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Geometrical Picture of Third-Order Tensors

Nicolas Auffray

Abstract Because of its strong physical meaning, the decomposition of a symmetric
second-order tensor into a deviatoric and a spheric part is heavily used in contin-
uum mechanics. When considering higher-order continua, third-order tensors natu-
rally appear in the formulation of the problem. Therefore researchers had proposed
numerous extensions of the decomposition to third-order tensors. But, considering
the actual literature, the situation seems to be a bit messy: definitions vary according
to authors, improper uses of denomination flourish, and, at the end, the understanding
of the physics contained in third-order tensors remains fuzzy. The aim of this paper
is to clarify the situation. Using few tools from group representation theory, we will
provide an unambiguous and explicit answer to that problem.

1 Introduction

In classical continuum mechanics [28, 29], only the first displacement gradient is
involved and all the higher-order displacement gradients are neglected in measuring
the deformations of a body. This usual kinematical framework turns out not to be rich
enough to describe a variety of important mechanical and physical phenomena. In
particular, the size effects and non-local behaviors due to the discrete nature of matter
at a sufficiently small scale, the presence of microstructural defects or the existence
of internal constraints cannot be captured by classical continuum mechanics [2, 18,
24]. The early development of higher-order (or generalized) continuum theories of
elasticity was undertaken in the 1960s and marked with the major contributions of [5,
19–21, 26]. For the last two decades, the development and application of high-order
continuum theories have gained an impetus, owing to a growing interest in modeling
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18 N. Auffray

and simulating size effects and non-local behaviors observed in a variety of materi-
als, such as polycrystalline materials, geomaterials, biomaterials and nanostructured
materials (see, e.g., [7, 17, 22]), and in small size structures. In order to take into
account size-effects, the classical continuum mechanics has to be generalized. To
construct such an extension there are, at least, two options:

• Higher-order continua:
In this approach the set of degrees of freedom is extended; a classical example is
the micromorphic theory [6, 11, 20];

• Higher-grade continua:
In this approach the mechanical state is described using higher-order gradients of
the displacement field; a classical example is the strain-gradient theory [19].

In the following section the linear formulation of micromorphic and strain-gradient
theory we will be detailed. The aim is to anchor the analysis that will be made on
third-order tensors into a physical necessity for the understanding of those models.

2 Some Generalized Continua

2.1 Micromorphic Elasticity

Let us begin with the micromorphic approach. In this theory the set of degrees of
freedom (DOF) is extended in the following way

DOF = {u,χ
∼
} ; (u,χ

∼
) ∈ R

3 × ⊗2
R

3,

where ⊗k
V stands for the k-th order tensorial power of V. In this formulation the

second-order tensor χ
∼

is generally not symmetric. This micro-deformation tensor

encodes the generally incompatibility deformation of the microstructure. As a con-
sequence, the set of primary state variables (PSV) now becomes

PSV = {u⊗ ∇,χ
∼

⊗ ∇},

where ∇ is the classical nabla vector, i.e.

∇T =

(
∂

∂x

∂

∂y

∂

∂z

)

It can be observed that, despite being of higher-degree, the obtained model is still a
1st-grade continuum. The model is defined by the following set of strain measures:

• ε
∼

= ε(ij) is the strain tensor;
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• e
∼

= u⊗ ∇ − χ
∼

is the relative strain tensor;

• κ� = χ
∼

⊗ ∇ is the micro-strain gradient tensor;

where the notation (..) indicates symmetry under in parentheses permutations. The
first strain measure is the classical one and is, as usually, described by a symmetric
second-order tensor. The relative strain tensor measures how the micro-deformation
differs from the displacement gradient, this information is encoded into a non-
symmetric second-order tensor. Finally, we have the third-order non-symmetric
micro strain-gradient tensor. By duality the associated stress tensors can be defined:

• σ
∼

= σ(ij) is the Cauchy stress tensor;

• s
∼

= sij is the relative stress tensor;

• S� = Sijk is the double-stress tensor.

If we suppose that the relation between strain and stress tensors is linear, the following
constitutive law is obtained:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

σ
∼

= A≈ : ε
∼

+ B≈ : e
∼

+ C
�

∴ κ�
s
∼

= B≈
T : ε

∼
+ D≈ : e

∼
+ E

�
∴ κ�

S� = C
�

T : ε
∼

+ E
�

T : e
∼

+ F≈
∼

∴ κ�

The behavior is therefore defined by

• three fourth-order tensors having the following index symmetries: A(ij) (lm) ;

B(ij)lm ; Dij lm;
• two fifth-order tensors having the following index symmetries:C(ij)klm ;Eijklm;
• one sixth-order tensor having the following index symmetries: Fijk lmn,

where . . indicates symmetry under block permutations.

