is so.

Condition(1) above is a purely categorical stucture, and simply asserts the exis-
tence of an enrichement & into C(k) in a rather strong sense. The second condi-
tion is a compatibility condition between this enrichement and the model structures
onC(k) andM (which is the non trivial part to check in practice).

Examples:
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1. The categor(k) can be considered as enriched over itself by using the tensor
product of complexes ® — : C(k) x C(k) — C(k). Fro this enrichement itis a
C(k)-model category (this is another way to state tBgt) is a monoidal model
category in the sense of [Hol, Def. 4.2.6]).

2. Let X be a topological space. We I&hX,k) be the category of sheaves
of k-modules andC(Sh(X,k)) be the category of complexes Bh X, k). As
Sh(X,k) is a Grothendieck category, and thus the cate@{$hX,k)) can be
endowed with a model category structure for which the equivalences are the
quasi-isomorphisms and the cofibrations are the monomorphisms of complexes.
The categonsh X, k) has a natural enrichement over the categotywiodules,
and this enrichement extends to an enrichemerE(@&hX,k)) over the cat-
egory C(k). Explicitely, if # is any sheaf of complexes d&Emodules over
X andE € C(k), we letE ® .Z to be the sheaf associated with the presheaf
U — E®.#(U) e C(k). It can be shown that this enrichement maRéSh(X, k))
into aC(k)-model category.

One main consequence for a model cateddrio be aC(k)-model category is
that its homotopy categomyo(M) comes equiped with a natural enrichement over
D(k) = Ho(C(k)). Explicitely, for two objectscandy in M we set

RHom(x,y) := Hom(Qx Ry),

whereQx s a cofibrant replacement @fandRy s a fibrant replacement gf The
objectRHom(x,y) € D(K) can be seen to define a enrichementofM) into D(k)
(see [Hol, Thm. 4.3.4] for details). A direct consequence of this is the important
formula*

HO(RMXJ)) = HO[THO(M)(X’y)'

Therefore, we see thatxfandy are cofibrant and fibrant, then homs betwsemd
yin Ho(M) can be computed a$°(Hom(x,y)).

Exercice 12 Let f: M — N be a functor between two model categories.

1. Show that if f preserves cofibrations and trivial cofibrations then it also pre-
serves equivalences between cofibrant objects.

2. Assume that f preserves cofibrations and trivial cofibrations and that it does
admit a right adjoint ¢ N — M. Show that g preserves fibrations and trivial
fibrations.

3. Under the same conditions as(i®), define

Lf:Ho(M) — Ho(N)

by sending an object x to(®x) where Qx is a cofibrant replacement of x. In the
same way, define
Rg: Ho(M) — Ho(N)

by sending an object y tq By) where Ry is a fibrant replacement of y. Show that
ILf andRg are adjoint functors.
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3.2 Model categories and dg-categories

We start by the model category of dg-categories itself. The equivalences for this
model structure are the quasi-equivalences. The fibrations are defined to be the mor-
phismsf : T — T’ satisfying the following two properties. The cofibrations are
then defined to be the morphism with the correct lifting property.

1. For any two objectz andy in T, the induced morphism

fey 1 T(xy) — T((F(x), f(y)

is a fibration inC(K) (i.e. is surjective).
2. For any isomorphisnd : X' — Yy in [T’], and anyy € [T] such thatf (y) =y, there
exists an isomorphism: x — yin [T] such tha{f](u) = U’

Theorem 13.(see [Tab]) The above definitions define a model category structure
on dg— cat.

This is a key statement in the homotopy theory of dg-categories, and many re-
sults in the sequel will depend in an essential way from the existence of this model
structure. We will not try to describe its proof in these notes, this would lead us too
far.

The theorem 13 is of course very useful, even thought it is not very easy to find
cofibrant dg-categories and also to describe the homotopy equivalence relation in
general. However, we will see in the next lecture that this theorem implies another
statement which provide a very useful way to described maploildg— cat). Itis
this last description that will be used in order to check that localizations in the sense
of dg-categories (see definition 4) always exist.

Exercice 141. Letl be the dg-category with a unique object and k as endomor-
phism of this object (this is also the unit for the monoidal structure on dat).
Show thatl is a cofibrant object.

2. LetAkl be the k-linear category with two objed@snd1 and with

A:0,0)=k A0 =k AL  A(L,0=0

and obvious compositions&,{ is the k-linearization of the category with two
objects and a unigue non trivial morphism between them). Shomm;}\a'ﬂ; a
cofibrant object.

3. Use exercice 7 in order to show thdgkis not a cofibrant dg-category (when
considered as a dg-category with a unique object).

4. Let T be the dg-category with four objects %,yxand y and with the following
non trivial complex of morphisms (here we denote By k > the rank1 free
k-module with basis x)

T(x,X)=k< f> T(xy)=k<u> TX,Y)=k<U > T(yy)=k<g>
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Txy)=k<uf>ok<gu> T(xy)l=k<h>  T(xy) =0fori£0,—1

such that ¢h) = u'f — gu. In other words, T is freely generated by four mor-
phisms of degré, u, U, f and g, one morphism of degtel, h, and has a unique
relation d(h) = u' f — gu. Show that there exists a trivial fibration

T —>A|%®A|%.

Show moreover that this trivial fibration possesses no section, and conclude that
A,} ®A|;L is not a cofibrant dg-category.

Let nowT be a dg-category. A-dg-module is the data of a dg-funcfer. T —
C(k). In other words & -dg-moduleF consists of the data of complexBse C(k)
for each objeck of T, together with morphisms

for each objectx andy, satisfying the usual associativity and unit conditions. A
morphism ofT -dg-module consists of a natural transformation between dg-functors
(i.e. families of morphism&, — F; commuting with the mapB,® T (x,y) — Fy
andR; @ T(xy) — F).

We let T — Mod be the category of -dg-modules. We define a model category
structure ol —Mod by defining equivalences (resp. fibrations) to be the morphisms
f :F — F’ such that for alk € T the induced morphisrfy : F, — F/ is an equiv-
alence (resp. a fibration) i@6(k). It is known that this defines a model category
structure (see [Tol]). This model category is in a natural w&(ld-model cate-
gory, for which theC(k)-enrichement is defined by the formyB® F )y := E ® F.

Definition 5. Thederived categorpf a dg-categoryl is
D(T) :=Ho(T — Mod).

The previous definition generalizes the derived categories of rings. Indged, if
is ak-algebra it can also be considered as a dg-category, sometimes denoted by
BR with a unique object an& as endomorphism of this object (considered as a
complex ofk-modules concentrated in degree 0). TH¥BR) ~ D(R). Indeed, a
BR-dg-module is simply a complex &modules.

Exercice 15 Let T be a dg-category.

1. Letxe T be an objectin T and,f T°P — C(k) the T-dg-module represented
by x (the one sending y to(¥,x)). Prove that ky is cofibrant and fibrant as an
object in T°P — Mod.

2. Prove that x— h, defines a functor

[T] — D(TOp)‘
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3. Show that for any = D(T°P) there is a functorial bijection

Hormprop) (hy, F) = HO(F).
4. Show that the above functff] — D(T°P) is fully faithful.

Any morphism of dg-categoriek: T — T’ induces an adjunction on the corre-
sponding model categories of dg-modules

fi: T—Mod — T’ —Mod T—Mod«—— T'—Mod: f*,

for which the functorf* is defined by composition witli, and f, is its left adjoint.

