
HAL Id: hal-00770484
https://hal.science/hal-00770484

Submitted on 6 Jan 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Fast Multipole Method on the Cell processor
Pierre Fortin, Jean-Luc Lamotte

To cite this version:
Pierre Fortin, Jean-Luc Lamotte. The Fast Multipole Method on the Cell processor. 2013. �hal-
00770484�

https://hal.science/hal-00770484
https://hal.archives-ouvertes.fr

The Fast Multipole Method on the Cell processor

Pierre Fortin and Jean-Luc Lamotte

UPMC Univ Paris 06 and CNRS UMR 7606, LIP6,

4 place Jussieu, F-75252, Paris cedex 05, France

Contact: pierre.fortin@lip6.fr

Abstract

This paper presents the first deployment of the Fast
Multipole Method on the Cell processor (PowerX-
Cell 8i). We rely on the matrix formulation with
BLAS routines of the FMB code (Fast Multipole with
BLAS) in order to directly and efficiently offload the
most time consuming operators of both far field and
near field computations on the Cell heterogeneous
cores. We detail the difficulties that had to be solved
first, and we finally obtain a deployment in single
and double precisions, which scales linearly on sev-
eral Cell blades and which is able to handle both uni-
form and non-uniform distributions of particles. We
also present our performance results and comparisons
with multicore CPUs, as well as the limitations of our
deployment on the Cell processor.

1 Introduction

Motivation. The Fast Multipole Method (FMM) [1]
solves the N-body problem for any given accuracy
with linear runtime complexity against quadratic
complexity for the direct evaluation. This algorithm
is considered as one of the most important in sci-
entific and engineering computing [2] and is a key
improvement for particle simulations in molecular dy-
namics, astrophysics, electromagnetics, fluid mechan-
ics and many more. Thanks to an octree data struc-
ture, the potential or force field is decomposed in a
near field part, directly computed, and a far field part
approximated with multipole and local expansions.
The FMM is considered as a challenging application
since this algorithm is highly non-trivial and presents
several phases with different computational intensi-
ties and different (possibly irregular) memory access
patterns [3]. Efficiently deploying such complex al-
gorithm on different hardware accelerators (HWAs)
such as the SPE (Synergistic Processing Element)

cores of the Cell processor, Graphics Processing Units
(GPUs) and the Xeon Phi, is thus an important chal-
lenge.

Related work. N-body simulations via direct
computation [4, 5] or with cut-off radius [6, 7, 8] have
already been implemented on the Cell processor. To
our knowledge no FMM deployment has ever been
done on the Cell processor. In our opinion, this is due
to these challenging features of the FMM algorithm
and to the important programming efforts required
to efficiently optimize the FMM far field operators
on the Cell SPE cores.
The FMM has however been recently deployed

on GPUs for both uniform [9, 10] and non-uniform
[3, 11, 12, 13, 14, 15] distributions of particles. These
implementations also scale on multiple CPU-GPU
nodes. The far field part is generally less efficiently
implemented on GPU than the near field part (direct
computation) which results in an octree decompo-
sition on GPU which favors the direct computation
[3, 9, 11]. Moreover, such implementations are based
on a thorough deployment of the near field and/or far
field computations of the FMM on the GPU, along
with all the data structures, which requires important
algorithmic changes and programming efforts. This
results in GPU or hybrid CPU-GPU implementations
that outperform CPU implementations (it can also be
noticed that highly optimized CPU implementations
can diminish the CPU-GPU performance gap [11]).

Approach and contributions. Our approach
will rather focus on offloading only the most time
consuming operations on the HWA in a straightfor-
ward and efficient way. In this purpose, we rely on
the FMB code (Fast Multipole with BLAS) [16, 17]
which presents a matrix formulation of the multipole-
to-local (M2L) operator for Laplace equation. In the
far field computation this M2L operator, which con-
verts a multipole expansion into a local expansion,
corresponds indeed to the most time consuming part.

1

Thanks to the level 3 BLAS (Basic Linear Algebra
Subprograms) routines, which are highly efficient rou-
tines performing matrix-matrix operations, this code
offers substantial runtime speedup on CPUs for the
targeted precisions in astrophysics and in molecular
dynamics.
Provided that BLAS routines are available on a

HWA (which is usually the case), we can directly use
these BLAS implementations in order to efficiently
perform the M2L computations on this HWA, for any
required precision. Contrary to other FMM imple-
mentations on HWA, we do not have to write and
highly optimize specific FMM operators for each new
HWA. Moreover, we rely on the ability of the FMB
code to group multipleM2L operations into one single
matrix-matrix product: this enables to increase the
computation grain and thus offset the cost of offload-
ing M2L operations on the HWA. It has to be noticed
that a similar idea has been concurrently developed
for GPUs in [18], where, referencing the same FMB
approach [16, 17], multiple M2L operations are per-
formed at once (but without BLAS routines) on the
GPU. The portability and straightforwardness of our
approach may however lead to a lower overall per-
formance for the FMM compared to thorough, non
portable, deployments such as those done on GPUs.
The other most time consuming part of the FMM is

the direct computation of the N-body problem, which
is also a key application for new HWAs and is there-
fore among the first applications to be efficiently im-
plemented on these HWAs: see for example [19] for
GPU. Therefore the direct computation part of the
FMM can usually also be efficiently performed on a
new HWA.
Finally, the most time consuming operations of the

near and far field computations correspond to small
or medium computation grains, which are moreover
involved in irregular computation schemes due to the
possible non-uniform distributions of particles. That
is why we have first targeted in this paper the Cell
processor, and its SPE cores, whose internal bus has
lower latency and higher bandwidth than the PCI
Express bus of GPUs.
This paper presents thus the following contribu-

tions.

• To our knowledge, this is the first deployment of
the FMM on the Cell processor. Our implemen-
tation scales efficiently on several Cell blades,
supports both single and double precision com-
putations and can handle both uniform and non-
uniform distributions of particles.

• We extend our near field part computation in
single precision on the Cell processor [20] to its
double precision version.

• Since the latest IBM Cell SDK [21] does not pro-
vide efficient BLAS routines for complex num-
bers on the Cell processor, we had to write our
own implementations. We thus extend our ef-
ficient implementation of the CGEMM BLAS
routine (single precision complex matrix-matrix
multiplication) [22] to its (previously unpub-
lished) double precision version (ZGEMM).

• We also present here the scheduling of these ma-
trix products in the far field computation in or-
der to efficiently perform the M2L computations
on the SPEs. Moreover, we show how data move-
ments in the Cell main memory can efficiently be
performed directly by the SPEs.

• We detail our performance results and compar-
isons with multicore CPUs, as well as the limi-
tations of our approach on the Cell processor.