2.2 Strain-Gradient Elasticity

In the strain-gradient elasticity the set of degrees of freedom is the usual one, but the
primary state variables are extended to take the second gradient of u into account:

PSV = {u⊗ ∇,u⊗ ∇ ⊗ ∇}

We therefore obtain a second-grade continuum defined by the following set of strain
measures:

• ε
∼

= ε(ij) is the strain tensor;

• η
�

= ε
∼

⊗ ∇ = η(ij),k is the strain-gradient tensor.
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By duality, we obtain the related stress tensors:

• σ
∼

= σ(ij) is the Cauchy stress tensor;

• τ� = τ(ij)k is the hyper-stress tensor.

Assuming a linear relation between these two sets we obtain:

⎧
⎪⎨

⎪⎩

σ
∼

= A≈ : ε
∼

+ C
�

∴ η
�

τ� = C
�

T : ε
∼

+ F≈
∼

∴ η
�

The strain-gradient and hyperstress tensors are symmetric under permutation of their
two first indices. The constitutive tensors verify the following index permutation
symmetry properties:

C(ij) (lm) ; M(ij)(kl)m ; A(ij)k (lm)n

2.3 Synthesis

Those two models are distinct but under the kinematic constraint χ
∼

= u⊗ ∇ strain-

gradient elasticity is obtained from the micromorphic model. In the first case, the
micro strain-gradient is element of:

Tijk = {T�|T� =

3∑

i,j,k=1

Tijkei ⊗ ej ⊗ ek}

Assuming that we are in a 3D physical space, Tijk is 27-dimensional and constructed
as Tijk = ⊗3

R
3. For the strain-gradient theory, strain-gradient tensors belong to the

following subspace of Tijk:

T(ij)k = {T�|T� =

3∑

i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik}

which is 18-dimensional and constructed as1
T(ij)k = (R3 ⊗S

R
3)⊗R

3. Therefore,
as it can be seen, the structure of the third-order tensors changes according to the
considered theory.

Facing this kind of non-conventional model, a natural question is to ask what kind
of information is encoded in these higher-order strain measures. In classical elasticity
the physical content of symmetric second-order tensors is well-known through the

1 The notation ⊗S indicates the symmetric tensor product.
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physical meaning of its decomposition into a deviatoric (distorsion) and a spheric
(dilatation) part. But the same result for third-order tensors is not so well-known, and
its physical content has to be investigated. In the literature some results concerning
the strain-gradient tensors can be found, but the situation seems to be fuzzy. In
mechanics,2 third-order tensor orthogonal decomposition was first investigated in
the context of strain-gradient plasticity. According to the authors and the modeling
assumptions the number of components varies from 2 to 4. In the appendices of [25]
the authors introduced a first decomposition of the strain-gradient tensors under an
incompressibility assumption, and expressed the decomposition into the sum of 3
mutually orthogonal parts. This decomposition was then used in [7, 8]. In [17] the
situation is analyzed more in depth, and a decomposition into four parts is proposed.
In some other works, it is said that strain-gradient can be divided into two parts.
Therefore the following questions are raised:

• What is the right generalization of the decomposition of a tensor into deviatoric
parts ?

• In how many orthogonal parts a third-order tensor can be split in a irreducible
way ?

• Is this decomposition canonical ?

The aim of this paper is to answer these questions. These points will be investigated
using the geometrical language of group action.

3 Harmonic Space Decomposition

To study the orthogonal decomposition of third-order tensors, and following the
seemingly work of Georges Backus [3], an extensive use of harmonic tensors will
be made. This section is thus devoted to formally introduce the concept of harmonic
decomposition. After a theoretical introduction, the space of third-order tensors iden-
tified in the first section will be decomposed into a sum of harmonic tensor spaces.
This O(3)-irreducible3 decomposition is the higher-order generalization of the well-
known decomposition of T(ij) into a deviatoric (H2) and spherical (H0) spaces.

3.1 The Basic Idea

Before studying decomposition of third-order tensors, let us get back for a while on
the case of second-order symmetric ones. It is well known that any T(ij) ∈ T(ij)
admits the following decomposition:

2 In field of condensed matter physics this decomposition is known since, at least, the 70’ [15].
3 O(3): the orthogonal group, i.e. the group of all isometries of R

3 i.e. if Q ∈ O(3) det(Q) ± 1
and Q−1 = QT .
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T(ij) = H2
(ij) +

1

3
H0δij = φ(H2

(ij),H
0),

where H2 ∈ H
2 and H0 ∈ H

0 are, respectively, the 5-D deviatoric and 1-D spheric
part of T(ij) and are defined by the following formula:

H0 = Tii ; H2
(ij) = T(ij) −

1

3
H0δij

In fact φ, defined by the expression (3.1), is an isomorphism between T(ij) and the

direct sum of H
2 and H

0

T(ij)
∼= H

2 ⊕ H
0

The main property of this decomposition is to be O(3)-invariant, or expressed in
another way the components (H0, H

∼
2) are covariant with T

∼
under O(3)-action, i.e.

∀Q
∼

∈ O(3), ∀T
∼

∈ T(ij), Q
∼

T
∼

Q
∼

T = φ(Q
∼

H
∼

2Q
∼

T , H0)

Irreducible tensors satisfying this property are called harmonic. By irreducible we
mean that those tensors can not be split into other tensors satisfying this property. In
a certain way harmonic tensors are the elementary gears of the complete tensor. Let
now give a more precise and general definition of this decomposition.