This adjunction is &uillen adjunction i.e. f* preserves fibrations and trivial fi-
brations, and therefore can be derived into an adjunction on the level of homotopy
categories (see exercice 12 and [Hol, Lem. 1.3.10])

Lf:D(T) —D(T)  D(T)«— D(T'): f* = Rf*.

It can be proved that whehis a quasi-equivalence thdr andL f, are equivalences
of categories inverse to each others (see [Tol, Prop. 3.2]).

Exercice 16 Let f: T — T’ be a dg-functor. Prove that for anyT we have
Lf[ (hX) ~ hf(x)
in D(T’) (recall that K is the T -dg-module corepresented by x, sending y(1oyT).

For aC(k)-model categoryM we can also define a notion df-dg-modules
with coefficients in Mas being dg-functor§ — M (whereM is considered as
a dg-category using i8(k)-enrichement). This category is denoted\d¥ (so that
T —Mod=C(k)"). WhenM satisfies some mild assumptions (e.g. being cofibrantly
generated, see [Ho32.1]) we can endow!” with a model category structure sim-
ilar to T —Maod, for which equivalences and fibrations are defined levelwidd.in
The existence of model categories M3 will be used in the sequel to describe
morphisms irHo — (dg— cat).

Exercice 17 Let T and T be two dg-categories. Prove that there exists an equiva-
lence of categories
M(T@T,) ~ (MT)T,.

Show moreover that this equivalence of categories is compatible with the two model
category structures on both sides.

We finish this second lecture by describing a way to construct many examples
of dg-categories using model categories. For thisMdie aC(k)-enriched model
category. Using th€(k)-enrichement can also be considered as a dg-category
whose set of objects is the same as the set of objed¥sarid whose complexes of
morphisms aréglom(x,y). This dg-category will sometimes be denotedMbybut it
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turns out not to be the right dg-category associated t€tkgmodel categori (at

least it is not the one we will be interested in in the sequel). Instead, viet (&)

be the full sub-dg-category &fl consisting of fibrant and cofibrant objectsih

From the general theory of model categories it can be easily seen that the category
[Int(M)] is naturally isomorphic to the category of fibrant and cofibrant objects in

M and homotopy classes of morphisms between them. In particular there exists a
natural equivalence of categories

[Int(M)] =~ Ho(M).

The dg-categorynt(M) is therefore a dg-enhancement of the homotopy category
Ho(M). Of course, not every dg-category is of fotnt(M). However, we will see

that any dg-catgeory can be, up to a quasi-equivalence, fully embedded into some
dg-category of the fornint(M). This explains the importance 6fk)-model cate-
gories in the study of dg-categories.

Remark 2. The construction M- Int(M) is an ad-hoc construction, and does not
seem very intrinsic (e.g. as it is defined it depends on the choice of fibrations and
cofibrations in M, and not only on equivalences). However, we will see in the next
lecture that IntM) can also be characterized by as the localization of M along
the equivalences in M, showing that it only depends on the dg-category M and the
subsetW.

Let T be a dg-category. We can consider @{&)-enriched Yoneda embedding
h :T— T°—Mod,

which is a dg-functor whef°P — Mod is considered as a dg-category using its nat-
uralC(k)-enrichement. It turns out that for amye T, the T°P-dg-moduleh, is cofi-
brant (see exercice 15) and fibrant (av&®P-dg-module if fibrant by definition).
We therefore get a natural dg-functor

h: T — Int(T°P—Mod).

It is easy to check thdt is quasi-fully faithful (it even induces isomorphisms on
complexes of morphisms).

Definition 6. For a dg-category the morphism
h: T — Int(T°P— Mod)

is called thevoneda embedding of the dg-category T



34 Toén Bertrand

4 Lecture 3: Structure of the homotopy category of dg-categories

In this lecture we will trully start to go into the heart of the subject and describe
the categoryHo(dg— cat). | will start by a theorem describing the set of maps
between two objects iflo(dg— cat). This fundamental result has two important
consequences: the existence of localizations of dg-categories, and the existence of
dg-categories of morphisms between two dg-categories, both characterized by uni-
versal properties itdo(dg— cat). At the end of this lecture, | will introduce the
notion of Morita equivalences and triangulated dg-categoyiasd present a refine
version of the categoriio(dg— cat), better suited for many pruposes.

4.1 Mapsin the homotopy category of dg-categories

We start by computing the set of mapsHmw(dg— cat) from a dg-categoryl to a
dg-category of the forrmt(M). As any dg-category canbe full embedded into some
Int(M) this will be enough to compute mapshio(dg— cat) between any two ob-
jects.

Let M be aC(k)-model category. We assume thatsatisfies the following two
conditions.

1. M is cofibrantly generated.
2. For any cofibrant object in M, and any quasi-isomorphiseh— E’ in C(k),
the induced morphisrea @ X — E’ ® X is an equivalence.

Exercice 18 Let R be a k-algebra considered as a dg-category. Show that(je C
model category R Mod = C(R) does not satisfy conditiof2) above if R is not flat
over k.

Condition (1) this is a very mild condition, as almost all model categories en-
countered in real life are cofibrantly generated. Condit®nis more serious, as it
states that cofibrant objectsidfare flat in some sense, which is not always the case.
For example, to be sure that the model category Mod satisfies(2) we need to
impose the condition that all the complexeé&x,y) are flat (e.g. cofibrant i€(k)).

The following proposition is the main result concerning the description of the set
of maps inHo(dg— cat), and almost all the further results are consequences of it.
Note that it is wrong if conditiori2) above is not satisfied.

Proposition 1. Let T be any dg-category and M be &(-model category satisfying
conditions(1) and (2) above. Then, there exists a natural bijection

[T,Int(M)] ~ Iso(Ho(MT))

between the set of morphisms from T to(Mj in Ho(dg— cat) and the set of
isomorphism classes of objects in fb").
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Ideas of proof (see [Tol] for detailsket Q(T) — T be a cofibrant model for
T. The pull-back functor on dg-modules with coefficientddrinduces a functor

Ho(MT) — Ho(MT)).

Condition (2) on M insures that this is an equivalence of categories, as shown by
the following lemma.

Lemma 1.Let f: T’ — T be a quasi-equivalence between dg-categories and M be
a C(k)-model category satisfying conditio(i) and (2) as above. Then the Quillen
adjunction

fi:Ho(M™) — Ho(MT)  Ho(M™) «— Ho(MT): f*
is a Quillen equivalence.

Idea of a proof of the lemmaA/e need to show that the two natural transforma-
tions
Lfif*=id id = f*Lf,

are isomorphism. For this, we first check that this is the case when evaluated at a
certain kind of objects. Letc T andX € M be a cofibrant object. We consider the
objecth*®@ X € Ho(MT), sendingy € T to T(x,y) ® X € M. Letx € T’ be an object

such thatf (X') andx are isomorphic ifT’]. Because of our conditiof2) on M it is

not hard to show that* © X andnf(xl) ® X are isomorphic irHo(MT). Therefore,
we have
f* (@ X) ~ f*(h®) @ X).