Even if IBM has announced in November 2009 that
the next Cell processor with 32 SPEs will not be re-
leased, we believe that the results and feedback of this
work will be useful for the deployment of the FMM
(as well as of other challenging scientific applications)
on current and forthcoming HWAs.
In the following, we will first present the FMM and

the FMB code in Sect. 2. Then, in Sect. 3 we will
detail our deployment of the FMB code on the Cell
processor, and we will present performance results in
Sect. 4. Finally, concluding remarks will be presented
in Sect. 5 and future work will be discussed.

2 The parallel Fast Multipole

Method with BLAS routines

In this section, we briefly present the Fast Multipole
Method and the FMB implementation which relies
on BLAS routines. More details can be found in [1,
16, 17, 23].

2.1 The Fast Multipole Method

In the FMM algorithm, a hierarchical decomposition
of the particle space thanks to an octree enables to
efficiently divide the potential or force computation
into a near field part (directly computed) and a far
field part (approximately computed). For Laplace

2

equation in astrophysics and in molecular dynamics,
the far field is computed via multipole and local ex-
pansions based on spherical harmonics. The maxi-
mum expansion degree, denoted by P , determines the
accuracy of the computation. Greater P values imply
more precise approximations of the far field, but the
classic FMM operation count grows as O(P 4N) for
N particles.

The algorithm requires first an upward pass of the
octree to compute the multipole expansions of all
cells in the octree (particle-to-multipole, or P2M, and
multipole-to-multipole, or M2M, operations). During
a downward pass of the octree, the local expansion of
each cell c is then computed from the conversion of
the multipole expansions of all cells in its interaction
list (multipole-to-local, or M2L operation). All cells
in the interaction list of c are indeed well-separated
from c which allows the M2L conversion. The inter-
actions due to cells further than the interaction list
of c are taken into account thanks to the local expan-
sion translation of the parent cell of c (local-to-local,
or L2L operation). After the downward pass, the far
field is deduced in each octree leaf cl from the eval-
uation of the local expansion of cl (local-to-particle,
or L2P operation). The near field part (particle-to-
particle, or P2P operation) for particles within cl is
finally added to the far field part. More precisely, we
directly compute all the interactions between each
particle contained in cl and each particle contained
in each of its nearest neighbors: these are the direct
pair computations. Interactions between each pair of
particles contained in cl must then also be computed
directly: this is the direct own computation. The mu-
tuality of gravity (or mutual interaction principle) is
used for both pair and own computations to halve the
direct computation cost.

As far as non-uniform distributions of particles are
concerned, the FMB code relies on an adaptation
of the algorithm presented in [24] where the octree
height is fixed by the user: the possible numerous
empty cells are simply skipped (see [23] for more de-
tails). It can be noticed that a more adaptive algo-
rithm has been introduced in [1], but in the context of
parallel computing in multi-process mode the FMB
algorithm offers predictable communication patterns
[23]. The octree height H is optimally set by the user
(unless otherwise mentioned) in order to minimize the
overall computation time: the H value must balance
at best the near field and far field computations, de-
pending on P and on the particle distribution.

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

+=

matrix

Local
matrix

Multipole

M2L transfer
matrix

M2L

M2L M2L

M2L

.
���
���
���
���

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

Figure 1: Matrix-matrix product resulting from the
grouping of multiple M2L operations

2.2 Matrix formulation

Matrix formulations of some of the FMM opera-
tions usually correspond to matrix-vector operations
[3, 9]. The FMB code relies on its matrix formulation
to group multiple M2L operations in matrix-matrix
products with complex elements [16]. Since matrix-
matrix products require O(N2) memory storage rel-
atively to O(N3) operation count, it is indeed easier
to overlap memory latency with computation with
level 3 BLAS than with level 2 BLAS, and thus to
reach the CPU peak performance. More precisely, the
FMB code offers three different computation schemes
with level 3 BLAS. The first scheme uses recopies to
gather and scatter multipole and local matrices from
and to multipole and local expansions. As presented
in Fig. 1, the multipole matrix is then multiplied by
a M2L transfer matrix and the result is added to the
corresponding local matrix. The other computation
schemes correspond to specific data storage modes
(by rows or slices) which can avoid these recopies in
uniform areas of the particle distribution [17]. As a
reference implementation [12], the O(P 3) computa-
tion scheme with rotations has also been implemented
for M2L in FMB [16].

2.3 Hybrid MPI-thread paralleliza-

tion

An hybrid MPI-thread parallelization of FMB has
been proposed in [23], where the multi-thread par-
allelization is based on POSIX threads. The data
locality and the load balancing among the processors
are ensured by a static octree decomposition based on
Morton ordering and appropriate cost functions. Be-
cause of the mutual interaction principle, write/write
conflicts can sometimes occur between two threads.
These conflicts are treated through mutual exclusion
mechanisms for all particles of an octree leaf at a
time: a single bit per leaf (lock bit) is used to detect

3

conflicts, and FIFO (First In First Out) data struc-
tures enable to postpone the conflicting operation. As
far as BLAS routines are concerned in multi-thread
mode, each BLAS call is performed sequentially since
the matrix sizes are relatively small or medium. MPI
communications are sender-driven thanks to the al-
gorithm chosen for non-uniform distributions of par-
ticles, small messages are aggregated into bigger ones
and communications are overlapped with computa-
tion.
Compared to a pure MPI code, this hybrid MPI-

thread parallelization of FMB enables a gain in par-
allel efficiency thanks to a better load balancing be-
tween threads and to more use of the mutual inter-
action principle in the direct computation [23]. The
memory scalability is also improved since the octree
data structure is shared by all threads inside each
MPI process.

3 Deployment on the Cell pro-

cessor

We now detail how we adapt the matrix formulation
and the MPI-thread parallelization of the FMB code
in order to deploy it on the Cell processor. We con-
sider in this paper only the force computation (no
potential computation) in both single precision (SP)
and double precision (DP) floating point arithmetic.
As presented in Sect. 1, our deployment will consist

in offloading only the two most time consuming oper-
ators of the FMM, namely P2P and M2L. Since the
near field and far field computations should be bal-
anced, the P2P operator represents indeed roughly
half of the total computation time. Moreover, the
M2L operator is clearly the most time consuming op-
erator of the far field computation since it has to be
applied to all members (up to 189) of the interaction
list of each cell. We will thus offload all P2P and M2L
computations on the SPE (Synergistic Processing El-
ement) cores of the Cell processor, which are special-
ized for high performance computing, while keeping
the other computations on the PPE (PowerPC Pro-
cessing Element), which is a general-purpose core.
The main features of the Cell architecture are de-

tailed below.