3.2 Harmonic Decomposition

The O(3)-irreducible decomposition of a tensor is known as its harmonic decomposi-
tion. Such a decomposition is well-known in group representation theory. It allows to
decompose any finite order tensor into a sum of irreducible ones [3, 14, 30]. Consider
a n-th order tensor T belonging to T then its decomposition can be written [14]:

T =
∑

k,τ

Hk,τ,

where the tensors Hk,τ are components4 of the irreducible decomposition, k denotes
the order of the harmonic tensor embedded in H and τ separates the same order
terms. This decomposition defines an isomorphism between T and a direct sum of
harmonic tensor spaces H

k [10] as

4 To be more precise, Hk,τ is the embedding of the τth irreducible component of order k into a n-th
order tensor.
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T ∼=
⊕
k,τ

H
k,τ

but, as explained in [12], this decomposition is not unique. Alternatively, the O(3)-
isotypic decomposition, where same order spaces are grouped, is unique:

T ∼=

n⊕
k=0

αkH
k,

where αk is the multiplicity of H
k in the decomposition, i.e. the number of copies

of the space H
k in the decomposition. Harmonic tensors are totally symmetric and

traceless. In R
3, the dimension of their vector space dim H

k = 2k+1. For k = 0 we
obtain the space of scalars, k = 1 we obtain the space of vectors, k = 2 we obtain
the space of deviators, and for k > 2 we obtain spaces of k-th order deviators. The
family {αk} is a function of the tensor space order and the index symmetries. Various
methods exist to compute this family [1, 14, 30]. In R

3 a very simple method based
on the Clebsch-Gordan decomposition can be used.

In the next section this construction is introduced. It worths noting that we obtain
the harmonic structure of the space under investigation modulo an unknown isomor-
phism. The construction of an isomorphism making this decomposition explicit is
an ulterior step of the process. Furthermore, according to the nature of the sought
information, the explicit knowledge of the isomorphism might by unnecessary. As
an example, the determination of the set of symmetry classes of a constitutive tensor
space does not require such a knowledge5 [16, 23].

3.3 Computation of the Decomposition

The principle is based on the tensorial product of group representations. More details
can be found in [1, 14]. The computation rule is simple. Consider two harmonic tensor
spaces H

i and H
j, whose product space is noted G

i+k := H
i ⊗ H

j. This space,
which is GL(3)-invariant, admits the following O(3)-invariant decomposition:

G
i+j =

i+j⊕
k=|i−j|

H
k

For example, consider H
1
a and H

1
b two different first-order harmonic spaces. Ele-

ments of such spaces are vectors. According the above formula the O(3)-invariant
decomposition of G

2 is:

5 Even if some authors explicitly construct this isomorphism [10, 13] this step is useless.
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G
2 = H

1
a ⊗ H

1
b = H

2 ⊕ H
� 1 ⊕ H

0

In this decomposition, the space indicated with the � superscript contains pseudo-
tensors, also known as axial-tensors i.e. tensors which change sign if the space
orientation is reversed. Other elements are true tensors, also known as polar, and
transform according to the usual rules.

As an example, the tensorial product of two spaces of vectors generates a second-
order tensor space. The resulting structure is composed of a scalar (H0), a vector (H�1)
and a deviator (H2). The vector part corresponds to the pseudo-vector associated
with the matrix antisymmetric part. This computation rule has to be completed by
the following properties [14]:

Property 2.1. The decomposition of an even-order (resp. odd-order) completely
symmetric tensor, i.e. invariant under any index permutation, only contains even-
order (resp. odd-order) harmonic spaces.

Property 2.2. In the decomposition of an even-order (resp. odd-order) even-order
(resp. odd-order) components are polar and odd-order axial (resp. even order).

3.4 Structure of Third-Order Strain Measures
of Generalized Continua

These techniques can now be applied to the third-order tensors involved in the micro-
morphic and the strain-gradient elasticity model.

Micromorphic Elasticity

Let us begin with the space Tijk used in the micromorphic theory to model the
micro-strain gradient κ�. As Tijk

∼= ⊗3
R

3, we have Tijk
∼= H

1 ⊗ H
1 ⊗ H

1. Using

the Clebsch-Gordan rule:

Tijk
∼= H

1 ⊗ H
1 ⊗ H

1

∼= (H2 ⊕ H
�1 ⊕ H

0) ⊗ H
1

∼= H
3 ⊕ 2H

�2 ⊕ 3H
1 ⊕ H

�0

Therefore Tijk decompose into:

Name H
3: 3rd-order deviator H

�2: Pseudo-deviator H
1: Vector H

�0: Pseudo-scalar

Dimension 7 5 3 1
Multiplicity 1 2 3 1
Total 7 10 9 1
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And if we sum the dimension of all irreducible spaces the 27-D of Tijk is
retrieved.