Moreover,f*(hf*) @ X) € Ho(M™') sends an objegt € T/ to T(f(X), f(y)) ® X.
Becausef is quasi-fully faithful (and because of our assumpti@hon M) we see
that f*(hf*) @ X) is isomorphic irHo(M™") to h¥ ® X which sendy/ to T/ (X, y) ®
X. Finally, it is not hard to see that X is a cofibrant object and that

Ly (b @X) ~ fi(hi¥ @ X) ~hf®) g X.
Thus, we have
Lfif* (R ®X) ~Lf (¥ @ X) =~ h®) @ X ~ i@ X,
or in other words the adjunction morphism
Lf f*(h"®@X) — h*®X

is an isomorphism. In the same way, we can see that foxasyl’ the adjunction
morphism
¥ @X — FLA (¢ ©X)

is an isomorphism.
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To conclude the proof of the lemma we use that the objetts X generate
the categoryHo(M™) be homotopy colimits and that* and L, both commute
with homotopy colimits. Therefore, we deduce from what we have seen that the
adjunction morphism
Lfif*(E)—E

is an isomorphism for an € Ho(MT). In the same we way we see that for any
E’ € Ho(M™) the adjunction morphism

E — f*Lf,(E)

is an isomorphism. This finishes the proof of the lemma. |

The above lemma imply that we can assume thas a cofibrant dg-catgeory.
As all objects indg— cat are fibrant[T,Int(M)] is then the quotient of the set of
morphisms indg— cat by the homotopy relations. In particular, the natural map
[T,Int(M)] — Iso(Ho(MT)) is surjective (this uses that a cofibrant and fibrant ob-
jectinMT factors asT — Int(M) — M, i.e. is levelwise fibrant and cofibrant). To
prove injectivity, we start with two morphismsv: T — Int(M) in dg— cat, and
we assume that the corresponding objégtandF, in MT are equivalent. Using
that any equivalences can be factorized as a composition of trivial cofibrations and
trivial fibrations, we easily reduce the problem to the case where there exists a trivial
fibrationF, — F, (the case of cofibration is somehow dual). This morphism can be
considered as an objectint(Mor(M)T), whereMor(M) is the model category of
morphisms inM (note that fibrant objects iMor(M) are fibrations between fibrant
objects inM). Moreover, this object belongs T c Int(Mor(M)T), the full sub-
dg-category corresponding to equivalencelli(i.e. the dg-functom — Mor(M)
whose image of any object @f is an equivalence iM). We therefore have a com-
mutative diagram ilg— cat

Int(M).

The two morphism3’ — Int(M) are easily seen to be quasi-equivalences, and to
possess a common sectibmt (M) — T’ sending an object df1 to the its iden-

tity morphism. Projecting this diagram ido(dg— cat), we see thafu] = [v] in
Ho(dg— cat). a

We will now deduce from proposition 1 a description of the set of nj@ps§’']
between two objects iho(dg— cat). For this we use th€(k)-enriched Yoneda
embedding
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h:T"— Int((T')°P—Mod),
sending an object € T’ to the(T’)°P-dg-module defined by

h: (TP — C(k)
y = T(%X).

The dg-modulé is easily seen to be cofibrant and fibrantTr)°P — Mod, and thus
we haveh, € Int((T")°P — Mod) as required. The enriched version of the Yoneda
lemma implies thah is a quasi-fully faithful dg-functor. More precisely, we can
show that the induced morphism of complexes

T'(x,y) — Hom(hy, h) = Int((T")°P — Mod)((hy, h)
is an isomorphims of complexes.

Using the description of maps io(dg— cat) as being homotopy classes of mor-
phisms between cofibrant objects, we see that the morphisduces a injective
map

[T, T'] < [T,Int((T")°P — Mod)]

whose image consists of morphisfinis— Int((T')°P—Mod) factorizing inHo(dg—
cat) throught the quasi-essential imagelnfWe easily get this way the following
corollary (see§3.2 and exercice 4 for the definition of the tensor product of two
dg-categories).

Corollary 1. Let T and T be two dg-categories, one of them having cofibrant com-
plexes of morphisms. Then, there exists a natural bijection beti¥e&f] and the
subset of IstHo(T @ (T’)°P — Mod)) consisting of T (T’)°P-dg-modules F such
that for any xe T, there exists ¥ T’ such that k_ and h, are isomorphic in
Ho((T’)°P - Mod).

Exercice 19 Let T be a dg-category.

1. Show thafl,T] is in bijection with the set of isomorphism classes of objects in
the categonyT]| (recall that1 is the unit dg-category, with a unique object and k
as algebra of endormorphisms).

2. Show thafA}, T] is in bijection with the set of isomorphism classes of morphisms
in the category[T]| (recall thatA% is the dg-category with two object and freely
generated by a unique non trivial morphism).

Exercice 20 Let C and D be two k-linear categories, also considered as dg-
categories over k. Show that there exists a natural bijection bety@dp] and

the set of isomorphism classes of k-linear functors from C to D. Deduce from this
that there exists a fully faithful functor

Ho(k — cat) — Ho(dg— cak),

from the homotopy category of k-linear categories and the homotopy category of
dg-categories.
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Exercice 21 Let R be an associative and unital k-algebra, which is also considered
as dg-category with a unique object and R as endomorphisms of this object. Show
that there is a natural bijection betweéR, Int(C(k))] and the set of isomorphism
classes of the derived category®.

4.2 Existence of internal Homs

For two dg-catgeorie$ andT’ we can construct their tensor proddc® T’ in the
following way. The set of objects of ® T’ is the productOb(T) x Ob(T’). For
(x,y) € Ob(T)? and(x,y’) € Ob(T’)? we set

(TT)(XX), (1Y) =Ty STX,Y),

with the obvious compositions and units. WHan not a field the functor does not
preserves quasi-equivalences. However, it can be derived by the following formula

T T:=QMeQ(T),

whereQ is a cofibrant replacement functor dig— cat. This defines a symmetric
monoidal structure

— @~ :Ho(dg— cat) x Ho(dg— cat) — Ho(dg— cat).

Proposition 2. The monoidal structure- @ — is closed. In other words, for two
dg-categories T and Tthere exist®RHom(T, T’) € Ho(dg— cat), such that for any
third dg-category U there exists a bijection

[U,RHom(T,T')] ~ [U &~ T, T,
functorial in U € Ho(dg— cat).

Idea of proof:As for the corollary 1 we can reduce the problem of showing
that RHom(T,Int(M)) exists for aC(k)-model categoryM satisfying the same
conditions as in proposition 1. Under the same hypothesis than corollary 1 it can
be checked (using proposition 1) thBHom(T,Int(M)) exists and is given by
Int(MT). i

For two dg-categorie$ andT’, one of them having cofibrant complexes of mor-
phisms it is possible to show thBHom(T, T’) is given by the full sub-dg-category

of Int(T @ (T")°P—Mod) consisting of dg-modules satifying the condition of corol-
lary 1.

Finally, note that whei = C(k) we have

RHom(T, Int(C(k))) ~ Int(T —Mod).
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In particular, we find a natural equivalence of categories
D(T) ~ [RHom(T, Int(C(K)))],
which is an important formula.
In the sequel we will use the following notations for a dg-category
L(T) :=Int(T —Mod) ~ RHom(T, Int(C(k)))

T := Int(T°P — Mod) ~ RHom(T°P, Int(C(K))).

Note that we have natural equivalences
L(T)~D(T)  [T]~D(T).

Therefore,L(T) and T are dg-enhancement of the derived categobl¢§) and

D(TOP).

Exercice 22 1. Let R be an associative and unital k-algebra which is considered
as a dg-category with a unique object. Show that there is an isomorphism in
Ho(dg— cat)

RHom(R Int(C(k)) ~ L(R).