3.1 The Cell processor

The Cell processor is composed of one PPE core and
eight SPE cores. In this paper, we focus on the Pow-
erXCell 8i version which offers efficient computations

in double precision. All cores have an in-order exe-
cution and runs at 3.2 GHz. The PPE has a two-
way simultaneous multi-threading, while each SPE
has a Synergistic Processor Unit (SPU) and a 256
KB local store (LS) to store both data and SPE ker-
nel code. This SPU has 128 128-bit SIMD (Single-
Instruction, Multiple-Data) registers and two instruc-
tion pipelines, referred to as pipeline 0 (even) and
pipeline 1 (odd), which can each issue and complete
one instruction per cycle. The even pipeline handles
mainly the integer and floating-point units, whereas
the odd pipeline handles the remaining instructions,
including load, store and shuffle. In the PowerX-
Cell 8i, all SP and DP floating-point operations are
fully pipelined, with a latency of 6 cycles in SP and
9 cycles in DP. Loads and stores from/to the LS also
have a fixed latency of 6 cycles which enables the
programmer to completely control the LS memory
accesses to load/store data to/from the SIMD vector
units: with these two independent pipelines, memory
accesses can thus be overlapped with computation.
Moreover, communications are required between each
LS and the Cell main memory through explicit DMA
(Direct Memory Access) instructions over the EIB
(Element Interconnect Bus). DMA transfers are per-
formed concurrently with SPU computation, which
allows very efficient overlap of DMA transfers with
computation. The total peak performance of the
eight SPEs of a PowerXCell 8i is 8 × 12.8 = 102.4
Gflop/s in double precision and 8 × 25.6 = 204.8
Gflop/s in single precision. It also has to be no-
ticed that while the DP floating-point operations are
IEEE-compliant on the PowerXCell 8i SPUs, the SP
floating-point operations only support the truncation
rounding mode. More details about the Cell architec-
ture and programming can be found in [25, 26].
The overall Cell architecture presents thus three

levels of parallelism: SIMD parallelism on the SPU
vector units, multi-thread parallelism among the
SPEs, and MPI multi-process parallelism on multiple
processors or on multiple IBM QS22 blade servers.
These QS22 blades are NUMA architectures which
contain two PowerXCell 8i processors and up to 32
GB of DDR2 memory shared by the two processors.
A process running on a QS22 blade can thus access
the 16 SPEs of the two PowerXCell 8i.

3.2 Direct computations on the SPEs

We now present the deployment of the direct compu-
tation (P2P operator) on the SPE of the Cell proces-
sor, starting with the SPE computation kernels.

4

3.2.1 Direct computation kernel in single

precision

The efficient implementation of the P2P kernel on
the SPE, for both the pair and own computations,
has been detailed in single precision in [20], and is
recalled here. We emphasize that in our implemen-
tation we aim at exploiting at most the mutual in-
teraction principle. Firstly, as we may have to treat
low numbers of particles per leaf, we have chosen to
compute each pair or own computation on one SPE
only. In practice, multiple pair or own computations
will therefore be performed in parallel on the up to 16
SPEs of one QS22 blade. Secondly, SIMD vectoriza-
tion for the SPE code requires a “structure of arrays”
(SOA) data layout [8] which had to be implemented
in the FMB code. The SPE vector register size leads
us to compute together blocks of 4 bodies: this im-
plies array padding with zero mass bodies so that the
array sizes are multiples of 4. The key insight here is
to have enough instructions in the body of the inter-
nal loop. The compiler can then reorder instructions
in order to overlap at best LS memory accesses with
computation.
For the pair computation code between two leafs,

this is accomplished thanks to the numerous SPE vec-
tor registers which enable us to compute together all
the 16 computations among the two blocks of 4 bod-
ies. The required quadword rotates are dual-issued
with floating point instructions, and we hence obtain
8 body loads (from local store to registers) for 16 com-
putations. The internal loop has also been unrolled
manually which eventually offers 32 computations for
12 body loads, and the instructions have been man-
ually interleaved in the C code.
The own computation requires special treatment

when computing interactions among the same 4 bod-
ies (own block computation): only 12 interactions are
then performed without the mutual interaction prin-
ciple. Interactions between distinct blocks are treated
with the pair computation code and with the mutual
interaction principle.
Finally, we use the IBM SDK rsqrtf4 inlined

vector function for the square root reciprocal which
uses a floating-point reciprocal square root estimate
(which has low latency and can be pipelined and
dual-issued with floating point instructions) and one
Newton-Raphson iteration to match floating point
single precision.
For each interaction in the pair computation, the

final code requires hence 27 flops1. Since we use the

1Following [8], we do not count the reciprocal square root

mutual interaction principle in this pair computation,
this results in 13.5 flops per interaction. Among these
27 floating point operations, 14 are written with 7
fused multiply-add (FMA) instructions. The theo-
retical peak performance of such computation in SP
is thus 67.5% of the SPE peak performance, namely
17.28 Gflop/s on one SPE. It can be noticed that
an own block computation leads to 24 flops per in-
teraction since no mutual interaction is computed in
this case. We will consider 13.5 flops per interaction
in the overall near field computation which will thus
underestimates the flops used in the own block com-
putations.

It can also be noticed that the same techniques
have been applied concurrently in [4] to perform one
own computation (with thousands of bodies) on sev-
eral SPEs, but without the mutual interaction prin-
ciple and without the Newton-Raphson iteration.

3.2.2 Direct computation kernel in double

precision

We now present how we have adapted the P2P ker-
nel to double precision for this paper. We use the
rsqrtd2() inlined vector function of the IBM SDK
3.1 which uses the same floating-point reciprocal
square root estimate as rsqrtf4, but with three
Newton-Raphson iterations in order to match floating
point double precision.

For the sake of simplicity, we pad our array in DP
with zero mass bodies so that their sizes are multiples
of 4, exactly like in SP. This enables us to rely on
the SP pair computation code with two blocks of 4
bodies. The internal loop unrolling does not improve
performance here.

In DP the pair computation kernel requires finally
39/2 = 19.5 flops per interaction thanks to the mu-
tual interaction principle. According to the number
of FMA used, the theoretical peak performance of
such computation in DP is 65% of the SPE peak per-
formance, namely 8.32 Gflop/s on one SPE.

3.2.3 Task scheduling

We briefly recall here the task scheduling of the P2P
computations on the SPEs presented in [20], which
has to yield to a responsive PPE code that will mini-
mize the time where the SPEs are idle. We define one
P2P task as the own computation of a target leaf T

estimate which can be dual-issued with floating point instruc-
tions.

5

along with all the pair computations between T and
its nearest neighbors.

