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Abstract 
 

This research contribution addresses the mechanochemistry of intra-tissue mass 
transfer for nutrients, oxygen, growth factors, and other essential ingredients that 
anchorage-dependent cells require for successful proliferation on biocompatible surfaces.  
The unsteady state reaction-diffusion equation (i.e., modified diffusion equation) is solved 
according to the von Kármán-Pohlhausen integral method of boundary layer analysis when 
nutrient consumption and tissue regeneration are stimulated by harmonically imposed 
stress.  The mass balance with diffusion and stress-sensitive kinetics represents a rare 
example where the Damköhler and Deborah numbers appear together in an effort to 
simulate the development of mass transfer boundary layers in porous viscoelastic 
biomaterials.  The Boltzmann superposition integral is employed to calculate time-
dependent strain in terms of the real and imaginary components of dynamic compliance for 
viscoelastic solids that transmit harmonic excitation to anchorage-dependent cells.  Rates 
of nutrient consumption under stress-free conditions are described by third-order kinetics 
which include local mass densities of nutrients, oxygen, and attached cells that maintain 
dynamic equilibrium with active protein sites in the porous matrix.  Thinner nutrient mass 
transfer boundary layers are stabilized at shorter dimensionless diffusion times when the 
stress-free intra-tissue Damköhler number increases above its initial-condition-sensitive 
critical value.  The critical stress-sensitive intra-tissue Damköhler number, above which it is 
necessary to consider the effect of harmonic strain on nutrient consumption and tissue 
regeneration, is proportional to the Deborah number and corresponds to a larger fraction 
of the stress-free intra-tissue Damköhler number in rigid biomaterials. 

 

Keywords:  Fick’s 2nd law, unsteady state diffusion, modified diffusion equation, regenerative 
tissue, stress-sensitive kinetics, Boltzmann superposition integral, intra-tissue 
Damköhler number, stress-sensitive Damköhler number, Deborah number, von 
Kármán-Pohlhausen profile method, mass transfer boundary layer thickness.  
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Introduction 
 

The material properties of biological tissue arise from nanoscale and microscale 
architecture of sub-cellular, cellular, and extracellular networks [1].  Living cells grow and 
exert their activities while embedded in a dense, complex extracellular matrix.  This matrix 
contains an array of structural and directional cues that guide and support the 
morphogenesis of multi-cellular structures such as tissues and organs.  Dynamic models 
with the potential to predict macroscale behavior from the microscale continuum are useful 
to describe underlying multi-scale processes that occur when tissues are stimulated by 
mechanical stress.  Fractional (non-integer order) calculus has been applied to develop 
models that consider these biological events [1].  The mechano-biology of tendons 
requires a complete understanding of its liquid constituents in the presence of stress, 
because tendon viscoelasticity depends on (i) water content and (ii) physico-chemical 
influence on anisotropic intra-tendon diffusion [2].  In some cases, wave propagation 
described by the reaction-diffusion equation initiates deformation in cardiac tissue via a 
process known as mechano-electrical feedback [3].  Exact and approximate solutions of 
the one-dimensional reaction-diffusion equation describe oxygen delivery by the 
microcirculation system and oxygen diffusion/consumption in muscle tissue when 
oscillatory boundary conditions mimic local blood flow regulation as a function of oxygen 
concentration [4]. 

 
Viscous shear at fluid-solid interfaces [5,6] and centrifugal-force-induced 

compressive stress [7] have been employed previously to stimulate endothelial cell and 
bone cell proliferation, respectively, in chemisorbed monolayers on protein-coated 
surfaces.  When nutrient media flow past active surfaces that contain anchorage-
dependent cells, simple 1-dimensional Newtonian fluid velocity profiles and the magnitude 
of the velocity gradient tensor are required to construct stress-kinetic reciprocal couplings 
that obey Curie’s theorem in nonequilibrium thermodynamics [5,6,8,9].  In this study, 
strain-activated tissue regeneration is stimulated by subjecting viscoelastic biomaterials 
that contain uniformly dispersed anchorage-dependent cells to harmonic tensile stress.  
The formalism for scalar cross-phenomena originates from a consideration of the 
mechanochemistry of materials [10] and the corresponding rate of entropy generation in 
solids [11], but slight modification is necessary to include a contribution from time-
independent strain to stress-sensitive reactions.  Hence, scalar stress-kinetic couplings are 
reformulated in terms of the magnitude of the 2nd-rank strain tensor, not the velocity 
gradient tensor or the corresponding symmetric rate-of-strain tensor that is typical for 
fluids.  The strain-energy function represents another option to characterize the effect of 
deformation on biochemical kinetics [11,12].  A strain-energy-dependent source term for 
bone cell proliferation that monitors tissue rigidity was proposed by Harrigan and Hamilton 
[13] which becomes activated when strain energy density increases above a 
predetermined threshold [12].  This threshold is analogous to the identification of a critical 
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value of the stress-sensitive intra-tissue Damköhler number, defined herein, above which it 
is necessary to consider the effect of harmonic stress on nutrient consumption and tissue 
regeneration.  The Boltzmann superposition integral for time-dependent strain [14] 
contains elastic and viscous contributions to deformation in porous biomaterials, and 
harmonic stress excitation introduces storage and loss compliances in the effect of strain 
on proposed kinetic models.  Optimal synthetic scaffolds that exhibit ideal combinations of 
physical, chemical, and biological stimuli pose a bioengineering design dilemma. 