Strain-Gradient Elasticity

Now consider the space T(ij)k used in strain-gradient theory to model the strain-

gradient η
�

. As T(ij)k
∼= (R3 ⊗S

R
3) ⊗ R

3, we have T(ij)k
∼= (H�2 ⊕ H

0) ⊗ H
1.

Using the Clebsch-Gordan rule:

T(ij)k
∼= H

3 ⊕ H
�2 ⊕ 2H

1

Therefore T(ij)k decompose into:

Name H
3: 3rd-order deviator H

�2: Pseudo-deviator H
1: Vector H

�0: Pseudo-scalar

Dimension 7 5 3 1
Multiplicity 1 1 2 0
Total 7 5 6 0

And if we sum the dimension of all irreducible spaces the 18-D of T(ij)k is retrieved.

Analysis

Therefore, and despite what can be read in the literature, there is no spherical part in
the decomposition of an element of T(ij)k. This worths being emphasized because
in the micromorphic approach tensors do have such a component. Therefore, in order
to avoid any misunderstanding, it is important to use the vocabulary in an appropriate
way. Furthermore the use of a correct generalization of the harmonic decomposition
to higher-order tensors provides useful information on the associated constitutive
law. For example:

• the number of isotropic moduli associated to the isotropic related constitutive
tensor (with great symmetry);

• the number and the dimension of eigenspaces of the related isotropic related con-
stitutive tensor;

• the structure of anisotropy classes of the associated constitutive law [23];
• etc.

For the dimension of the isotropic symmetric constitutive law6

Theorem 2.1. If T ∼=
⊕n

k=0 αkH
k then dim (End

O(3)
S (T)) =

∑n
k=0

αk(αk+1)
2 ,

6 The demonstration of theses theorems will be provided in a paper currently under redaction.
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where End
O(3)
S (T) means the space of self-adjoint isotropic endomorphism of T.

For the next property we need to introduce the following definition.

Definition 2.1. Let L be a self-adjoint endomorphism of T. The eigensignature of
L, noted ES(L), is defined as the concatenation of the dimension of the eigenspaces
of L.

For example, if we consider C≈ an isotropic elasticity tensor we have:

ES(C≈) = {51}

as an isotropic elasticity tensor possesses two eigenspaces: one 5-dimensional and a
unidimensional. The eigensignature of an operator contains both the number of its
eigenspaces and theirs dimension.

Theorem 2.2. If T ∼=
⊕n

k=0 αkH
k then for almost all L ∈ End

O(3)
S (T) ; ES(L) =

�n
k=0{αk�{2k+ 1}}

in which � indicates the concatenation operator, and the notation α�{x} indicates that
α copies of x should be concatenated. The direct application of these results to our
concern gives:

Theory Third-order tensor Number of isotropic moduli ES

decomposition of the associated the sixth-order tensor

Micromorphic H
3 ⊕ 2H

�2 ⊕ 3H
1 ⊕ H

�0 11 {752331}

Strain-gradient H
3 ⊕ H

�2 ⊕ 2H
1 5 {7532}

Now the questions are (from a practical point of view):

1. How explicitly construct an associated isomorphism ?
2. Is this isomorphism canonical ?
3. Is there any mechanical meaning of that decomposition ?

In the following section, attention will restricted to the space of strain-gradient
tensors.

4 Construction of the Isomorphism

As shown in the previous section:

T(ij)k
∼= H

3 ⊕ H
�2 ⊕ H

1,a ⊕ H
1,b

It can be observed that any strain-gradient tensor contains 2 vectors in its decom-
position. This fact is important since if the composition contains at least two har-
monic components of the same order the isomorphism is not uniquely defined [12].
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This indeterminacy will only concern the vector components since H3 and H�2 are
uniquely defined. Therefore there is a degree of freedom in the definition of the
vectors contained in the decomposition.

In fact, this situation also occurs in classical elasticity. The vector space of elas-
ticity tensors can be decomposed as follows [3, 4, 10]

Ela ∼= H
4 ⊕ H

2
a ⊕ H

2
b ⊕ H

0
a ⊕ H

0
b

In this decomposition the two scalar parts are the elastic isotropic coefficients and
therefore the isotropic moduli are not uniquely defined. This results in multiple ways
to choose those coefficients: Young modulus & Poisson’s ratio, Lamé constants,
shear modulus & bulk modulus, and so on. . ..

Therefore any construction is possible, but among them at least two are more
natural since they give a physical meaning to the harmonic decomposition. The first
one consists in splitting T(ij)k into a fully symmetric part and a remainder one before
proceeding to the harmonic decomposition.