2. Show that for any two k-algebras R and &he of them being flat over k we have
RHomR L(R)) ~L(R®R).
Exercice 23 Let T be a dg-category. We define the Hochschild cohnomology of T by
HH*(T) := H*(RHom(T, T)(id,id)).

Let R be an associative k-algebra, flat over k, and considered as a dg-category with
a unique object. Show that we have

HH*(R) = EXt*R(g) ROP(R’ R)7

where the right hand side are the ext-groups computed in the derived category of
R® R°P-modules.

4.3 Existence of localizations

Let T be a dg-category and |& be subset of morphisms ifT] we would like
to invert inHo(dg— cat). For this, we will say that a morphisin T — LsT in

Ho(dg— cat) is alocalization of T along ¥ for any T’ € Ho(dg— cat) the induced
morphism
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I*:[LST,Tq ——e[T,Tq

is injective and its image consists of all morphiss— T’ in Ho(dg— cat) whose
induced functofT] — [T'] sends all morphisms i&to isomorphisms ifiT]. Note

that the functorT] — [T'] is only well defined inHo(Cat) (i.e. up to isomor-
phism), but this is enough for the definition to makes sense as the condition of
sendingSto isomorphisms is stable by isomorphism between functors.

Proposition 3. For any dg-category T and any set of maps $Tih a localization
T — LsT exists in Hgdg— cat).

Idea of proof (see [Tol] for details)Ve start by the most simple example of a
localization. We first suppose that:= Akl is the dg-category freely generated by
two objects, 0 and 1, and a unique morphiso® — 1. More concretelyT (0,1) =
T(0,0)=T(1,1) =kandT(1,0) =0, together with the obvious compositions and
units. We letl be the dg-category with a unique objecand1(x,*) = k (with the
obvious composition). We consider the dg-fonct€ur— 1 sending the non trivial
morphism ofT to the identity of« (i.e.k = T(0,1) — 1(x,*) = k is the identity).
We claim that this morphisfh — 1is a localization ofl alongSconsisting of the
morphismu: 0— 1 of T = [T]. This in fact follows easily from our proposition 1.
Indeed, for &C(k)-model categoryl the model categori is the model category
of morphisms inM. It is then easy to check that the functéo(M) — Ho(MT)
sending an object dfl to the identity morphism iM is fully faithful and that its
essential image consists of all equivalencellin

In the general case, I&be a subset of morphisms jii] for some dg-category
T. We can represent the morphis@by a dg-functor

|_|Akl — T,
S

sending the non trivial morphism of the componsiib a representative &fin T.
We defineLsT as being the homotopy push-out (see [Hol] for this notion)

L
LsT:= (|1 | T

S Usa

The fact that each morphisth<l — 1is a localization and the universal proper-
ties of homotopy push-outs imply that the induced morphism— LsT defined as
above is a localization of alongS. ]

Exercice 24 LetAk1 be the dg-category with two objects and freely generated by a
non trivial morphism u between these two objects. We let 81} be the image of
uin [AQ]. Show that Ig,Akl ~ 1, wherel is the unit dg-category (one object and k as
endomorphisms of this object).
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Exercice 25 Let T and T be two dg-categories and S ant® two sets of mor-
phisms in[T] and [T’] that contain all the identities. Prove that there is a natural
isomorphism in HEdg— cat)

LsT @ LgT ~Lg g T T
The following proposition describést(M) as a dg-localization df.

Proposition 4. Let M be a cofibrantly generated(k)-model category, considered
also as dg-category MThere exists a natural isomorphism in Hig — cat)

Int(M) ~ LwM.

Idea of proof:We consider the natural inclusion dg-functarint(M) — M.
This inclusion factors as

Int(M) 1. mf Kk M,

whereM is the full sub-dg-category d¥l consisting of fibrant objects. Using that
M is cofibrantly generated we can construct dg-functors

rm—m~" gq:M—Int(™m)
together with morphisms
jg—id gqj—id id —ri id —ir.

Moreover, these morphisms between dg-functors are levelwi®é. ilihis can be
seen to imply that the induced morphisms on localizations

LwInt(M) — LyM" — LwM

are isomorphisms ifo(dg— cat). Finally, as morphisms ik are already invert-
ible in [Int(M)] ~ Ho(M), we haveLywInt(M) ~ Int(M). O

Finally, one possible way to understand localizations of dg-categories is by the
following proposition.

Proposition 5. Let T be a dg-category and S be a subset of morphisifig.iThen,
the localization morphism:IT — LsT induces a fully faithful functor

I*:D(LsT) — D(T)

whose image consists of all T-dg-modulesTF— C(k) sending all morphisms of
S to quasi-isomorphisms in(k).

Idea of proof:This follows from the existence of internal Homs and localizations,
as well as the formula
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D(T) ~ [RHOM(T, Int(C(K)))] ~ D(LsT) ~ [RHom(LsT, Int(C(K)))]-

Indeed, the universal properties of localizations and internal Homs implies that
RHom(LsT, Int(C(k))) can be identified full the full sub-dg-category®iHom(T, Int(C(k)))
consisting of dg-functors sendit®to quasi-isomorphisms iG(k). a

Exercice 26 Let|: T — LgT be a localization of a dg-category with respect to set
of morphisms S ifir], and let

Ll : D(TOp) — D(LsTOp)

be the induced functor in the corresponding derived categories of modulessLet W
be the the subset of morphisms u iGTOP) such thatll,(u) is an isomorphism in
D(LsTOP).

1. Show that a morphism uE — F of D(T°P) is in Wk if and only if for any
G € D(T°P) such that G — Gy is a quasi-isomorphism for all %> y in S, the
induced map

u* : Homptop) (F,G) — Homprop) (E, G)
is bijective.

2. Show that the induced functor

W 1D(T°P) — D(LsTP)

is an equivalence of categories.

4.4 Triangulated dg-categories

In this section we will introduce a class of dg-categories caifeshgulated The
notion of being triangulated is the dg-analog of the notion of being Karoubian for
linear categories. We will see that any dg-category has a triangulated hull, and this
will allow us to introduce a notion of Morita equivalences which is a dg-analog of
the usual notion of Morita equivalences between linear categories. The homotopy
category of dg-categories up to Morita equivalences will then be introduced and
shown to have better properties than the categbwydg— cat). We will see in the

next lecture that many invariants of dg-categories (K-theory, Hochschild homology
... ) factors throught Morita equivalences.

Let T be a dg-category. We recall the existence of the Yoneda embedding (see
definition 6)
T — Int(T°P - Mod),

which is quasi-fully faithful. Passing to homotopy categories we get a fully faithful
morphism
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h:[T] — D(T°P).

An object in the essential image of this functor will be caltipdhsi-representable
Recall that an object € D(T°P) is compactf the functor

[X,—] : D(T°P) — k—Mod

commutes with arbitrary direct sums. It is easy to see that any quasi-representable
objectis compact (see exercice 15). The converse is not true and we set the following
definition.

Definition 7. A dg-categoryT is triangulatedif and only if every compact object in
D(T°P) is quasi-representable.

Exercice 27 Let T be a dg-category andT an object.
1. Show that for any & D(T°P) we have

[hy, F] = Homygop) (hy, F) 2 HO(F).
2. Show that any quasi-representable object {iTEP) is a compact object.