 
Motivation and Strategy 

 

This research contribution analyzes predictions from the reaction-diffusion equation 
in biological systems that respond to deformation.  The overall objective is to develop 
guidelines that quantify the importance strain-catalyzed rates of nutrient consumption 
when anchorage-dependent cells are stimulated in viscoelastic biomaterials.  Nutrients 
diffuse inward from the external biomaterial interface to support cell proliferation, and the 
mass transfer boundary layer thickness in the presence and absence of stress is used as a 
metric to evaluate tissue regeneration.  Hence, nutrient boundary layers decrease in 
thickness when harmonic excitation is transmitted to attached cells in a porous matrix.  
The next section provides a phenomenological explanation for enhanced rates of nutrient 
consumption by anchorage-dependent cells via symmetry-breaking phenomena [15] as a 
consequence of stress imbalance.  The reaction-diffusion equation is satisfied throughout 
the nutrient boundary layer with assistance from the von Kármán-Pohlhausen integral 
method of analysis that yields a time-dependent expression for boundary layer thickness, 
δMTBLT, which is affected by stress-free and stress-sensitive rates of consumption.  
Numerical results in Figures 2-4 might be useful to design compliant biomaterials for tissue 
regeneration such that nutrients, oxygen, and growth factors exist throughout the matrix 
under quasi-steady-state conditions to support cell proliferation and sustainability.  
Mathematical solution of the reaction-diffusion equation is performed using dimensionless 
variables and parameters, with time t and spatial coordinate x transformed according to 
the combination-of-variables method of analysis.  The intra-tissue Damköhler number 
emerges as the most important parameter governing the thickness of the nutrient 
boundary layer.  Since nutrients are consumed according to stress-free and stress-
sensitive kinetic pathways, an intra-tissue Damköhler number is defined for each 
mechanism.  The strain-catalyzed mechanism of nutrient consumption is formulated in 
terms of the real and imaginary components of dynamic compliance for viscoelastic solids, 
as described in the next section.  Consequently, the Deborah number appears as a 
dimensionless parameter in the reaction-diffusion equation, and in the numerical results for 
δMTBLT.  The Deborah and Damköhler numbers have not appeared together in previous 
examples of the reaction-diffusion equation because strain-catalyzed (or stress-sensitive) 
nutrient consumption has not received much attention and the corresponding 
dimensionless equations have not been analyzed.  These are important modeling issues in 
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the field of mechanobiology, allowing cells in a regenerative matrix to proliferate at their 
maximum potential via mechanical stimulation.  The magnitude and frequency of 
mechanical excitation are the focus of current biomaterials research.  This investigation 
combines elements of (i) transport phenomena, (ii) strain-catalyzed reaction kinetics, and 
(iii) viscoelastic biomaterials to identify critical values of the stress-sensitive intra-tissue 
Damköhler number, above which tissue engineering design should consider the effect of 
biomaterial deformation on cell proliferation and tissue regeneration. 

 
Magnitude of the strain tensor for viscoelast ic sol ids subjected to 

harmonic stress via the Boltzmann superposition integral 
 
The cell/nutrient-medium interface is analogous to a gel-liquid boundary, and cell 