4.1 1st Decomposition: Stretch- and Rotation-Gradient

This approach is summed-up by the following diagram:

where Sym, Asym and H respectively stand for the symmetrization, anti-symmetri-
zation and the harmonic decomposition processes. T(ij)k is first split into a full
symmetric tensor and an asymmetric one:

T(ij)k = Sijk +
1

3
(εjklRli + εiklRlj)

The space of full symmetric third-order tensors is 10-dimensional meanwhile the
space of asymmetric one is 8-dimensional, those spaces are in direct sum. In the
strain-gradient literature [20] the complete symmetric part S(ijk), defined:

S(ijk) =
1

3
(T(ij)k + T(ki)j + T(jk)i)
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is the stretch-gradient part of T(ij)k. Meanwhile the remaining traceless non-symme-
tric part Rij:

Rij = εipqT(jp)q

is the the rotation-gradient part of T(ij)k. In the couple-stress model, which is
a reduced formulation of the strain-gradient model, only this tensor is taken into
account in the mechanical formulation.

In terms of group action, it is important to note that this decomposition7 is
GL(3)-invariant,8 and that each component is GL(3)-irreducible. In other terms,
this decomposition of the strain-gradient into two “mechanisms” (stretch-gradient
and rotation-gradient) is preserved under any invertible transformation. Under O(3)-
action each part can further be decomposed in irreducible components by removing
their different traces:

• S(ijk) splits into a third-order deviator (dim H
3 = 7) and a vector (dim H

1
a = 3);

• Rij splits into a pseudo-deviator (dim H
�2 = 5) and a vector (dim H

1
b = 3).

Stretch-gradient tensors:
The space S(ijk) is isomorphic to H

3 ⊕ H
1∇str. The structure of this decomposition

shows that this isomorphism is unique. Doing some algebra we obtain

S(ijk) = H(ijk) +
1

5

(
V∇str

i δ(jk) + V∇str
j δ(ik) + V∇str

k δ(ij)

)

with

V∇str
i = S(pp)i =

1

3
(Tppi + 2Tipp) ;

H(ijk) = S(ijk) −
1

5

(
V∇str

i δ(jk) + V∇str
j δ(ik) + V∇str

k δ(ij)

)

In this formulation V∇str is the vector part of the stretch gradient tensor.
Rotation-gradient tensors:
The space Rij is isomorphic to H

�2 ⊕ H
1∇rot. The structure of this decomposition

shows that this isomorphism is unique. Doing some algebra we obtain

Rij = H(ij) + εijpV
∇rot
p

with

V∇rot
i =

1

2
εipq(Rpq − Rqp) =

1

2
(Tppi − Tipp) ;

H(ij) = Rij −
1

2
εijpV

∇rot
p =

1

2
(Rpq + Rqp)

7 This decomposition is sometimes known as the Schur decomposition.
8 GL(3) is the group of all the invertible transformations of R

3, i.e. if F ∈ GL(3) then det(F) 	= 0.
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In this formulation V∇rot is the vector part of the rotation gradient tensor, and is
embedded in the third-order tensor in the following way:

T(V∇rot)ijk =
1

3

(
−V∇rot

i δ(jk) − V∇rot
j δ(ik) + 2V∇str

k δ(ij)

)

Synthesis:
This decomposition can be summed-up in the following Matryoshka doll fashion9:

T(ij)k =
(
H

3 ⊕ H
1
s

)
|GL(3)

⊕
(
H

�2 ⊕ H
1
r

)
|GL(3)

The decomposition into the in-parenthesis terms is preserved under any invertible
transformation, and if this transformation is isometric the harmonic components
are further more preserved. For a strain-gradient tensor this decomposition has the
following meaning. Strain-gradient tensor encodes two orthogonal effects: stretch-
gradient and rotation-gradient. These effects are canonically defined and preserved
under invertible changes of variables. The harmonic decompositions of these ele-
mentary effects correspond to their decomposition in spherical harmonics. This con-
struction has a meaning for any elements of T(ij)k.

4.2 2nd Decomposition: Distortion- and Dilatation-Gradient

Aside from this first construction, which was based on the algebra of third-order ten-
sor, other constructions can be proposed. The following one is based on the derivation
of the harmonic decomposition of a symmetric second-order tensor. As a consequence
this construction has a physical meaning only for tensors constructed in this way.

So the first step is to decompose a second-order symmetric tensor into its deviatoric
and its spherical part:

Tij = H2
ij +

1

3
H0δij

Such as

H0 = Tpp ; H2
ij = Tij −

1

3
H0δij

9 Another layer can be introduced in this decomposition if one consider also in-plane isometries.
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Using the Clebsch-Gordan rule in the following way

H
n ⊗ ∇ ∼= H

n ⊗ H
1 ∼=

n+1⊕
k=|n−1|

H
k

we obtain
H

2 ⊗ ∇ = H
3 ⊕ H

�2 ⊕ H
1
∇dev ; H

0 ⊗ ∇ = H
1
∇sph

In a certain way we have

T(ij)k = T(ij) ⊗ ∇ =
(
H

3 ⊕ H
�2 ⊕ H

1
∇dev

)
|H2⊗∇ ⊕

(
H

1
∇sph

)
H0⊗∇

But conversely to the decomposition (4.1) the in-parenthesis terms are not GL(3)-
invariant. The first in parenthesis block is the distortion-gradient part of the strain-
gradient meanwhile the last one is the dilatation-gradient.