Remark 3. When T is triangulated we have an equivalence of cateddiies
D(T°P)., where OTCP). is the full sub-category of O') of compact objects. The
category OT) has a natural triangulated structure which restricts to a triangulated
structure on compact objects (see [Ne] for more details on the notion of triangulated
categories). Therefore, when T is triangulated dg-category its homotopy category
[T] comes equiped with a natural triangulated structure. This explains the terminol-
ogy of triangulated dg-category-owever, it is not necessary to know the theory of
triangulated categories in order to understand triangulated dg-categories, and thus
we will not study in details the precise relations between triangulated dg-categories
and triangulated categories.

We letHo(dg— cat'") ¢ Ho(dg— cat) be the full sub-category of triangulated
dg-categories.

Proposition 6. The natural inclusion
Ho(dg— cat") — Ho(dg— cat)
has a left adjoint. In other words, any dg-category has a triangulated hull.

Idea of proof:Let T be a dg-category. We consider the Yoneda embedding (see
definition 6)
h: T — Int(T°P—Mod).

This is a quasi-fully faithful dg-functor. We consid@gse C Int(T°P — Mod), the
full sub-dg-category consisting of all compact objects. As any quasi-representable
object is compact, the Yoneda embedding factors as a full embedding
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h:T— '/I:pe.
Let nowT’ be a triangulated dg-category. By definition, the natural morphism
T — f’pe
is an isomorphism it o(dg— cat). We can then consider the induced morphism
[Toe T'pdl — [T, T'pd),

induced by the resytiction along the morphigm— fpe. The hard point is to show

that this map in bijective and thfbe is a triangulated dg-category. These two facts
can be deduced from the followin lemma and the proposition 1.

Lemma 2.Let T be a dg-category, and:il — T'pe be the natural inclusion. Let
M be a Gk)-model category which is cofibrantly generated. Then the Quillen ad-
junction

h:MT —Mbe M7 MTe: pr
is a Quillen equivalence.

The proof of the above lemma can be found in [Tol, Lem. 7.5]. It is based on the
fundamental fact that the quasi-representable objedB(TPP) generate the sub-
category of compact objects by taking a finite number of finite homotopy colimits,
shifts and retracts, together with the fact thék andh* both preserve these finite
homotopy colimits, shifts and retracts. ]

The proof of the proposition shows that the left ajoint to the inclusion is given by

—

(—)pe: Ho(dg—cat) — Ho(dg—cat"),

sending a dg-categoily to the full sub—dg—categoﬂfpe of Int(T°P— Mod) consist-
ing of all compact objects.

For example, iRis ak-algebra, considered as a dg-category with a unique object
BR I§\Rpe is the dg-category of cofibrant and perfect complexeR-ofiodules. In
particular .

[BRoe] ~ Dparf(R)

is the perfect derived category Bf This follows from the fact that compact objects

in D(R) are precisely the perfect complexes (this is a well known fact which can
also be deduced from the general result [To-Va, Prop. 2.2]). Therefore, we see that
the dg-category of perfect complexes over some Rrigjthe triangulated hull oR.

Definition 8. A morphismT — T’ in Ho(dg— cat) is called aMorita equivalence
if the induced morphism in the triangulated hull

Tpe — T/pe
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is an isomorphism itlo(dg— cat).

It follows formally from the existence of the left adjoiiit— fpe thatHo(dg—
cat'") is equivalent to the localized categdyr 2 dg— cat, whereéWn, is the subset
of Morita equivalences idg— cat as defined above.

Exercice 28 Prove the above assumption: the functor

—

(—)pe: Ho(dg— cat) — Ho(dg— cat")
induces an equivalence of categories
WdHo(dg— cat) ~ Ho(dg— cat").
We can characterize the Morita equivalences in the following equivalent ways.

Proposition 7. Let f: T — T’ be a morphism of dg-categories. The following are
equivalent.

1. The morphism f is a Morita equivalence.
2. For any triangulated dg-category,Tthe induced map

[T/7 To] — [T, To]

is bijective.
3. The induced functor
fe: D(T’) — D(T)

is an equivalence of categories.
4. The functor
Lf :D(T) — D(T)

induces an equivalence between the full sub-category of compact objects.
Exercice 29 Prove the proposition 7.

We finish this section by a description of morphismsiio(dg— cat'") in termes
of derived categories of bi-dg-modules.

Proposition 8.Let T and T be two dg-categories. Then, there exists a natural
bijection betweenTpe, T/ el and the subset of 1$B(T @ (T’)°P)) consisting of

T @ (T")°P-dg-modules F such that for anyT, the (T’)°P-dg-module k- is
compact.

Exercice 30 Give a proof of proposition 8.

Exercice 31 1. Show that the full sub-category Kty — cat'') c Ho(dg— cat) is
not stable by direct sums (taken inside (dg— cat)).
2. Show that the category Hag— cat'") has finite sums and finite products.



46 Toén Bertrand
3. Show that in the category Hag — cat"), the natural morphism
T T —TxT,

for any T and T objects in Hgdg— cat'"). Note that the symbolg and x refer
here to the categorical sum and product in the categoryddp- cat'").

4. Deduce from this that the set of morphisms(ép- cat'’) are endowed with
natural structure of commutative monoids such that the composition is bilinear.
Identify this monoid structure with the direct sum on the level of bi-dg-modules
throught the bijection of corollary 1.

Exercice 32 Let T — T’ be a Morita equivalence andy be a dg-category. Show
that the induced morphism

TorTo— T oM
is again a Morita equivalence (use the lemma 2).

Exercice 33 Let T and T be two triangulated dg-catgeory, and define
~L / — =
T T =TV T/ pe

1. Show tha{T,T’) — T&"T' defines a symmetric monoidal structure on(dg—
cat'") in such a way that the functor

—

(—)pe: Ho(dg—cat) — Ho(dg—cat")

is a symmetric monoidal functor.

2. Show that the monoidal structufe” is closed on Hedg— cat'h).

Exercice 341. Let T and T be two dg-categories. Prove that the Yoneda embed-
ding h: T — Tpe induces an isomorphism in Hog— cat)

Rmfp& T pe) — RMTyf/pe)~

2. Deduce from this that for any dg-category T there exists a morphism (dd+o
cat)
RHOM(T, T) — RHom(T, Tpe)

which is quasi-fully faithful.
3. Deduce from this that for any dg-category T there exist isomorphisms

HH*(T) ~ HH*(T).
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5 Lecture 4: Some applications

In this last lecture | will present some applications of the homotopy theory of dg-
categories. We will see in particular how the problems mentioned i &n be
solved using dg-categories. The very last section will be some discussions on the
notion of saturated dg-categories and their use in the definitionsetandary K-
theoryfunctor.

5.1 Functorial cones

One of the problem encountered with derived categories is the non existence of
functorial cones. In the context of dg-categories this problem can be solved as fol-
lows.

Let T be a triangulated dg-category. Welq} be the dg-category freely gener-
ated by two objects 0 and 1 and freely generated by one non trivial morphismy O
and1 be the unit dg-category (with a unique object dnfibr its endomorphism).
There is a morphism R

Af — 1pe

sending 0 to 0 and 1 tke We get an induced morphism kho(dg— cat)
RHom(1pe, T) — RHom(AL, T).

As T is triangulated we have
RHOM(1pe, T) ~ RHOM(1,T) ~T.