growth and deformation produce elastic stresses that depend on the mechanical properties 
of the cell, according to the laws of continuum mechanics [15].  Spherical cells that grow 
axisymmetrically generate a normal tensile stress imbalance on their outer surface, in the 
tangential direction (i.e., σΘΘ), when symmetry is perturbed (i.e., symmetry breaking) as a 
consequence of natural fluctuations and cell motility.  The magnitude of these elastic 
stresses is proportional to the thickness of the cell’s outer “comet-shaped” surface that 
develops [15].  The state of deformation and the macroscopic stress distribution 
“catalyze” rates of nutrient consumption by anchorage-dependent cells in the regenerative 
process.  Kinetic models are proposed herein [i.e., see Eq. (4)] that contain an additional 
contribution due to viscoelastic deformation of the biomaterial support.  The scalar rate of 
nutrient consumption is coupled to the magnitude of the second-rank strain tensor 
[12,13], defined by the square-root of the double-dot product of the strain tensor with its 
transpose [16].  Harmonic tensile stress is given by; 
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such that σAC < σDC, and the time-dependent creep compliance for an infinite spectrum of 
Voigt elements in series [14] is expressed in terms of the relaxation time distribution 
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The Boltzmann superposition integral for time-dependent strain [14] is employed to 
evaluate the magnitude of the strain tensor in terms of the storage J’(ω) and loss J”(ω) 
components of dynamic creep compliance at excitation frequency ω. 
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As illustrated in Figure#1, the coordinate direction in which deformation occurs is 
transverse to the diffusional flux of nutrients and other essential ingredients required for 
cell proliferation and tissue regeneration. 
----------------------------------------------------------------------------------------------------------------- 

 
Figure#1 
Schematic representation of porous biomaterials subjected to harmonic mechanical stimulation, 
with one-dimensional nutrient diffusion inward along the thinnest tissue dimension to support cell 
proliferation and sustainability. 
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It is not unreasonable to (i) identify ω as the dominant frequency in the power spectrum 
when one considers the coupling between cardiac and respiratory oscillators superimposed 
on random noise [17,18], and (ii) design experiments with significant overlap between 
these oscillations and the excitation frequency that stimulates tissue regeneration.  The 
scaling of time in viscoelasticity (i.e., material response time λ relative to a characteristic 
time for the deformation process) is accomplished via the Deborah number De, which is 
given by ωλ(T) for a one-time-constant model with static compliance 1/E, where E is the 
static modulus of the elastic element in the viscoelastic model [14].  The factor of 0.5 
under the square-root sign in Eq. (3) guarantees that the magnitude of the symmetric 2nd-
rank strain tensor reduces to its only independent off-diagonal element when all other 
elements vanish [16]. 
 

Stress-free and stress-sensitive rates of nutrient consumption in 
viscoelastic biomaterials 

 

It is necessary to construct mathematically correct stress-kinetic reciprocal relations 
that describe scalar cross-phenomena [5] when the state of deformation in viscoelastic 
biomaterials is coupled to the rate of nutrient consumption and cell proliferation in 
regenerative tissue.  This phenomenon could be significant at small length scales in cellular 
“micro-reactors” (i.e., on the order of isolated cells with a diameter of 10 µm that are 
attached to a regenerative matrix).  The magnitude of the strain tensor in Eq. (3) is 
employed to accomplish this coupling, according to Curie’s theorem in nonequilibrium 
thermodynamics [5,8,9] when the rate of entropy generation contains fluxes and force 
whose tensorial ranks differ by an even integer (i.e., in this case, two).  This formalism is 
employed to modify scalar rates of reaction when the medium is subjected to tensile or 
compressive deformation.  For mechanochemical systems that are not too far removed 
from equilibrium, homogeneous rates of nutrient consumption are written in the following 
form; 
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where the scalar Onsager coupling coefficient κstress has dimensions of nutrient mass per 
volume of the viscoelastic biomaterial per time.  The form of the stress history function in 
the Boltzmann superposition integral for time-dependent strain [i.e., see Eq. (3)] eliminates 
effects from time-independent stress σDC on the rate of nutrient consumption.  However, 
the fact that harmonic stress always induces tensile strain (i.e., since σDC > σAC) has an 
implicit effect on scalar stress-kinetic coupling.  The second term on the right side of Eq. 
(4) has been modified phenomenologically via the magnitude of the strain tensor, instead 
of employing the velocity gradient tensor or the symmetric rate-of-strain tensor, as 
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suggested by the linear laws of irreversible thermodynamics for viscous fluids that focus 
on products of fluxes and forces in the rate of entropy generation [9].  This 
phenomenological modification (i.e., replacing the magnitude of the velocity gradient 
tensor by the magnitude of the strain tensor) in viscoelastic solids is reasonable because 
anchorage-dependent cells dispersed homogeneously throughout porous biomaterials 
experience enhanced rates of proliferation in response to constant stress and harmonic 
stress.  The stress-kinetic reciprocal (i.e., second) term on the right side of Eq. (4) 
represents a zeroth-order rate of nutrient consumption.  Stress-free rates of nutrient 
consumption, given by the first term on the right side of Eq. (4), require the presence of 
nutrients, oxygen, and attached cells whose receptors form complexes with functional 
groups in the chemical structure of conformationally accessible proteins dispersed 
throughout, or embedded within, porous biomaterial matrices.  Hence, the appropriate 
signaling exists for cells to consume nutrients and proliferate within the context of 
regenerative medicine.  The form of Eq. (4) is sufficiently flexible to account for the 
effects of deformation that might change the reaction pathway or the products that are 
generated if another parallel pathway were equally important with comparable or lower 
activation energy [19,20] when external forces increase bond dissociation rate coefficients 
[25], relative to the stress-free kinetic contribution.  In summary, scalar representations of 
tensorial quantities in the mechanochemistry of viscoelastic biomaterials have been 
respected in developing a self-consistent model for the coupling between time-dependent 
strain and reaction kinetics in stress-sensitive systems. 

