Efficient Eigen-updating for Spectral Graph Clustering

Charanpal Dhanjal 1 Romaric Gaudel 2, 3 Stéphan Clémençon 4
1 MLIA - Machine Learning and Information Access
LIP6 - Laboratoire d'Informatique de Paris 6
3 SEQUEL - Sequential Learning
LIFL - Laboratoire d'Informatique Fondamentale de Lille, Inria Lille - Nord Europe, LAGIS - Laboratoire d'Automatique, Génie Informatique et Signal
Abstract : Partitioning a graph into groups of vertices such that those within each group are more densely connected than vertices assigned to different groups, known as graph clustering, is often used to gain insight into the organisation of large scale networks and for visualisation purposes. Whereas a large number of dedicated techniques have been recently proposed for static graphs, the design of on-line graph clustering methods tailored for evolving networks is a challenging problem, and much less documented in the literature. Motivated by the broad variety of applications concerned, ranging from the study of biological networks to the analysis of networks of scientific references through the exploration of communications networks such as the World Wide Web, it is the main purpose of this paper to introduce a novel, computationally efficient, approach to graph clustering in the evolutionary context. Namely, the method promoted in this article can be viewed as an incremental eigenvalue solution for the spectral clustering method described by Ng. et al. (2001). The incremental eigenvalue solution is a general technique for finding the approximate eigenvectors of a symmetric matrix given a change. As well as outlining the approach in detail, we present a theoretical bound on the quality of the approximate eigenvectors using perturbation theory. We then derive a novel spectral clustering algorithm called Incremental Approximate Spectral Clustering (IASC). The IASC algorithm is simple to implement and its efficacy is demonstrated on both synthetic and real datasets modelling the evolution of a HIV epidemic, a citation network and the purchase history graph of an e-commerce website.
Type de document :
Article dans une revue
Neurocomputing, Elsevier, 2014, 131, pp.440-452. 〈10.1016/j.neucom.2013.11.015〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00770889
Contributeur : Charanpal Dhanjal <>
Soumis le : lundi 27 janvier 2014 - 20:37:03
Dernière modification le : jeudi 21 février 2019 - 10:52:49
Document(s) archivé(s) le : lundi 28 avril 2014 - 01:00:10

Fichiers

TemporalClusteringArxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Charanpal Dhanjal, Romaric Gaudel, Stéphan Clémençon. Efficient Eigen-updating for Spectral Graph Clustering. Neurocomputing, Elsevier, 2014, 131, pp.440-452. 〈10.1016/j.neucom.2013.11.015〉. 〈hal-00770889v4〉

Partager

Métriques

Consultations de la notice

773

Téléchargements de fichiers

279