Therefore, we have defined a morphisnHo(dg— cat)
f: T — RHom(1pe, T) =: Mor(T).

The dg-categoryvor(T) is also the full sub-dg-category &fit(Mor(T°P — Mod))
corresponding to quasi-representable dg-modules, and is called the dg-category of
morphisms inT. The morphismf defined above intuitively sends an objget T to

0 — xin Mor(T) (note that O is an object ifi becausd is triangulated).

Proposition 9. There exists a unique morphism in Hig — cat)
c:Mor(T) —T
such that the following tw¢T ®" Mor(T)°P)-dg-modules

(z,u) — Mor(T)(u, f(2)) (z,u) — T(c(u),2)
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are isomorphic in BT @ Mor(T)°P) (In other words, the morphism f admitset
adjoin).

Idea of proof:We consider the following explicit models far, Mor(T) and
f. We let T’ be the full sub-dg-category dfit(T°P — Mod) consisting of quasi-
representable objects (or equivalentely of compact objecIsis$riangulated). We
letMor(T)’ be the full sub-dg-category oifit(Mor(T°P—Mod)) consisting of mor-
phisms between quasi-representable objects (these are also the compact objects in
Ho(Mor(T°P—Mod)) becausd is triangulated). We note thddor(T)’ is the dg-
category whose objects are cofibrations between cofibrant and quasi-representable
TOP-dg-modules. To each compact and cofibrafP-dg-modulez we consider
0 — z as an object inl’. This defines a dg-functof’ — Mor(T)" which is a
model for f. We definec as being &C(k)-enriched left adjoint ta (in the most
naive sense), sending an objectx — y of Mor(T)’ to c(u) defined by the push-
out inT°P—Mod

X———Y
|
0 ——c(u).

We note that thd °P-modulec(u) is compact and thus belongsTo. It is easy to
check that, as a morphism iklo(dg— cat) satisfies the property of the proposition.

The unicity ofc is proved formally, in the same way that one proves the unicity
of adjoints in usual category theory. ]

The morphisnt : Mor(T) — T is a functorial cone construction for the trian-
gulated dg-category. The important fact here is that there exists a natural functor

[Mor(T)] — Mor([T]),
which is essentially surjective, full but not faithful in general. The functor
(c] : [Mor(T)] — [T]
does not factor in general througtior ([T]).

To finish, proposition 9 becomes really powerful when combined with the fol-
lowing fact.

Proposition 10.Let T be a triangulated dg-category and e any dg-category.
ThenRHom(T’, T) is triangulated.

Exercice 35 Deduce proposition 10 from exercice 32.

One important feature of triangulated dg-categories is that any dg-fuictor
T — T’ between triangulated dg-categories commutes with cones. In other words,
the diagram
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Mor(T') —= T’
commutes inHo(dg— cat). This has to be understood as a generalization of the
fact that any linear functor between additive categories commutes with finite direct
sums. This property of triangulated dg-categories is very useful in practice, as then
any dg-functoT — T’ automatically induces a triangulated funcfdi — [T’].

Exercice 36 Prove the above assumption, that

Mor(T) ——T

| lf

Mor(T') —— T/

C

commutes in H@g— cat) (here T and T are triangulated dg-categories).

5.2 Some invariants

Another problem mentioned in &lLis the fact that the usual invariants, (K-theory,
Hochschild homology and cohomology .. .), are not invariants of derived categories.
We will see here that these invariants can be defined on the level of dg-categories.
We will treat the examples of K-theory and Hochschild cohomology.

1. LetT be a dg-category. We considefP — Mod°® the full sub-category of com-
pact and cofibranT °P-dg-modules. We can endoW’P — Mod°® with a struc-
ture of an exact complicial category (see [Sch]) whose equivalences are quasi-
isomorphisms and cofibrations are the cofibrations of the model category struc-
ture onT°P — Mod. This Waldhausen category define&aheory spac&(T)
(see [Sch]). We note that i is triangulated we have

Ko(T) := mo(K(T)) ~ Ko([T]),
where the lasK-group is the Grothendieck group of the triangulated category
[T].
Now, letf : T — T’ be a morphism between dg-categories. It induces a functor

f,: T°’—Mod — (T')°P — Mod.

This functor preserves cofibrations, compact cofibrant objects and push-outs.
Therefore, it induces a functor between Waldhausen categories
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f, : T°P —Mod*® — (T)°P — Mod®®
and a morphism on the corresponding spaces
fi : K(T) — K(T').

This defines a functor
K:dg—cat— Sp

from dg-categories to spectra. It is possible to show that this functor sends Morita
equivalences to stable equivalences, and thus defines a functor

K :Ho(dg—cat") — Ho(Sp.

We see it particular that two dg-categories which are Morita equivalent have the
same K-theory.

. (See also exercice 34) L&tbe a dg-category. We considBHom(T,T), the
dg-category of (derived) endomorphismsTofThe identity gives an objedd €
RHom(T,T), and we can set

HH(T) := RHom(T, T)(id,id),

the Hochschild complex of . This is a well defined object iB(k), the derived
category of complexes éfmodules, and the constructidn— HH(T) provides
a functor of groupoids

Ho(dg— cat)’® — D(k)'°.
Using the results of 82 we can see that
HH*(T) ~ Ext*(T,T),

where the Ext-group is computed in the derived categoryl of™ T°P-dg-
modules. In particular, whem is given by an associative fl&talgebraR we
find

HH*(T) ~ Extzor(R R),

which is usual Hochschild cohomology. The Yoneda embedding- fpe, pro-
vides an isomorphism iHo(dg— cat)

RHom(T,T) ~ RHom(T, T),
and a quasi-fully faithful morphism
RHom(T,T) — RHom(T,T).

Therefore, we get a quasi-fully faithful morphismHhfo(dg— cat)
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RHomM(T,T) — RHom(T,T)
sending the identity to the indentity. Therefore, we obtain a natural isomorphism
HH(T) ~ HH (Tpe).

We get that way that Hochschild cohomology is a Morita invariant.
3. There also exists an interpretation of Hochschild homology purely in termes of

dg-categories in the following way. We consider two dg-categdriandT’, and

the Yoneda embeddirtyg: T — T. We obtain an induced functor

h : RHom(T,T’) — RHom(T, T").

It is possible to show that this morphism is quasi-fully faithful and that its quasi-
essential image consists of all morphisins— T’ which are continuous (i.e.
commute with direct sums). We refer to [Tol, Thm. 7.2] for more details about
this statement. This implies that there is an isomorphishiatdg— cat)

RHomM(T, T') ~ RHom,(T, T"),

whereRHom, denotes the full sub-dg-category of continuous dg-functors.
Let nowT be a dg-category and consider the™ T°P-dg-module sendingx, y)
to T (y,x). This dg-module can be represented by an object in the dg-category

L(T @ T°P) ~ RHom(T @ T°P, 1) ~ RHom,(T @ Top, 1),

and thus by a continuous to(dg— cat)

-~

L(TeMTOP) — 1.

The image ofT, considered as a bi-module sendixgy) to T(y,X), by this mor-

phismis denoted bMH(T) € D(k) ~ [1], and is called the Hochschild homology
complex ofT. WhenT is a flatk-algebraR then we have

HH(T) ~ R®g;pop R€ D(K).

From its definition, it is not hard to show th&it— HH(T) is invariant by Morita
equivalences.