 

Stoichiometric requirements for nutrient consumption by 
anchorage-dependent mammalian cel ls 

 

This application of tissue regeneration in viscoelastic biomaterials includes stress-
free and stress-sensitive rates of nutrient consumption, where the latter is stimulated by 
harmonic excitation.  It is necessary to connect the rate of nutrient consumption to the 
rate of cell proliferation.  Effective biomass yields between 40% and 50% have been 
reported for a selected group of glucose-fed micro-organisms [21,22].  Hence, εcells/εnutrient 
≈ 0.45 is employed in Eq. (5), in consideration of the fact that some nutrient consumption 
could be channeled into other products and metabolic activities not related to cell 
proliferation, such as energetic support for cell mobility and sustainability.  Yield 
coefficients that characterize cell mass produced per mass of oxygen consumed (i.e., 
εcells/εoxygen ≈ 0.45) for the production of hematopoietic cells in 3-dimensional perfusion 
bioreactors suggest a 1:1 mass ratio for oxygen to nutrient consumption [23,24].  Both of 
these stoichiometric ratios (i.e., εcells/εnutrient ≈ 0.45 and εoxygen/εnutrient ≈ 1) are required to 
simulate tissue regeneration via the following relations between mass densities in porous 
biomaterials; 
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where υcells = +1, and υoxygen = -1.  These parameters are used in Eqs. (15) & (16). 
 

React ion-diffusion equation for one-dimensional diffusion and 
stress-sensit ive consumption in biomaterials with rectangular 

symmetry 
 

Fick’s second law of diffusion with nutrient consumption (i.e., the modified diffusion 
equation) describes the transient and spatial dependence of the mass density of each 
reactive species (i.e., nutrients, oxygen, growth factors, etc.) within a viscoelastic 
biomaterial of thickness 2L that supports tissue regeneration [25-28].  For one-directional 
flux in the x-direction across the thinnest dimension of this matrix (i.e., transverse to the 
“stretch” direction), one must solve the reaction-diffusion equation for nutrient mass 
density, ρnutrient(x,t); 
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where time t accounts for transient response, DA,effective,intra-tissue is the effective diffusion 
coefficient for species A within porous viscoelastic biomaterials, and the total pseudo-
homogeneous rate of nutrient consumption by anchorage-dependent cells within the 
matrix is calculated via Eq. (4) in the presence and absence of stress.  Both sides of the 
regenerative matrix (i.e., x = ±L) are exposed to a well-mixed nutrient medium at time, 
t=0.  The required boundary conditions are; 
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The zero-flux boundary condition at xcritical is reminiscent of a boundary-layer problem 
because the central core is nutrient-starved at short times for all reasonable values of the 
intra-tissue Damköhler number.  Dimensionless variables are introduced for nutrient mass 
density, spatial position in the thinnest dimension of the sample, and time; 
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where ΘDiffusion represents a characteristic time constant for intra-tissue diffusion.  This 
allows one to re-express the modified diffusion equation and its boundary conditions in 
dimensionless form for nutrient mass density ΨA(η,τ); 
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Λ2
A,stress-free is the species specific stress-free intra-tissue Damköhler number that represents 

