Multiple functional regression with both discrete and continuous covariates

Hachem Kadri 1 Philippe Preux 1, 2 Emmanuel Duflos 1, 3 Stéphane Canu 4
1 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
3 LAGIS-SI
LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : In this paper we present a nonparametric method for extending functional regression methodology to the situation where more than one functional covariate is used to predict a functional response. Borrowing the idea from Kadri et al. (2010a), the method, which support mixed discrete and continuous explanatory variables, is based on estimating a function-valued function in reproducing kernel Hilbert spaces by virtue of positive operator-valued kernels.
Complete list of metadatas

Cited literature [24 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-00772425
Contributor : Preux Philippe <>
Submitted on : Friday, January 11, 2013 - 1:59:45 PM
Last modification on : Thursday, February 21, 2019 - 10:52:49 AM
Long-term archiving on : Friday, April 12, 2013 - 11:15:25 AM

Files

IWFOS2011-Kadri-FinalVersion.p...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-00772425, version 1
  • ARXIV : 1301.2656

Citation

Hachem Kadri, Philippe Preux, Emmanuel Duflos, Stéphane Canu. Multiple functional regression with both discrete and continuous covariates. 2nd International Workshop on Functional and Operatorial Statistics (IWFOS), Jun 2011, Santander, Spain. pp.189-195. ⟨hal-00772425⟩

Share

Metrics

Record views

475

Files downloads

461