As H3 and H�2 are uniquely defined their expressions are the same as before.
Therefore attention is focused on the vector parts, doing some algebra we obtain:

V
∇sph
i = Tppi ; V∇dev

i =
2

3

(
Tipp −

1

3
Tppi

)

For V∇sph the result is direct, for V∇dev we have:

Sym (Hij,k) = Sijk −
1

9
(δijTppk + δkiTppj + δjkTppi)

Therefore,

V∇dev
k = Sym(Hij,k)δij = Siik −

1

9
(5Tppk) =

1

3
(Tppk + 2Tkpp) −

5

9
(Tppk)

=
2

3

(
Tkpp −

1

3
Tppk

)

Those vectors are embedded into the third-order tensor in the following way:

T(V∇sph)ijk =
1

3
V

∇sph
k δij;

T(V∇dev)ijk =
1

5

(
V∇dev

i δ(jk) + V∇dev
j δ(ik) + V∇dev

k δ(ij)

)
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4.3 Synthesis

If elements of T(ij)k are considered as gradient of a symmetric second-order tensors,
their O(3)-irreducible decompositions, can be defined in, at least, two ways. The first
construction is the more general one and is based on the algebra of T(ij)k, meanwhile
the second is constructed from the algebra of T(ij). Comparing the two decompo-

sitions, it appears that higher-order terms (H3 and H
�2) are identical, whereas the

vector parts are linear combination of each others. These results give an insight of
the physical information encodes by H3 and H�2

H3:

• Its is generated by a part of the distortion gradient;
• Its elements encode a part of the stretch-gradient effect.

H2:

• Its is generated by a part of the distortion gradient;
• Its elements encode a part of the rotation-gradient effect.

On the other hand the non uniqueness of the definition of the vector components
shows that (Stretch- and rotation-gradient) and (Distortion- and Dilatation-gradient)
are entangled phenomena. As, for example, the dilatation-gradient generates both
stretch- and rotation-gradient components. Using this approach some physical based
simplified strain-gradient elasticity models can be proposed.

Theory Harmonic decomposition Tijk Dimension Isotropic moduli

Strain gradient H
3 ⊕ H

2 ⊕ 2H
1 18 5

Distortion-gradient H
3 ⊕ H

2 ⊕ H
1
∇dev 15 3

Stretch-gradient H
3 ⊕ H

1∇str 10 2
Rotation-gradient H

2 ⊕ H
1∇rot 8 2

Dilatation-gradient H
1
∇sph 3 1

Therefore

V∇str = V∇dev +
5

9
V∇sph ; V∇rot =

1

3
V∇sph −

3

4
V∇dev

and conversely

V∇sph =
4

3
V∇rot + V∇str ; V∇dev =

1

9
(4V∇str −

20

3
V∇rot)

The harmonic decomposition had been studied using two different but comple-
mentary constructions. In the context of strain-/stress-gradient [9] theories, these
vector parts are related to differential operators acting on second-order symmetric
tensors. To that aim, we consider T

∼
∈ T(ij)k such that
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∃D
∼

∈ T(ij)|T
∼

= D
∼

⊗ ∇

and we can define two vectors : ∇(tr(D
∼
)) and div(D

∼
). The first vector is the same as

V∇sph and second is:

Vdiv =
3

2
V∇dev +

1

3
V∇sph =

1

3
V∇str −

2

3
V∇rot

The irreducible vector parts of the harmonic can be expressed as a linear combination
of these vectors. This is interesting because of their physical meaning. For strain-
gradient elasticity, V∇sph is the gradient of the infinitesimal volume variation δV ,
meanwhile V∇dev is the strain divergence [27]. For the stress-gradient elasticity
1
3 V∇sph represents the gradient of the isostatic pressure p, and V∇dev is proportional to
the volumic forces f. Those vectors have, both for strain and stress gradient elasticity,
a clear physical meaning.

Strain-gradient Stress-gradient

V∇sph ∇δV 3∇p

V∇dev 2
3

(
div(ε

∼
)− 1

3 ∇δV
)

2
3

(
f −∇p

)

V∇str 1
3

(
∇δV +2div(ε

∼
)
)

∇p + 2
3 f

V∇rot 1
2

(
∇δV −div(ε

∼
)
)

1
2

(
3∇p − f

)

Appendix

In this appendix the explicit decompositions of T� are provided.

Affine Decomposition

Let be defined the following subspace of third-order tensors

S3 = {T|T =

3∑

i,j,k=1

Tijkei ⊗ ej ⊗ ek, Tijk = Tjik} (1)

which is an 18-dimensional vector space.
In order to express the strain gradient T� as a second-order tensor, we consider the

tensor product of the orthonormal basis vectors of second-order symmetric tensors
with the one of classical vector.
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T̂
∼

= ψ(T�) = T̂αkêα ⊗ ek, 1 � α � 6, 1 � k � 3 (2)

with

êα =

(
1 − δij√

2
+
δij

2

)
(ei ⊗ ej + ej ⊗ ei) 1 � α � 6 (3)

With the orthonormal basis (3), the relationship between the matrix components T̂αk

and Tijk is specified by

T̂αk =

{
Tijk if i = j,√

2Tijk if i 	= j;
(4)

Therefore for T� we obtain the following matrix representation:

[T�] =

⎛
⎜⎜⎜⎜⎜⎜⎝

T111 T112 T113
T221 T222 T223
T331 T332 T333√

2T121
√

2T122
√

2T123√
2T131

√
2T132

√
2T133√

2T231
√

2T232
√

2T233

⎞
⎟⎟⎟⎟⎟⎟⎠

We can now construct the explicit matrix decomposition of T�.