an order-of-magnitude ratio of the stress-free consumption rate to the rate of diffusion 
toward anchorage-dependent cells [9,25].  Hence: 
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where ρnutrient,medium is the mass density of nutrients in the vicinity of the external tissue 
surface, and kstress-free is the pseudo-volumetric third-order kinetic rate constant for stress-
free consumption.  The stress-sensitive intra-tissue Damköhler number [5] is defined as 
follows: 
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where κstress is the Onsager scalar coupling coefficient, σAC is the amplitude of harmonic 
stress excitation, and E is the viscoelastic biomaterial’s static modulus of elasticity.  Eq. 
(9) represents a rare example in the refereed journal literature where the Damköhler and 
Deborah numbers appear together in the reaction-diffusion equation to parameterize mass 
transfer in viscoelastic biomaterials subjected to stress. The Damköhler number (i.e., a 
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reaction-diffusion parameter) has been employed previously to model reaction and 
diffusion in cell cultures [25,29], microchannel bioreactors [30], and electrochemical 
biosensors immobilized within a highly dispersed mesh of carbon nanotubes [31].  The 
pressure-sensitive Damköhler number was developed recently to quantify mechano-
sensitive zeroth-order bone tissue growth in response to centrifugal-force-induced 
hydrostatic pressure modulations in rotating-cup bioreactors [7].  The concept of the 
intra-tissue Damköhler number in biological systems is analogous to the intrapellet 
Damköhler number for heterogeneous catalysis in packed reactors [9,16].  Numerical 
solution of Eq. (9) via finite-difference calculus is awkward, due to zeroth-order stress-
sensitive rates of nutrient consumption that must be extinguished in the tissue’s central 
core at short times when nutrients have not diffused inward to a significant extent.  There 
are very few literature references that invoke the von Kármán-Pohlhausen profile method 
and solve the modified diffusion equation with chemical reaction to predict transient mass 
transfer boundary layer thicknesses (i.e., 4 matches in Web of Science™ to diffusion, 
reaction, von Kármán).  Profile methods have not been employed to solve mass transfer 
boundary layer problems in the presence of stress-sensitive biochemical kinetics [32]. 

 

Solution of the modified diffusion equation via the von Kármán-
Pohlhausen integral method of boundary layer analysis 

 

The transient reaction-diffusion equation, Eq. (9), was solved for dimensionless 
nutrient mass density, ΨA(ϕ), and the dimensionless mass transfer boundary layer 
thickness δMTBLT(τ;ΛA,stress-free,ΛA,stress) by postulating a quadratic function of the combined 
variable ϕ  according to the von Kármán-Pohlhausen profile method of boundary layer 
analysis [28]; 
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The proposed quadratic function for dimensionless nutrient mass density ΨA in Eq. (12) is 
consistent with steady state profiles for zeroth-order rates of consumption in tissue with 
rectangular symmetry [9,28], for all values of both intra-tissue Damköhler numbers.  
Boundary conditions at η=1 [i.e., ΨA(ϕ=0) = 1] and η=1-δMTBLT [i.e., {∂ΨA/∂η}ϕ=1 = ΨA(ϕ=1) 
= 0] yield numerical values for the constants α, β, and ζ.  Hence; 
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with α=1, β=-2, ζ=1.  If ΨA ⇒ 0 with zero slope at ϕ=1, then the initial condition is 
satisfied as ϕ ⇒ ∞.  Upon substitution of the postulated profile for ΨA(ϕ) via Eq. (12) into 
Eq. (9), multiplication by δMTBLT, and integration with respect to ϕ from 0 to 1, it is possible 
to obtain a first-order ordinary differential equation (ODE) for δMTBLT(τ;ΛA,stress-free,ΛA,stress) that 
represents conservation of nutrient mass over the thickness of the boundary layer.  This is 
illustrated in Eq. (14). 
 

! 

"#
A

"$

% 
& 
' 

( 
) 
* +

=
d#

A

d,

",

"-
MTBLT

% 
& 
' 

( 
) 
* +

d-
MTBLT

d$
=

.,

-
MTBLT

/ + 20,{ }
d-

MTBLT

d$

.
d-

MTBLT

d$
, / + 20,{ }d, = . 1

2
/ + 2

3
0{ }

d-
MTBLT

d$
0

1

1

" 2#
A

"+2

% 
& 
' 

( 
) 
* $

=
1

-
MTBLT

2

d
2#

A

d, 2
=

20

-
MTBLT

2

1

3

d-
MTBLT

d$
=

2

-
MTBLT

.
-

MTBLT
2

A,stress

2

1+ De
2

cos 3t( ) + Desin 3t( ){ }
2

.-
MTBLT

2
A,stress. free

2 #
A
,( )#oxygen

,( )#cells
,( )d,

,=0

1

1

(14) 

 

The differential equation for δMTBLT in Eq. (14) reduces to Eq. (15) at steady state in the 
absence of stress (i.e., ΛA,stress ⇒ 0) when the mass transfer boundary layer thickness is 
independent of dimensionless diffusion time τ. 
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If the kinetics are zeroth-order instead of third-order, then the square-root term in the 
denominator of Eq. (15) is unity and the steady state dimensionless boundary layer 
asymptotically approaches a thickness of √(2)/ΛA,stress-free when the stress-free intra-tissue 
Damköhler number is greater than or equal to its critical value of √(2) [9,28].  For complex 
stress-free nutrient consumption by anchorage-dependent cells requiring the presence of 
several ingredients for proliferation, porous biomaterials can operate further into the 
diffusion-limited regime at steady state such that the critical stress-free intra-tissue 
Damköhler number ΛA,stress-free,critical ranges from √(26) to √(50) [i.e., dependent upon 
Ψoxygen(η=1,τ=0) & Ψcells(η=1,τ=0)] before regeneration ceases in the tissue’s central core. 
 

