Rational points on X_0^+ (p^r)

Abstract : We show how the recent isogeny bounds due to É. Gaudron and G. Rémond allow to obtain the triviality of X_0^+ (p^r)(Q), for r>1 and p a prime exceeding 2.10^{11}. This includes the case of the curves X_split (p). We then prove, with the help of computer calculations, that the same holds true for p in the range 10 < p < 10^{14}, p\neq 13. The combination of those results completes the qualitative study of such sets of rational points undertook in previous papers, with the exception of p=13.
Type de document :
Pré-publication, Document de travail
To appear in Annales de l'Institut Fourier. 16 pages, no figure. 2011
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00772014
Contributeur : Pierre Parent <>
Soumis le : mercredi 9 janvier 2013 - 17:24:17
Dernière modification le : lundi 30 janvier 2017 - 12:02:07

Identifiants

  • HAL Id : hal-00772014, version 1
  • ARXIV : 1104.4641

Collections

Citation

Yu. Bilu, Pierre Parent, M. Rebolledo. Rational points on X_0^+ (p^r). To appear in Annales de l'Institut Fourier. 16 pages, no figure. 2011. <hal-00772014>

Partager

Métriques

Consultations de la notice

120