• Stretch-gradient tensor:

[T�(S�)] =

⎛
⎜⎜⎜⎜⎜⎜⎝

S1 S4 S5

S7 S2 S6

S8 S9 S3√
2S4

√
2S7

√
2S10√

2S5
√

2S10
√

2S8√
2S10

√
2S6

√
2S9

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T111
1

3
(T112 + 2T121)

1

3
(T113 + 2T131)

1

3
(T221 + 2T122) T222

1

3
(T223 + 2T232)

1

3
(T331 + 2T133)

1

3
(T332 + 2T233) T333

√
2

3
(T112 + 2T121)

√
2

3
(T221 + 2T122)

√
2

3
(T123 + T321 + T213)

√
2

3
(T113 + 2T131)

√
2

3
(T123 + T321 + T213)

√
2

3
(T331 + 2T133)

√
2

3
(T123 + T321 + T213)

√
2

3
(T223 + 2T232)

√
2

3
(T332 + 2T233)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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• Rotation-gradient tensor:

As a second-order tensor:

[R
∼
] =

⎛
⎝ T123 − T132 T223 − T232 T233 − T332
T131 − T113 T231 − T123 T331 − T133
T112 − T121 T122 − T221 T132 − T231

⎞
⎠

and embedded into T�:

[T�(R
∼
)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −2R3 −2R5

−2R1 0 −2R6

−2R2 −2R4 0
√

2R3
√

2R1
√

2R7√
2R5 −

√
2(R7 +R8)

√
2R2√

2R8
√

2R6
√

2R4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −
2

3
(T121 −T112) −

2

3
(T131 −T113)

−
2

3
(T122 −T221) 0 −

2

3
(T232 −T223)

−
2

3
(T133 −T331) −

2

3
(T233 −T332) 0

√
2

3
(T121 −T112)

√
2

3
(T122 −T221)

√
2

3
(2T123 −T132 −T231)

√
2

3
(T131 −T113)

√
2

3
(2T132 −T123 −T231)

√
2

3
(T133 −T331)

√
2

3
(2T231 −T132 −T123)

√
2

3
(T232 −T223)

√
2

3
(T233 −T332)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Harmonic Decomposition

• Vector part of the stretch-gradient tensor:

As a vector:

[V∇str] =

⎛
⎜⎜⎜⎜⎜⎝

V∇str
1 =

1

3
(3T111 + (T221 + 2T122) + (T331 + 2T133))

V∇str
2 =

1

3
(3T222 + (T332 + 2T233) + (T112 + 2T121))

V∇str
3 =

1

3
(3T333 + (T113 + 2T131) + (T223 + 2T232))

⎞
⎟⎟⎟⎟⎟⎠

and embedded into T�:
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[T�(V∇str)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

5
V∇str

1
3

15
V∇str

2
3

15
V∇str

3

3

15
V∇str

1
3

5
V∇str

2
3

15
V∇str

3

3

15
V∇str

1
3

15
V∇str

2
3

5
V∇str

3

3
√

2

15
V∇str

2
3
√

2

15
V∇str

1 0

3
√

2

15
V∇str

3 0
3
√

2

15
V∇str

1

0
3
√

2

15
V∇str

3
3
√

2

15
V∇str

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Third-order deviator of any strain gradient tensor:

We have the following relations:

⎧
⎪⎪⎨

⎪⎪⎩

H3
111 +H3

122 +H3
133 = 0

H3
222 +H3

112 +H3
233 = 0

H3
333 +H3

223 +H3
113 = 0

Therefore ⎧
⎪⎪⎨

⎪⎪⎩

H3
133 = −H3

111 −H3
122

H3
112 = −H3

222 −H3
233

H3
223 = −H3

333 −H3
113

Hence we got seven independent components H3
111,H3

122,H3
222,H3

233,H3
333,H3

113
and H3

123, leading to the embedding

[T�(H�
3)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

H3
1 −(H3

2 +H3
5) H3

6

H3
4 H3

2 −(H3
3 +H3

6)

−(H3
1 +H3

4) H3
5 H3

3

−
√

2(H3
2 +H3

5)
√

2H3
4

√
2H3

7√
2H3

6

√
2H3

7 −
√

2(H3
1 +H3

4)√
2H3

7 −
√

2(H3
3 +H3

6)
√

2H3
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

H3
1 = H3

(111) =
1

5
(2T111 − (T221 + 2T122) − (T331 + 2T133))