Stress-sensitive parametric analysis of mass transfer boundary 
layers when viscoelastic relaxation of the matrix occurs 

 

The time-dependent ODE in Eq. (14) was solved for the development of 
δMTBLT(τ;ΛA,stress-free,ΛA,stress), subject to the initial condition δMTBLT(τ=0) = 0 when the Deborah 
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number is on the order of unity, characteristic of viscoelastic relaxation.  The initial rate of 
increase of δMTBLT with respect to τ is infinitely fast, according to the first term due to 
diffusion on the right side of the ODE in Eq. (16) that does not depend on the rates of 
stress-free or stress-sensitive consumption.  Analogously, only the first term on the right 
side of Eq. (9) is important at τ=0, prior to the development of the mass transfer 
boundary layer.  Previous analytical solutions of the modified diffusion equation with simple 
nth-order kinetics (i.e., n=0,1,2) in biomaterials with rectangular symmetry [28] reveal that 
δMTBLT ≈ 0.0346 at τ = 10-4 when ΛA,stress-free = 4 in the absence of stress.  This pseudo-initial 
condition is employed in Eq. (16). 
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The external biomaterial surface at x=±L is exposed to dissolved oxygen in the well-mixed 
nutrient medium, and the entire porous matrix is seeded uniformly with attached cells.  
Time-dependent growth of the dimensionless mass transfer boundary layer δMTBLT(τ), 
measured inward from the external tissue surface is illustrated in Figure#2 when 
viscoelastic relaxation occurs in porous biomaterials and the stress-free intra-tissue 
Damköhler number is slightly greater than its critical value, such that the tissue’s inner 
core, defined by 0 ≤ η ≤ 1-δMTBLT, is starved of the essential ingredients required for cell 
proliferation. 
--------------------------------------------------------------------------------------------------------------- 
Figure#2 
von Kármán-Pohlhausen boundary layer predictions, based on the solution of Eq. (16) for nutrient 
diffusion and stress-sensitive consumption in porous biomaterials that experience viscoelastic 
relaxation (i.e., De = 1).  The stress-free intra-tissue Damköhler number (i.e., Λ2

A,stress-free = 30) is 
greater than its critical value of 26, according to Eq. (15), when the initial condition for cells and 
oxygen mass densities on the external biomaterial surface are: Ψcells(η=1,τ=0)=0.25 and 
Ψoxygen(η=1,τ=0)=1.  The effect of stress on the nutrient mass transfer boundary layer increases 
from the stress-free uppermost curve to the lowermost curve.  The critical stress-sensitive intra-
tissue Damköhler number is approximately 5-7% of the stress-free intra-tissue Damköhler number.  
Parameters: ω = 2π radians/s, Θdiffusion/λ = 2π, 1000 steps in dimensionless diffusion time τ, from 
τ=0 to τ=1 
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----------------------------------------------------------------------------------------------------------------------------- 
The amplitude of harmonic tensile stress excitation, σAC, represents a convenient 
parameter that allows one to systematically vary the stress-sensitive intra-tissue 
Damköhler number within the regime of linear viscoelastic response.  Harmonic excitation 
of solid-like biomaterials at higher Deborah numbers in Figure#3 occurs at the same 
frequency (i.e., 1 hz.) relative to the simulations in Figure#2 when De=1, but the 
dimensional analysis of time in the oscillatory strain function includes the Deborah number 
[i.e., see Eq. (9)].  Hence, higher Deborah number response translates to more oscillations 
of the nutrient boundary layer thickness on the dimensionless time axis when the ratio of 
the diffusion time constant Θdiffusion to the material response time λ(T) remains the same, 
even though each time constant is longer in rigid solids relative to those that undergo 
viscoelastic relaxation.  The effect of the Deborah number on dynamic compliance is 
primarily responsible for (i) smaller amplitude oscillatory response in Figure#3 relative to 
Figure#2, and (ii) the fact that larger stress-sensitive intra-tissue Damköhler numbers in 
rigid biomaterials are required to reduce the thickness of the nutrient boundary layer 
relative to the stress-free simulation. 
----------------------------------------------------------------------------------------------------------------- 
Figure#3 
von Kármán-Pohlhausen boundary layer predictions, based on the solution of Eq. (16) for nutrient 
diffusion and stress-sensitive consumption in solid-like biomaterials (i.e., De = 5).  The stress-free 
intra-tissue Damköhler number (i.e., Λ2