First, it has to be noticed that in the FMB oc-
tree data structure all bodies of an octree leaf are
contiguous in memory, which is suitable for efficient
DMA transfers. The bodies of a leaf are then trans-
ferred by chunk of at most 512 bodies. DMA transfers
are overlapped with computation on the SPE thanks
to three shared I/O buffers (each containing at most
512 bodies) in the LS and fenced DMA operations
[26]. When considering a given P2P task, we man-
age to have only the first target chunk read and the
last target and neighbor chunk writes not overlapped
with SPE computation.

All P2P computations will be performed on the
SPEs: the static load balancing of the multi-thread
parallelization of FMB [23] is therefore suitable for
balancing P2P computations among the homoge-
neous SPEs. In the multi-thread parallelization pre-
sented in [23], the write/write conflicts are however
solved thanks to lock bits which are set and unset
for each pair or own computation. This corresponds
to fine-grained locks and fined-grained computations
which may imply too strong synchronization over-
head for our Cell deployment. We have thus move
our locking strategy to the P2P task level: we now
set together the lock bits of the current leaf and of all
its required nearest neighbors. If some lock bits are
already set for another SPE, meaning that the force
vectors of these bodies are currently being updated,
we use the same FIFO data structures as in [23] to
postpone the whole conflicting P2P task. This in-
creases the computation grain but may lead to dead-
locks. Instead of using multiple POSIX threads on
the PPE (one for each SPE), we therefore prefer to
have one single thread on the PPE that will manage
all SPEs. This way, the deadlocks are indeed easily
avoided, no mutexes are required to set or unset the
lock bits and this also avoids costly context switches
between multiple threads on the PPE. All this results
in a fast single thread code which will help the PPE
to be more responsive to all SPEs.

Finally, we can use up to 4 slots (2 in practice) to
be able to assign (with mailbox messages of the Cell
processor) several P2P tasks to each SPE at any time.
The end of each P2P task is notified by the SPE to the
PPE thanks to DMA writes in the Cell main memory,
which is the fastest notification approach [25].

As shown in Fig. 2, all this results in an efficient
overall near field computation on one SPE for both
single and double precisions: we reach up to 14.5

 1

 3

 5

 7

 9

 11

 13

 15

 2 4 8 16 32 64 128 256 512 1024 2048 4096

G
flo

p/
s

Average number of bodies per leaf

P2P kernels only - SP
P2P kernels + DMAs - SP

P2P kernels only - DP
P2P kernels + DMAs - DP

Figure 2: Near field computation on one SPE for in-
creasing average number of particles per leaf with
uniform distributions. We use several distributions
with different number of particles (from 500 000 to 2
millions) and different octree heights (from 3 to 6) in
order to obtain various average numbers of particles
per leaf. Gflop/s rates are computed by considering
13.5 flops per interaction in SP, and 19.5 in DP

Gflop/s in SP, and up to 5.5 Gflop/s in DP. On one
Cell processor, we obtain up to 115.8 Gflop/s in SP
and up to 230.4 Gflop/s on one blade. Detailed per-
formance results can be found in [20]. This compares
favorably with results from the literature for the di-
rect computation with 8 SPEs: depending on the con-
sidered forces and on the number of particles, the per-
formance results in SP vary between 45 Gflop/s [6],
60 Gflop/s (for 6 SPEs) [7] and 83 Gflop/s [5]. 61%
of peak has been obtained in SP in [4] when con-
sidering 20 flops per interaction. In DP, 34 Gflop/s
performance on a PowerXCell 8i processor has been
presented in [8].

Moreover, for an average number of particles per
leaf close to 128 or more, the O(N) DMA transfer
times are overlapped with the O(N2) computation
times, and the overall near field computation per-
forms like the P2P computation kernel. As detailed
in [20], for such average numbers of particles per leaf
we also have very good parallel speedups with multi-
ple SPEs (up to 16) for uniform distributions, as well
as for non-uniform distributions like cylinders.

6

3.3 Multipole-to-local computations

on the SPEs

The latest IBM Software Development Kit (SDK 3.1,
see [21]) provides complex BLAS routines that run
only on the PPE, not on the SPEs, yielding limited
performance. We therefore have to implement our
own SP and DP complex matrix products for the
SPEs in order to offload the M2L computations on
the SPEs.

3.3.1 Design considerations

We first present our design considerations according
to the FMM and FMB requirements.
We will consider the following matrix-matrix prod-

uct: C+ = A×B, where C is a M×N matrix of com-
plex elements, and A and B are respectively M×K
and K × N matrices of complex elements. As pre-
sented in Sect. 2.2, B will correspond to the mul-
tipole matrix, C to the local matrix and A to the
M2L transfer matrix in the FMB code. This imposes
M = (P + 1)(P + 2)/2 and K = (P + 1)2.
Firstly it has to be noticed that with a complete

BLAS library optimized for SPE, we could have been
able to treat all P values, as already done on CPU
[16]. Since we have to develop our own optimized
BLAS routines, we will focus only on few specific P
values, which yield to specific matrix sizes. We will
thus focus on the following P values and the corre-
sponding M and K values:

• for medium precisions we choose P = 7, which
implies M = 36 and K = 64,

• for high precisions we choose P = 15, which im-
plies M = 136 and K = 256,

• for very high precisions we choose P = 23, which
implies M = 300 and K = 576.

It can be noticed that P values lower than 7 (for low
precisions) can be used in astrophysics for example.
However as detailed in [17], no BLAS computation
are performed in such simulations since the BLAS
routines are mainly efficient for greater P values or
within large uniform areas, which are not present in
astrophysical particle distributions. As far as N is
concerned, it is independent of the required precision
and can be considered as much greater than K. In
this deployment on the Cell processor, we focus in-
deed only on the scheme with recopies (see Sect. 2.2)
since it can be used for both uniform and non-uniform
particle distributions, and since it offers greater N

values: up to 2744 (respectively 27, 000) for an uni-
form octree with height 5 (resp. 6) [16]. In practice,
we use two buffers of sizes M ×Nmax and K×Nmax,
with Nmax = 2048, for respectively the local matrix
(C) and the mutipole matrix (B). With the scheme
with recopies, these buffers are filled with multipole
and local expansions that share the same M2L trans-
fer matrix, and a matrix product is performed when
all possible expansions have been recopied, or each
time these buffers are full. Since these are relatively
small or medium sizes for M and K, we plan to use
only one SPE per matrix product. However, we will
consider multiple matrix products in parallel (up to
16 on one QS22 blade), since many matrix products
can be performed concurrently in the downward pass
of FMB.

Secondly, in [16] two different M2L kernel heights
(single or double) were presented which lead to two
different M2L transfer matrices (sparse or dense).
For our targeted P values, BLAS computations are
more efficient with the double height M2L kernel [16].
Moreover this latter eases the implementation of the
matrix product since the corresponding M2L transfer
matrix is dense. We will therefore only consider the
double height M2L kernel in this paper.