5.3 Descent

In this section we will see how to solve the non-local nature of derived categories
explained in 811. For this, letX be a scheme. We have the Grothendieck category
C(0x) of (unbounded) complexes of sheavegifmodules. This category can be
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endowed with a model category structure for which the equivalences are the quasi-
isomorphisms (of complexes of sheaves) and the cofibrations are the monomor-
phisms (see e.g. [Ho2]). Moreover, wh&nis a k-scheme then the natur@lk)-
enrichement o€(0x ) makes it into &(k)-model category. We let

L(Ox) :=Int(C(Ox)),

and we letpe(X) be the full sub-dg-category consisting of perfect complexeX.on
TheK-theory ofX can be defined as

K(X) := K(Lpe(X)),

using the definition oK-theory of dg-categories we saw in the last section.
When f : X — Y is a morphism of schemes, it is possible to define two mor-
phisms inHo(dg— cat)

Lf*: L(ﬁy) — L(ﬁx) L(ﬁy) — L(ﬁx) ZRf*7

which are adjoints (according to the model we chihdé is a bit tricky to define
explicitly). The morphism

Lf*:L(6y) — L(Ox)
always preserves perfect complexes are induces a morphism

The following proposition will not be proved in these notes. We refer to [Hir-Si]
for more details about the descent for perfect complexes.

Proposition 11.Let X=U UV, where U and V are two Zariski open subschemes.
Then the following square

Lpe(X) —— Lpe(U)
is homotopy cartesian in the model category-dcat.
Let us also mention the following related statement.

Proposition 12.Let X and Y be two smooth and proper schemes over Speck. Then,
there exists a natural isomorphism in kttg— cat)

RHOM(Lpe(X), Lpe(Y)) =~ Lpe(X xkY).
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For a proof we refer the reader to [Tol]. It should be emphasised here that the
corresponding statement is false on the level of derived categories. More precisely,
letE € Dpart(X xkY) and let

¢ : Dpart(X) — Dpart(Y)
F — R(py).(Expi(F))

be the corresponding functor. The construction- ¢g defines a functor
¢_ Dparf(x XkY) — Funtr(Dparf(x), Dparf(Y))7

where the right hand side is the category of triangulated functors Bggp (X)

to Dpart(Y). WhenX andY are projective ove® peck(and thak is field) then it is
known that this functor is essentially surjective (see [Ro]). In general it is not known
if ¢_ is essentially surjective or not. In any case, even for very sirkpdadY the
functor ¢_ is not faithful, and thus is not an equivalence of categories in general.
Suppose for instance that=Y = E and elliptic curve ovek = C, and letA €
Dpart (X x¢ X) be the structure sheaf of the diagonal. The imagé_bgf the objects

A andA[2] are respectively the identity functor and the shift by 2 functor. Because
X is of cohomological dimension 1 we hatom(id,id[2]) = 0, where this hom

is computed iFun" (Dparf(X), Dpart (X)). HoweverHom(A,A[2]) ~ HH2(X) ~
HYE,0) ~k

5.4 Saturated dg-categories and secondary K-theory

We arrive at the last section of these lectures. We have seen that dg-categories can
be used in order to replace derived categories, and that they can be used in order to
define K-theory. In this section we will see that dg-categories can also be considered
ascoefficientghat can themselves be used in order to define a secondary version of
K-theory. For this | will present an analogy between the categétigsg— cat")

andk — Mod. Throught this analogy projectidemodules of finite rank correspond

to the notion ofsaturated dg-categories$ will then show how to define secondary
K-theory spectrunk(® (k) using saturated dg-categories, and give some ideas of
how to define analogs of the rank and chern character maps in order to see that this
secondary K-theorK (@ (k) is non-trivial. | will also mention a relation between
K2 (k) and the Brauer group, analog to the well known relation betviedmeory

and the Picard group.

We start by the analogies between the categdtiesMod of k-modules and
Ho(dg— cat"). The true analogy is really betwén- Mod and the homotopy the-
ory of triangulated dg-categories, e.g. the simplicial catedoiy— cat'’ obtained
by simplicial localization (see [To2]). The homotopy categétg(dg — cat'’) is
sometimes too coarse to see the analogy. We will however restrict ourselves with
Ho(dg— cat'"), even thought some of the facts below abkid(dg— cat'’) are
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not completely intrinsic and requires to lift things to the model category of dg-
categories.

1. The categork — Mod is a closed symmetric monoidal category for the usual
tensor product. In the same wayp(dg—cat'") has a closed symmetric monoidal
structure induced from the one bfo(dg— cat) (see 83). Explicitly, if T and
T’ are two triangulated dg-category we fofie™ T/ € Ho(dg— cat). This is not
a triangulated dg-category anymore and we set

T&T/ = (T@-T')p € Ho(dg —cat”).

The unit of this monoidal structure is the triangulated hulllofi.e. the dg-
category of cofibrant and perfect complexeskefhodules. The corresponding
internal Homs is the one ¢fo(dg— cat), as we already saw th&Hom(T,T')
is triangulated ifT andT’ are.

2. The categork — Mod has a zero object and finite sums are also finite products.
This is again true irHo(dg— cat'"). The zero dg-category (with one object and
0 as endomorphism ring of this object) is a zero objedt afdg— cat'"). Also,
for two triangulated dg-categori@sandT’ their sumT | | T’ as dg-categories is
not triangulated anymore. Their direct sumHio(dg— cat'") is the triangulated
hullof T||T’, that is

—

YT =~ Toex Tpe~T xT'.

We note that this second remarkable propertyHofdg— cat'") is not satisfied
by Ho(dg— cat) itself. We can say thatio(dg— cat'") is semi-additivewhich
is justififed by the fact that the Homs o(dg— cat'") are abelian monoids (or
abelian semi-groups).

3. The categork— Mod has arbitrary limits and colimits. The corresponding state-
ment is not true foHo(dg— cat'"). However, we have homotopy limits and ho-
motopy colimits inHo(dg— cat'"), whose existence are insured by the model
category structure odg— cat.

4. There is a natural notion of short exact sequencé&s-ivMod. In the same way,
there is a natural notion of short exact sequenceasadtdg— cat'"). These are
the sequences of the form

To = T = (T//?O)pe7

wherei is a quasi-fully faithful functor between triangulated dg-categories, and

—

(T/To)pe is the quotient defined as the triangulated hull of the homotopy push-
out of dg-categories
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To——T

|

04>T/T0.

These sequences are natural in terms of the homotopy theory of triangulated dg-
categories as it can be shown that quasi-fully faithful dg-functors are precisely
thehomotopy monomorphisnrsdg— cat, i.e. the morphsm§ — T’ such that
the diagonal map

T—Tx0T

is a quasi-equivalence (the right hand side is a homotopy pull-back). This de-
fines a dual notion of homotopy epimorphisms of triangulated dg-categories as
being the morphisimt — T’ such that for any triangulated dg-categoiésthe
induced morphism

RHom(T", T"”) — RHom(T,T")

is a homotopy monomorphisms (i.e. is quasi-fully faithful). In the exact se-
guences abovgis a homotopy monomorphism,is a homotopy epimorphism,

p is the cokernel off and j is the kernel ofp. The situation is therefore really
close to the situation ik— Mod.

If k—Mod andHo(dg— cat'") are so analoguous then we should be able to say
what is the analog property of being projective of finite rank, and to defike a
group or even &-theory spectrum of such objects. It turns that this can be done
and that the theory can actually be pushed rather far. Also, we will see that this new
K-theory migt have some geometric and arithmetic significance.