A,stress-free = 30) is greater than its critical value of 26, 
according to Eq. (15), when the initial condition for cells and oxygen mass densities on the external 
biomaterial surface are: Ψcells(η=1,τ=0)=0.25 and Ψoxygen(η=1,τ=0)=1.  The effect of stress on the 
nutrient mass transfer boundary layer increases from the stress-free uppermost curve to the 
lowermost curve.  The critical stress-sensitive intra-tissue Damköhler number is approximately 20-
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30% of the stress-free intra-tissue Damköhler number.  Parameters: ω = 2π radians/s, Θdiffusion/λ = 
2π, 1000 steps in dimensionless diffusion time τ, from τ=0 to τ=0.4 
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--------------------------------------------------------------------------------------------------------------------------- 
The critical value of the stress-sensitive intra-tissue Damköhler number, above which it is 
necessary to consider the effect of harmonic stress on nutrient consumption and tissue 
regeneration, is defined qualitatively as Λ2

A,stress,critical when the nutrient mass transfer 
boundary layer thickness decreases by ≈10% relative to the stress-free simulations in 
Figures 2-4.  This reveals that Λ2

A,stress,critical is proportional to De, and corresponds to a 
larger fraction of the stress-free intra-tissue Damköhler number in rigid biomaterials 
characterized by higher Deborah numbers. 
------------------------------------------------------------------------------------------------------------------- 
Figure#4 
von Kármán-Pohlhausen boundary layer predictions, based on the solution of Eq. (16) for nutrient 
diffusion and stress-sensitive consumption in liquid-like biomaterials (i.e., De = 0.2).  The stress-
free intra-tissue Damköhler number (i.e., Λ2

A,stress-free = 30) is greater than its critical value of 26, 
according to Eq. (15), when the initial condition for cells and oxygen mass densities on the external 
biomaterial surface are: Ψcells(η=1,τ=0)=0.25 and Ψoxygen(η=1,τ=0)=1.  The effect of stress on the 
nutrient mass transfer boundary layer increases from the stress-free uppermost curve to the 
lowermost curve.  The critical stress-sensitive intra-tissue Damköhler number is approximately 3% 
of the stress-free intra-tissue Damköhler number.  Parameters: ω = 2π radians/s, Θdiffusion/λ = 2π, 
5000 steps in dimensionless diffusion time τ, from τ=0 to τ=5 
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------------------------------------------------------------------------------------------------------------ 

Conclusions 
 

 Biological systems respond to stress, in general, via complex mechano-transduction 
pathways [33].  Some of the most favourable bioreactor designs for tissue regeneration 
are those based on (i) dynamic flow (i.e., bone, cartilage) [5,6], and cyclic stretching (i.e., 
tendon, ligament, bone).  Tendons are stimulated by tension and bone cells proliferate at 
accelerated rates under compressive stress [7,34,35].  Recently, stress-sensitive kinetics 
have been identified experimentally in physicochemical systems that exhibit no biological 
influence [36].  The fields of biorheology and mechanobiology describe some aspects of 
stress-sensitive rates of nutrient consumption.  The foundations of stress-kinetic scalar 
cross-phenomena are evident in the transport-phenomena-based rate of entropy 
generation and the corresponding linear laws proposed by Onsager, with assistance from 
Curie’s theorem.  It is desirable to develop regenerative tissue under reaction-diffusion 
conditions where the stress-free intra-tissue Damköhler number is less than its critical 
value to guarantee that the entire porous biomaterial matrix is exposed to nutrients, 
oxygen, and growth factors at steady state.  The von Kármán-Pohlhausen integral method 
of boundary layer analysis of the reaction-diffusion equation reveals time-dependent 
growth of the mass transfer boundary layer inward from the external tissue/nutrient-
medium interface toward the central core.  Transient boundary layer predictions are 
compared in the presence and absence of harmonic stress excitation for viscoelastic 
biomaterials at large and small Deborah numbers.  Thinner nutrient mass transfer boundary 
layers are stabilized at shorter dimensionless diffusion times when the stress-free intra-
tissue Damköhler number increases above its critical value that depends on initial 
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conditions and stoichiometric parameters in the stress-free consumption rate.  The critical 
stress-sensitive intra-tissue Damköhler number is proportional to the Deborah number, and 
corresponds to a larger fraction of the stress-free intra-tissue Damköhler number in rigid 
biomaterials characterized by higher Deborah numbers. 
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DA,effective intra-tissue diffusion coefficient for species A 
De Deborah number; {material response time}/{time scale for deformation} 
E static modulus of elasticity of viscoelastic biomaterials 
JC time-dependent creep compliance of viscoelastic biomaterials 
JD distribution of viscoelastic relaxation times 
J’ storage compliance; elastic contribution 
J” loss compliance; viscous contribution 
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kstress-free kinetic rate constant for 3rd-order pseudo-homogeneous stress-free rate of 
consumption; {volume/mass}2/time 