Thirdly, we detail our matrix data layout. For
portability purposes, the FMB code relies on the
standard C BLAS interface2, where each complex ma-
trix is considered to be stored as a single memory
array of complex elements. The real and imaginary
parts of the different complex elements are thus inter-
leaved in memory. Both multipole and local matrices
are built by concatenating multipole (respectively lo-
cal) expansions as column vectors. We therefore fa-
vor the column-major format. However, as pointed
out by several authors [27, 28], the BDL (Block Data
Layout) format enables to save DMA transfers, to
exploit at best the memory banks of the main mem-
ory and to minimize TLB (Translation Look-aside
Buffer) misses which are especially costly when gen-
erated by the SPE [25]. Fortunately, this conversion
to BDL format can be performed at no cost in FMB:
the M2L transfer matrices are built and precomputed
at the begin of the algorithm, and the gather oper-
ations of the scheme with recopies can be directly
performed with multipole and local matrices in BDL
storage mode. We therefore consider that the ma-
trices are stored in BDL format, with column-major
order within each block, as well as among the different
blocks. Moreover, as the M2L transfer matrices are

2See: http://www.netlib.org/blas/blast-forum/cinterface.pdf

7

 0

 5

 10

 15

 20

 25

 64 128 256 384 512 640 768 896 1024

G
flo

p/
s

N

CGEMM
ZGEMM

Peak 1 SPE SP
CGEMM computation kernel

Peak 1 SPE DP
ZGEMM computation kernel

Figure 3: Performance on one SPE for our CGEMM
and ZGEMM implementation with square matrices
of size N ×N

precomputed, we could have freely chosen between
C+ = A×B (1) and C+ = AT ×B (2). If (2) is usu-
ally preferred on classic CPU architectures since the
inner loop then matches the cache lines, there is no
such cache effect in the SPE local store. Moreover
the SIMD computation necessitates additional float-
ing point operations with (2), which prevents to reach
optimal peak performance in this case [29]. That is
why we have chosen to build the M2L transfer matri-
ces in FMB so that we can consider C+ = A×B.
We finally present the programming choice for our

computation kernel that runs on the SPE. In the case
of real matrix products on the Cell processor, ex-
cellent performance in single precision (for example
89.88% of peak in [30]) has already been obtained
when programming in C (with C SPU intrinsics),
and almost peak performance (99.80% of peak) has
been obtained when writing in assembly code [29].
As far as real double precision matrix products are
concerned, a kernel in assembly has been developed
in [31] using techniques similar to those presented in
[29], reaching 99.87% of the SPE peak. We focus
here on C programming only (with SPU intrinsics)
in order to build efficient complex matrix products
within a reasonable development time, and with per-
formance similar to the real matrix products.

3.3.2 Matrix multiplication in single preci-

sion

Following [29], we have implemented in [22] a single
precision complex matrix product (CGEMM BLAS
routine) as a tile (or block) operation. We have cho-

sen a tile size of 32 × 32, mainly for optimal DMA
and memory bandwidths. This also enables K to be
a multiple of the tile size for our targeted precisions
(P = 7, P = 15, P = 23). Moreover, for M we limit
to 4, 8 or 12 (all multiples of 4) the number of ex-
tra lines of the C matrix to compute, for respectively
P = 7, P = 15, and P = 23. These extra lines are
currently computed with a complete extra tile, but
this could be improved by avoiding the useless com-
putations with a specific kernel.

At first glance, performing a N×N complex ma-
trix product involves twice more data than a N×N
real matrix product, while requiring four times more
floating point operations. Compared to the real case,
the complex case thus seems more favorable to an
high performance implementation on the Cell SPE
but numerous additional shuffle operations (permuta-
tions of vector elements) are required to separate real
and imaginary parts for the SIMD computation on
the SPE. We have thus introduced in [22] an original
computation scheme that can reduce the impact of
such extra operations depending on the loop unrolling
amount. More precisely, the choice of the unrolling
amount for each of the three loops of the tile com-
putation kernel is equivalent to determine a sub-tile
size (m, n, k) whose computation will be completely
unrolled. Setting m = 4 to keep multiples of 4 in the
M loop, our original computation scheme enables to
reduce the number of odd pipeline operations: more
details can be found in [22]. When considering load,
store and shuffle operations on the odd pipeline, a
sub-tile size of (m = 4, n = 8, k = 32) then enables
to dual-issue the 640 odd pipeline operations with
1024 floating point operations on the even pipeline,
while keeping 384 spare slots on the odd pipeline for
extra operations (like jump instructions, or pointer
and index arithmetic). Thanks to software pipelin-
ing, loop linearization and double-buffering technique
to overlap LS memory accesses with computation, we
have managed to reach 23.74 Gflop/s for the compu-
tation kernel of a 32 × 32 tile, which is 92.7% of the
SPE peak performance. When adding DMA trans-
fers to perform a complete matrix product from the
Cell main memory, we maximize the use of double-
buffering (with shared I/O buffers for C) to overlap
DMA transfers with tile computation on the SPE.
We also combine huge (16 MB) pages with NUMA
node and memory bindings [25]. As shown in Fig. 3,
for increasing matrix size N the O(N2) DMA trans-
fer times rapidly become completely overlapped with
the O(N3) computation time. Detailed performance

8

results can be found in [22]. Moreover, multiple ma-
trix products can be computed concurrently and ef-
ficiently on the SPEs and, for the relatively small or
medium sizes of the matrix used in FMB (see Sect.
3.3.1), it is actually more efficient to perform mul-
tiple matrix products with one matrix product per
SPE, than to perform one single matrix product on
multiple SPEs [22].

3.3.3 Matrix multiplication in double preci-

sion

We now focus on adapting our single precision
CGEMM implementation written in C to an efficient
double precision ZGEMM implementation.
We first keep the 32× 32 tile for the same reasons

as presented in Sect. 3.3.2 and since such tile size
still fits in a single DMA transfer (16 KB). We then
choose a sub-tile size of (m = 4, n = 4, k = 32)
which offers 320 spare slots on the odd pipeline for
1024 floating point operations on the even pipeline:
all required odd pipeline operations can thus be dual-
issued with even pipeline operations. The same tech-
niques presented for CGEMM in Sect. 3.3.2 apply
to ZGEMM, taking into account that the pipeline la-
tency is 9 cycles for DP instructions (against 6 cycles
for SP instructions).
Our ZGEMM computation kernel written in C

reaches 11.64 Gflop/s on one SPE, which corresponds
to 90.95 % of the 12.8 Gflop/s peak performance of
the SPE in DP. Like our CGEMM implementation,
our ZGEMM implementation offers very good perfor-
mance as presented in Fig. 3. Like in SP, the DMA
transfer times become rapidly minority in DP for in-
creasing matrix size.