H3
2 = H3

(222) =
1

5
(2T222 − (T332 + 2T233) − (T112 + 2T121))
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H3
3 = H3

(333) =
1

5
(2T333 − (T113 + 2T131) − (T223 + 2T232))

H3
4 = H3

(122) =
1

15
(−3T111 + 4(T221 + 2T122) − (T331 + 2T133))

H3
5 = H3

(233) =
1

15
(−3T222 + 4(T332 + 2T233) − (T112 + 2T121))

H3
6 = H3

(113) =
1

15
(−3T333 + 4(T113 + 2T311) − (T223 + 2T322))

H3
7 = H3

(123) =
1

3
(T123 + T321 + T213)

• Vector part of the rotation-gradient tensor:

As a vector:

[V∇rot] =

⎛
⎜⎜⎜⎜⎜⎝

V∇rot
1 =

1

2
((T221 − T122) + (T331 − T133))

V∇rot
2 =

1

2
((T332 − T233) + (T112 − T121))

V∇rot
3 =

1

2
((T113 − T311) + (T223 − T322))

⎞
⎟⎟⎟⎟⎟⎠

and embedded into T�:

[T�(V∇rot)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

3
V∇rot

2
2

3
V∇rot

3

2

3
V∇rot

1 0
2

3
V∇rot

3

2

3
V∇rot

1
2

3
V∇rot

2 0

−

√
2

3
V∇rot

2 −

√
2

3
V∇rot

1 0

−

√
2

3
V∇rot

3 0 −

√
2

3
V∇rot

1

0 −

√
2

3
V∇rot

3 −

√
2

3
V∇rot

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Second-order pseudo-deviator of any strain gradient tensor:

As a second-order tensor:
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[H
∼

2] =

⎛
⎜⎜⎜⎜⎜⎝

1

3
(2H2

4 +H2
5) H2

1 H2
2

H2
1

1

3
(H2

5 +H2
3) H2

3

H2
2 H2

3 −
1

3
(H2

4 + 2H2
5)

⎞
⎟⎟⎟⎟⎟⎠

With

H2
1 =

1

2
((T223 −T232)+(T131 −T113));H

2
2 =

1

2
((T233 −T332)+(T112 −T121))

H2
3 =

1

2
((T331 −T313)+(T122 −T221));H

2
4 =

1

3
(2T123 −T132 −T231)

H2
5 =

1

3
(2T231 − T132 − T123)

and embedded in T�:

[T�(H
∼

2)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
2

3
H2

2 −
2

3
H2

1

−
2

3
H2

3 0
2

3
H2

1

2

3
H2

3 −
2

3
H2

2 0

−

√
2

3
H2

2

√
2

3
H2

3

√
2H2

4√
2

3
H2

1

√
2(H2

4 +H2
5) −

√
2

3
H2

3

−
√

2H2
5 −

√
2

3
H2

1

√
2

3
H2

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Interpretation in Terms of Gradient

• Dilatation-gradient vector:

As a vector:

[V∇sph] =

⎛
⎜⎝
V

∇sph
1 = T111 + T221 + T331

V
∇sph
2 = T112 + T222 + T332

V
∇sph
3 = T113 + T223 + T333

⎞
⎟⎠

and embedded in T�:
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[T�(V∇sph)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3
V

∇sph
1

1

3
V

∇sph
2

1

3
V

∇sph
3

1

3
V

∇sph
1

1

3
V

∇sph
2

1

3
V

∇sph
3

1

3
V

∇sph
1

1

3
V

∇sph
2

1

3
V

∇sph
3

0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

3
(T111 + T221 + T331)

1

3
(T112 + T222 + T332)

1

3
(T113 + T223 + T333)

1

3
(T111 + T221 + T331)

1

3
(T112 + T222 + T332)

1

3
(T113 + T223 + T333)

1

3
(T111 + T221 + T331)

1

3
(T112 + T222 + T332)

1

3
(T113 + T223 + T333)

0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

• Distortion-gradient vector:
As a vector:

[V∇dev] =

⎛
⎜⎜⎜⎜⎜⎝

V∇dev
1 =

2

9
(2T111 + (3T122 − T221) + (3T133 − T331))

V∇dev
2 =

2

9
(2T222 + (3T233 − T332) + (3T121 − T112))

V∇dev
3 =

2

9
(2T333 + (3T131 − T113) + (3T232 − T223))

⎞
⎟⎟⎟⎟⎟⎠

and embedded in T�:

[T�(V∇dev)] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3

5
V∇dev

1 −
3

10
V∇dev

2 −
3

10
V∇dev

3

−
3

10
V∇dev

1
3

5
V∇dev

2 −
3

10
V∇dev

3

−
3

10
V∇dev

1 −
3

10
V∇dev

2
3

5
V∇dev

3

9
√

2

20
V∇dev

2
9
√

2

20
V∇dev

1 0

9
√

2

20
V∇dev

3 0
9
√

2

20
V∇dev

1

0
9
√

2

20
V∇dev

3
9
√

2

20
V∇dev

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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