L one-half of the rectangular biomaterial’s thickness in its thinnest dimension 
Rhomogeneous rate of pseudo-homogeneous nutrient consumption, with contributions from 

stress-free and stress-sensitive kinetic pathways; mass/{volume-time} 
t independent variable for transient response, time 
T absolute temperature 
x spatial coordinate measured in the thinnest dimension of the tissue 
xcritical critical value of the spatial coordinate in the thinnest dimension of rectangular 

tissue, below which reactants do not penetrate the central core of the tissue 
 
Greek symbols 
α,β,ζ coefficients in the quadratic function for dimensionless nutrient mass density 

ΨA, see Eq. (12) 
γ time-dependent strain 
δMTBLT time-dependent dimensionless mass transfer boundary layer thickness, 

measured inward from the external biomaterial surface 
∇  gradient operator 
εcells/εnutrient  stoichiometric ratio of the mass of cells produced per mass of nutrients 

consumed, ≈ 0.45 
εoxygen/εnutrient stoichiometric ratio of the mass of oxygen consumed per mass of nutrients 

consumed, ≈ 1 
ϕ combined variable in the von Kármán-Pohlhausen quadratic molar density 

profile, see Eq. (12) 
κstress scalar Onsager coefficient that couples deformation to the rate of 

consumption; mass/{volume-time} 
λ(T) material response time for viscoelastic biomaterials 
ΛA,stress-free intra-tissue stress-free Damköhler number, which represents an order-of-

magnitude estimate of the stress-free consumption rate with respect to the 
rate of species-specific diffusion toward the central tissue core 

ΛA,stress-free,critical critical value of the intra-tissue stress-free Damköhler number, above 
which the tissue’s central core is starved of essential nutrients at steady state 

ΛA,stress intra-tissue stress-sensitive Damköhler number, which represents an order-of-
magnitude estimate of the stress-dependent consumption rate with respect to 
the rate of species-specific diffusion toward the central tissue core 

ΛA,stress,critical critical value of the intra-tissue stress-sensitive Damköhler number, above 
which it is necessary to consider the effect of harmonic stress on nutrient 
consumption and tissue regeneration, when the nutrient mass transfer 
boundary layer thickness decreases by ≈10% relative to stress-free 
simulations 
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η dimensionless spatial coordinate in the thinnest dimension of tissue with 
rectangular symmetry; Eq. (8) 

ηcritical critical value of the dimensionless spatial coordinate, below which reactants do 
not penetrate into the tissue’s central core 

υi stoichiometric coefficients for reactants (i.e., oxygen) and products (i.e., cells) 
ρcells mass density of attached cells 
ρnutrient intra-tissue mass density of nutrients 
ρnutrient,medium mass density of nutrients on the external biomaterial surface 
ρoxygen intra-tissue mass density of dissolved oxygen 
ΨA dimensionless mass density of nutrients, defined in Eq. (8) 
Ψcells dimensionless mass density of attached cells 
Ψoxygen dimensionless mass density of dissolved oxygen 
σ(t,ω) harmonic tensile stress excitation 
σAC amplitude of harmonic, time-dependent, stress excitation 
σDC time-independent stress excitation 
σΘΘ normal tensile stress along the polar direction in spherical coordinates 
ΘDiffusion characteristic time constant for intra-tissue diffusion; L2/DA,effective,intra-tissue 

τ dimensionless independent time variable, defined in Eq. (8) 
ω frequency of harmonic, time-dependent, stress and strain 
------------------------------------------------------------------------------------------ 
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von Kármán-Pohlhausen boundary layer predictions for nutrient diffusion and stress-sensitive consumption in 
porous biomaterials that experience viscoelastic relaxation (i.e., De = 1) 
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Research Highlights 
  

 reaction-diffusion equation: a modification of Fick’s second law is analyzed in porous 
biomaterial supports that contain anchorage-dependent cells subjected to harmonic stress 

 
 critical intra-tissue Damköhler number: the rate of nutrient consumption relative to the rate 

of intra-tissue diffusion is quantified in the presence and absence of external stress 
 

 Boltzmann superposition integral: is employed to calculate time-dependent strain in rigid 
and mobile viscoelastic biomaterials 
 

 effect of viscoelastic relaxation on stress-sensitive kinetics: time-dependent strain is 
used as a metric to modify the rate of nutrient consumption in stress-sensitive systems 
 

 von Kármán-Pohlhausen mass transfer boundary layer thickness is calculated to estimate the 
time required to achieve stable conditions for regenerative tissue growth 