3.3.4 Task scheduling and data movements

The task scheduling of the M2L computations on the
SPEs directly rely on the multi-thread paralleliza-
tion presented in [23]. We therefore use here multi-
ple POSIX threads on the PPE, namely one POSIX
thread for each SPE. Each thread offloads on its SPE
all M2L computations in its octree part, as deter-
mined by the static octree decomposition. The static
load balancing is indeed suitable for balancing all
M2L computations among the homogeneous SPEs.
An M2L task corresponds thus to a complete matrix
product between a multipole matrix, the correspond-
ing M2L transfer matrix and the local matrix (see
Sect. 3.3.1). The end of each M2L task is notified by
the SPE to the PPE thanks to a mailbox message,

since the computation grain of the matrix products
is usually coarse enough. Moreover, there is no possi-
ble write/write conflicts between threads for the M2L
computations, and thus no need for locking.
However, this implies that all recopies have to be

performed on the PPE which can bottleneck the over-
all performance with multiple SPEs. We therefore
present an alternative version where the SPE directly
perform the recopies: each SPE gathers on the fly
all necessary multipole and local expansions for one
tile product in its local store, and then scatters back
the local expansions in main memory after the tile
product. We thus remove the cost of performing the
recopies first on the PPE, at the expense of more scat-
tered data accesses for the SPEs in the main mem-
ory. Moreover, the SPEs can perform these gather
and scatter operations in parallel, which can solve the
possible bottleneck of the recopies on the PPE. This
version implies greater memory requirements since all
multipole and local expansions in FMB now have to
be aligned on a 128-byte boundary for DMA peak
performance, and must be padded to a multiple of
the CGEMM/ZGEMM tile size (32 in practice here).
In this version, we also have to use DMA list com-
mands to perform both gather and scatter operations
on the multipole and local expansions. As presented
for example in [32], we therefore have to ensure that
all memory buffers in the FMB code, each containing
one expansion, never cross a 4 GB boundary. We also
have to issue multiple DMA list commands when the
expansion buffers of a single gather or scatter opera-
tion are stored in multiple 4 GB regions.
We have also considered the use of 16MB memory

huge pages. When the recopies are performed on the
PPE, these huge pages can be used to store the multi-
pole and local matrices, which improve performance
for large matrix products [22]. When the SPEs di-
rectly perform the recopies on the fly, we can also use
huge pages to store all local and multipole expan-
sions in FMB. This may require hundreds of 16MB
memory huge pages, but enables to reduce page table
and TLB (Translation Look-aside Buffer) thrashing
[25]. Indeed the TLB of the SPE has only 256 en-
tries, which may be insufficient for the gather and
scatter operations performed by the SPEs in all the
Cell main memory.

Finally, code overlays are used to successively run
the P2P and M2L kernels on the SPEs, and we
directly rely on the FMB MPI parallelization (see
Sect. 2.3) to obtain a complete fast multipole method
that runs on multiple QS22 blades.

9

4 Performance results

All tests are performed on four QS22 blades located
at the HPC@LR Competence Center in High-
Performance Computing (Languedoc-Roussillon
region, France). Each QS22 blade has 16 GB of
memory and the four blades are linked with a
gigabit Ethernet network. A Yellow Dog Linux
distribution with 4KB memory pages is installed on
each blade. We use the IBM SDK 3.1, the Open-
MPI library (version 1.4.2) and the gcc compiler
for the PowerXCell 8i (version 4.3.2). The P2P
kernel is compiled with the classical optimization
options (-O3 -funroll-loops -fmodulo-sched

-ftree-vectorize -ffast-math, see [25]) whereas
optimal performance is obtained for the M2L kernel
with the -Os option (optimal code size). As far as
NUMA node and memory bindings are concerned,
we always prefer the node 0 of the QS22 when using
8 SPEs (or less) since it delivers better memory
access performance [25]. When using the 16 SPEs
of the QS22, we use an interleaved NUMA policy.
The QS22 blades have been configured so that the
number of available 16MB memory huge pages (HP)
is 768.
We will study here both uniform and non-uniform

distributions of particles. The uniform distribution
will consist in a 3D cube, whereas the non-uniform
distribution will consist in a cylinder in a 3D space
where the particles are uniformly distributed on the
2D surface of the cylinder. Moreover, in the FMM
the norms of the multipole and local expansion terms
present large varying magnitudes when P increases
(see for example [16]). For numerical stability pur-
poses, further detailed in Sect. 4.3, we will thus use
single precision computations only for P = 7 (in much
the same way as in [12]), and we will use double pre-
cision computation for P = 15, P = 23 as well as also
for P = 7.
Finally, for FMB timings we consider only one

FMM computation, and we do not take into account
the octree’s construction and the parallel decomposi-
tion since these can be considered as precomputation
steps, whose costs can be amortized over several sim-
ulation time-steps.

4.1 The downward pass

We first study the downward pass computation times
on one QS22 blade. In our tests, these times depend
on the octree height only, not on the number of par-
ticles. We emphasize that these timings encompass

 10

 100

 1000

 10000

 1 2 4 8 16

D
ow

nw
ar

d
pa

ss
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

Number of SPEs

PPE recopies (P=7, SP)
SPE recopies (P=7, SP)

SPE recopies HP (P=7, SP)

PPE recopies (P=15, DP)
SPE recopies (P=15, DP)

SPE recopies HP (P=15, DP)

Figure 4: Downward pass times for an uniform dis-
tribution (octree height set to 6), with different re-
copies versions, and with or without 16MB memory
huge pages (HP)

both the M2L and L2L operations: while the M2L
operations are offloaded on the SPEs, the L2L oper-
ations are all performed on the PPE single core.

As shown in Fig. 4, with recopies performed on
the PPE (PPE recopies) we have a performance bot-
tleneck for multiple SPEs within one Cell processor.
On the contrary, when the SPE performs directly
the recopies on the fly in their LS (SPE recopies),
the single SPE performance is clearly improved since
there is no intermediate recopies on the PPE, and
we obtain better speedups with multiple SPEs since
the recopies can be performed concurrently by the
SPEs. Combining 16MB huge pages with SPE re-
copies can also clearly reduce the computation times
when the memory requirements become large (e.g.
for P = 15 in DP), since we reduce the TLB thrash-
ing (see Sect. 3.3.4). We therefore use SPE recopies
with huge pages in all the following tests.

It can be noticed that an intermediate scheme
where recopies are performed by the SPE in the main
memory has also been implemented, but this did not
improved the performance. Likewise, a single thread
PPE code managing all SPEs via DMA writes (sim-
ilar to the PPE code for the near field computation)
has also been implemented and tested, but this deliv-
ers similar or lower performance (especially with 16
SPEs).