It is well know that the projective modules of finite rank oderre precisely
the dualizable (also called rigid) objects in the closed monoidal catégeylod.
Recall that anyk-moduleM has a duaM" := Hom(M, k), and that there always
exists an evaluation map

MY ®M — Hom(M,M).

Thek-moduleM is dualizable if this evaluation map is an isomorphism, and this is
known to be equivalent to the fact thdtis projective of finite rank.

We will take this as a definition gdrojective triangulated dg-categories of finite
rank. The striking fact is that these dg-categories have already been studied for
other reasons under the namesafurated dg-categorie®r smooth and proper dg-
categories

Definition 9. A triangulated dg-categor¥ is saturatedf it is dualizale inHo(dg—
cat'"), i.e. if the evaluation morphism

RHOM(T,1pe)® T — RHom(T,T)
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is an isomorphism itlo(dg— cat'").

The saturated triangulated dg-categories can be characterized nicely using the
notion of smooth and proper dg-algebras (see [To3, To-Va, Ko-So]). Recall that a
dg-algebraB is smooth ifB is a compact object ilD(B @ B°P). Recall also that
such a dg-algebra is proper if its underlying complex if perfect (i.B.if compact
in D(k)). The following proposition can be deduced from the results of [To-Va].
We omit the proof in these notes (see however [To-Va] for some statements about
saturated dg-categories).

Proposition 13. A triangulated dg-category is saturated if and only if it is Morita
equivalent to a smooth and proper dg-algebra.

This proposition is interesting as it allows us to show that there exists many
examples of saturated dg-categories. The two main examples are the following.

1. LetX be a smooth and propkrscheme. Thehpe(X) is a saturated dg-category
(see [To-Va)).

2. For anyk-algebra, which is projective of finite rank ak-module and which is of
finite global cohomlogical dimension, the dg-categépy of perfect complexes
of A-modules is saturated.

The symmetric monoidal categoHo(dg— cat®®) of saturated dg-categories is
rigid. Note that any object has a duall¥ := RH@XT&@. Moroever, it can be
shown thafTV ~ T°P is simply the opposite dg-category (this is only true wien
is saturated). In particular, for and T’ two saturated dg-categories we have the
following important formula

TP T’ ~ RHom(T, T').

We can now define the seconda€ygroup. We start byZ[saf], the free abelian
group on isomorphism classes (#o(dg— cat'")) of satuared dg-categories. We

defineKéz)(k) to be the quotient oZ[saf by the relation

L —

[T] = [Tol +[(T/To) el

for any full saturated sub-dg-categoyC T with quotient(T//T\o) per

More generally, we can consider a certain Waldhausen cat&girywhose ob-
jects are cofibrant dg-categori@ssuch that'fpe is saturated, whose morphisms
are morphisms of dg-categories, whose equivalences are Morita equivalences, and
whose cofibrations are cofibrations of dg-categories which are also fully faithful.
From this we can construct a spectrum, denoted(b%}(k) by applying Wald-
hausen’s construction, called teecondary K-theory spectrum afWe have
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We no finish with some arguments th&t? (k) to show that is non trivial and
interesting.
First of all, we have the following two basic properties.

1. k— K(Z)(k) defines a functor from the category of commutative rings to the
homotopy category of spectra. To a map of ritkgs: k' we associate the base
change— ®{% k' from saturated dg-categories oueto saturated dg-categories

overk’, which induces a functor of Waldhausen categories and thus a morphism

on the correspondini§-theory spectra.
2. If k= colimk; is a filtered colimit of commutative rings then we have

K@ (k) ~ colimK @ (k).

This follows from the non trivial statement that the homotopy theory of saturated
dg-categories ovek is the filtered colimit of the homotopy theories of saturated
dg-categories over theg (see [To4]).

3. The monoidal structure ddo(dg— cat'") induces a commutative ring structure

on Kéz)(k). | guess that this monoidal structure also inducé&s,anultiplication
onK®@ (k).

Our next task is to prove that@ (k) is non zero. For this we construct a rank
map
2 2
rki? : K2 (k) — Ko(K)

which an analog of the usual rank map (also called the trace map)
rko . Ko(k) — HHo(k) =k

Let T be a saturated dg-category. Ads dualizable inHo(dg— cat'") there exists
a trace map

RHOm(T, T) ~ TOP&"T — T,
which is the dual of the identity map
id : Tpe — TOPR"T.

The image of the identity provides a perfect complexkahodules, and thus an
element
rki? (T) € Ko(K).

This defines the map
rki? 1 K2 (k) — Ko(K).

It can be shown tharkéz)(T) is in factHH,(T), the Hochschild homology complex
of T.

Lemma 3. For any saturated dg-category T we have
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tki? (T) = [HH.(T)] € Ko(K),
where HH (T) is the (perfect) complex of Hochschild homology of T.

In particular we see that fof a smooth and propdrscheme we have
rk{? (Lpe(X)) = [HH. (X)] € Ko(K).

Whenk = C thenHH, (X) can be identified with Hodge cohomolo#/ (X, £2),
and thusrk(()z)(Lpe(X)) is then the euler characteristic Xf In other words, we can
say that the rank df pe(X) is x(X). The maprkéz) shows thaK(()2>(k) is non zero.

The usual rankkg : Ko(k) — HHo(k) = kis only the zero part of a rank map
rk. : Ki(k) — HH. (k).
In the same way, it is possible to define a secondary rank map
k' kP (k) — K, (St@" k),
whereSt @ k is a simplicial ring that can be defined as

1l oL L
sl k=kaj,yk

Note that by definition of Hochschild homology we have
HH, (k) ~ St @k,

SO we can also write
k@ : K? (k) — K, (HH. (K)).

Using this map | guess it could be possible to check that the higher K—gK?(ﬁ)pik)
are also non zero in general. Actually, | think it is possible to construct an analog of
the Chern character

Ch: K, (k) — HC,(k)

as amap
Ch? : K@ (k) — HC? (k) := KS' (S @l k),

where the right hand side is ti$&-equivarianK-theory ofS' @ k (note thatSt acts
on St @l k), which we take as a definition of secondary cyclic homology.

To finish we show thal(éz)(k) has a relation with the Brauer group, analog to
the relation betweeKo(k) and the Picard group. For this, we defiBigiy(k) to be
the group of isomorphism classes of invertible objects (for the monoidal structure)
in Ho(dg— cat'"). As being invertible is stronger than being dualizable we have a
natural map
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Brag(k) — K2 (K)

analog to the natural map
Pic(k) — Ko(k).

Now, by definitionBrqg(k) can also be described as the Morita equivalence classes
of Azumaya’s dg-algebraghat is of dg-algebraB satisfying the following two
properties

1.
BOP®L B— REindC(k) (B)

is a quasi-isomorphism.
2. The underlying complex @ is a compact generator Bf(k).

In particular, a non-dg Azumaya’s algebra oketefines an element irqg(k),
and we thus get a mar(k) — Brqg(k), from the usual Brauer group &f(see
[Mi]) to the dg-Brauer group ok. Composing with the maBrqg(k) — K(()Z) (k) we
geta map

Br(k) — Ky (K).

from the usual Brauer group to the secondary K-groug.dfdo not know if this
map is injective in general, but | guess it should be possible to prove that it is non
zero in some examples by using the Chern character mentioned above.
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