When considering different octree heights H and
P values, in SP and DP, for both uniform and non-
uniform distributions, one can see in Fig. 5 that for
a given H value the parallel speedup increases with

10

 1

 10

 100

 1000

 1 2 4 8 16

D
ow

nw
ar

d
pa

ss
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

Number of SPEs

(a) Uniform times

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Number of SPEs

P=7/SP/H=5
P=7/SP/H=6
P=7/DP/H=5
P=7/DP/H=6

P=15/DP/H=5
P=15/DP/H=6
P=23/DP/H=5
Ideal speedup

(b) Uniform speedups

 1

 10

 100

 1000

 1 2 4 8 16

D
ow

nw
ar

d
pa

ss
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

Number of SPEs

(c) Cylinder times

 1

 2

 4

 8

 16

 1 2 4 8 16

S
pe

ed
up

Number of SPEs

P=7/SP/H=7
P=7/SP/H=8
P=7/DP/H=7
P=7/DP/H=8

P=15/DP/H=7
P=15/DP/H=8
P=23/DP/H=7
P=23/DP/H=8
Ideal speedup

(d) Cylinder speedups

Figure 5: Downward pass times and speedups on one QS22 blade for both uniform and cylinder distributions
with different H and P values

the computation grain (that is to say with DP or
when P increases). We obtain reasonable speedups
for uniform distributions (up to 10.7 for 16 SPEs),
whereas the non-uniform cylinder distributions lead
to lower speedups (up to 6.4 for 16 SPEs) since the
non-uniformity implies less M2L operations (on the
SPEs) for each L2L operation (on the PPE). Better
speedups, or at least lower HP usage, may possibly
be obtain with a Linux kernel with 64KB memory
pages [25].

4.2 The complete FMM

We now present in Fig. 6, the complete FMM compu-
tation times on one and on several QS22 blades, for
distributions with 223 = 8 Mi particles. The octree
height H is optimally chosen according to the distri-
bution, the P value, the single or double precision,

and the number of SPEs used.

The limited speedups for 2 to 8 SPEs are due to the
fact that the most time consuming parts of the FMM
(P2P and M2L operators) have become minority in
the overall computation time thanks to their efficient
offloading on the SPEs. In addition to L2L, the oth-
ers operators involved in the upward pass (P2M and
M2M operators) and in the evaluation of the local
expansions (L2P operator) are not offloaded on the
SPE and are thus all performed on the PPE single
core which leads to a performance bottleneck when
increasing the number of SPEs.

With 16 SPEs (two Cell processors on one single
QS22 blade), and more (up to 4 blades), we obtain
linear speedups for both uniform and non-uniform
distributions and for all required precisions. It has
to be noticed that we have always used here only
one MPI process per blade since this offers better

11

 10

 100

 1000

 10000

 1 2 4 8 16 32 64

F
M

M
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

Number of SPEs

(a) Times

 1

 2

 4

 8

 16

 1 2 4 8 16 32 64

S
pe

ed
up

Number of SPEs

Uniform P=7 SP
Cylinder P=7 SP
Uniform P=7 DP
Cylinder P=7 DP

Uniform P=15 DP
Cylinder P=15 DP
Uniform P=23 DP
Cylinder P=23 DP

(b) Speedups

Figure 6: Complete FMM times and speedups on one QS22 blade (up to 16 SPEs) and on four QS22 blades
(up to 64 SPEs), for both uniform and cylinder distribution with 8Mi particles

memory scalability, and since using for example two
MPI processes per blade (one per Cell processor) does
not improve the performance.

4.3 Comparison with multicore CPUs

We finally compare performance and precision be-
tween one PowerXCell 8i and two multicore CPUs
located at Polytech’Paris-UPMC, Paris, France. The
first CPU is a low-cost quad-core Intel Q8200 proces-
sor running at 2.33 GHz, released in the same year
as the PowerXCell 8i (2008). The second CPU is an
high-end hex-core Intel Xeon X5650 processor run-
ning at 2.67 GHz, released in 2010. When considering
concurrent multiply and add operations, the Q8200
(resp. X5650) has a theoretical peak performance of
74.56 Gflop/s (resp. 128.16 Gflop/s). We use Goto-
BLAS23 as the BLAS library on the CPUs.
The comparison results are presented in Fig. 7

for both uniform and non-uniform distributions and
for different values of P . We distinguish the down-
ward+direct times and the complete FMM times, as
well as serial executions and multi-thread executions.
For the multi-thread executions we use all the avail-
able cores of each chip: 4 threads for the Q8200, 6
for the X5650 and 8 for the PowerXCell 8i. It can be
noticed that the X5650 processor offers a 2-way SMT
execution but we only use one thread per core (up to
6 threads) since BLAS routines do not usually take
advantage of the SMT capability. The O(P 3) M2L
computation scheme with rotations is also presented

3See: http://www.tacc.utexas.edu/tacc-projects/gotoblas2

in Fig. 7 for CPUs as a reference implementation.
Following [1, 16, 9], we use the L2 norm as a mea-
sure of error. The L2 error is here computed with
respect to the forces obtained by direct computation
(in DP) on 10 000 randomly chosen particles in each
distribution.

As far as precision is concerned, one can see for
the uniform distribution on Figs. 7(a),7(b),7(e),7(f)
(with P values ranging from 3 to 23) that while the
DP computations on the PowerXCell 8i always match
the DP computations on the CPUs, the SP compu-
tation for P = 7 on the PowerXCell 8i leads to an
L2 error between P = 5 and P = 7 on the CPU.
This loss of precision on the PowerXCell 8i has two
reasons. Firstly the truncation rounding mode of SP
operations on the SPE degrades slightly the precision
for both P2P and M2L computations. Secondly, our
complex matrix multiplication implies a strong re-
ordering of the computations which further degrades
in SP the numerical stability of the M2L computa-
tions on the SPE. Nevertheless, in some cases com-
putations in SP for P = 7 on the PowerXCell 8i of-
fers lower downward+direct computation times when
compared to P = 5 or P = 3 on the CPUs. This justi-
fies the use of SP computations on the PowerXCell 8i
for such precisions. It can also be noticed that a
mixed precision implementation, where the near field
part is computed in SP and the far field part in DP,
gives much more numerically stable results for P = 7
but presents significant loss in precision for P = 15.

For the cylinder distribution, the DP computations
on the PowerXCell 8i also match the DP computa-

12

tions on the CPUs (the computation for P = 15 be-
ing more precise on the PowerXCell 8i because the
optimal octree height is lower than on the CPUs in
this case). The SP computations for P = 7 are unsta-
ble on the CPUs (and thus not presented in Fig. 7),
and give an L2 error greater than P = 5 on the Pow-
erXCell 8i, which makes SP computations for P = 7
unsuitable for such non-uniform distribution.

As far as performance is concerned, it can be
first noticed that the M2L rotation scheme has
similar performance than the M2L BLAS scheme.
More precisely, the O(P 3) rotation scheme delivers
slightly lower computation times for the high values
of P , whereas the O(P 4) BLAS computation delivers
slightly better performance for the low values of P .

When considering the downward+direct times,
where P2P and M2L computations are offloaded on
the PPE whereas L2L computations are performed on
the PPE single core, the deployment on the Cell pro-
cessor offer significant speedups in most cases. In DP
for P = 15 with the uniform distribution, the Pow-
erXCell 8i is 3.4 times faster than the Q8200, both re-
leased in 2008, and 2.0 times faster than the high-end
X5650. More precisely, the offloading of the P2P op-
erator in SP enables a speedup of up to 14.7 (respec-
tively 7.8) on the PowerXCell 8i over the Q8200 (resp.
X5650). In DP, the speedup becomes 5.1 (resp. 3.5),
because of the 128-bit SPU vector unit and since our
P2P kernel is a little less efficient in DP than in SP.
For the downward pass, the speedups are lower be-
cause the L2L operator is performed on the PPE sin-
gle core. The PowerXCell 8i is also generally slower
than the CPUs for P = 7 since the matrices are too
small to enable an efficient offloading on the SPE:
as presented in Fig. 3 the DMA transfer times dom-
inate for small matrices. P = 15 and P = 23 enable
speedups up to 2.2 over the Q8200 for the uniform
distribution. The X5650 is always faster or as fast as
the PowerXCell 8i for the downward pass, and both
CPUs are also faster on the cylinder distribution.

Besides, when comparing serial and multi-thread
executions, one can see that the higher number of
cores of the PowerXCell 8i is beneficial for the uni-
form distribution, but this only partially offsets the
low speedups of the downward pass for the cylinder
distribution (see Sect. 4.1).

It can also be noticed that while the BLAS routines
take advantage of the SSE instructions for the M2L
computations on the CPUs, the FMB code has not
been written with SSE instructions for the P2P com-
putations on CPU. Additional performance on CPU

could thus be obtained for the direct computation
part [11].

When considering the complete FMM times, the
PowerXCell 8i is however as fast or slower than the
CPUs. This is due to the fact that the upward pass
(P2M and M2M operators) and the evaluation of
the local expansions (L2P operator) are more than 8
times slower on the PPE than on one CPU core. As
a consequence, and because of the efficient offloading
of the P2P and M2L operators on the SPE, the up-
ward pass and the local expansion evaluation become
the most time consuming parts of the complete FMM
even with only one SPE. When using more SPEs to
speedup the P2P and M2L computations, the P2M,
M2M and L2P operators, as well as L2L, are still
performed on the PPE single core and the decrease
in computation time for the complete FMM is thus
minority.

5 Conclusion and future work

In this paper we have presented the first deployment
of the FMM on the Cell processor, where the most
time consuming parts are offloaded on the SPEs. This
implementation in the FMB code supports both sin-
gle and double precision computations, as well as
both uniform and non-uniform distributions of par-
ticles. This hybrid MPI-thread code also scales ef-
ficiently on several Cell blades. We have detailed
the efficient SPE offloading of the particle-to-particle
operator which take advantage of the mutuality of
gravity, and of the multipole-to-local (M2L) operator
which relies on complex matrix products.

This deployment has not been as direct as initially
planned since we had to write our own CGEMM and
ZGEMM BLAS routines for complex matrix prod-
ucts on the SPEs, since we have also shown that data
movements are best handled directly by the SPEs,
and since other changes were necessary in the orig-
inal FMB code designed for multicore CPU nodes
(e.g. the move to a single thread PPE code for the
near field part, and the need of 16MB memory huge
pages for the far field part).

We obtain significant speedups for the offloaded
computations with respect to multicore CPUs re-
leased in the same year as the PowerXCell 8i: up
to 14.7 for the direct computation part, and up to
3.4 when including also the downward pass of the
FMM. Some improvements are still possible: a spe-
cific kernel could be used for the computation of the

13

extra lines in the matrix product on the SPE. The
use of 64 KB memory pages may also improve the
performance.
However, the main limitation of this work is that

the overall performance of our FMM on the Cell pro-
cessor is bottlenecked by the upward pass and lo-
cal expansion evaluation which are slowly performed
on the PPE single core. Following [8, 32], which
have also faced performance bottlenecks due to the
PPE, we can foresee better performance for our code
on an architecture similar to the Roadrunner super-
computer which combines PowerXCell 8i and AMD
Opteron dual-core processors on the same node. The
upward pass and the evaluation of local expansion
could indeed be more efficiently performed on the
Opteron cores. Besides, our FMM presents numer-
ical instabilities on the Cell SPEs with medium pre-
cisions (P = 7) on uniform distributions. We also
show that the FMM in single precision is unstable on
non-uniform distributions, for both the Cell and the
CPUs and for both M2L computation schemes with
BLAS and rotations.

The main future direction of this work is to deploy
efficiently and directly the Fast Multipole Method
with BLAS on compute nodes with multiple GPUs
and multiple CPU cores. This hybrid deployment
could enable us to perform the upward pass, the lo-
cal expansion evaluation and the small M2L matrix
products on the CPU cores, whereas the direct com-
putation and the other M2L matrix products could
be offloaded on the GPU. Such efficient deployment
may require algorithmic changes [33], as well as rele-
vant hardware: the concurrent execution of multiple
kernels on NVIDIA Fermi GPUs could here be use-
ful to efficiently offloads such medium-grained tasks.
Integrated GPU in the AMD Fusion APU (Acceler-
ated Processing Unit) could also be interesting here
to accelerate tasks too small to be offloaded on the
discrete GPU. All this would also require a dynamic
load balancing and task management, that could rely
on specific runtimes such as HMPP4 or StarPU [34].

Acknowledgements

This work was carried out with partial sup-
port from HPC@LR, a Competence Center in
High-Performance Computing from the Languedoc-
Roussillon region, funded by the Languedoc-
Roussillon region, the European Union and the Uni-

4See: www.caps-entreprise.com/hmpp.html

versité Montpellier 2 Sciences et Techniques. The au-
thors would like to cordially thank the system teams
at HPC@LR and at Polytech’Paris-UPMC, as well as
B. Cirou at CINES, for helpful assistance during the
performance tests.

References

[1] Cheng H, Greengard L, Rokhlin V (1999) A Fast
Adaptive Multipole Algorithm in Three Dimen-
sions, J. Comput. Phys., 155:468-498

[2] Dongarra J, Sullivan F (2000) Guest Editors’ In-
troduction: The Top 10 Algorithms, Comput. Sci.
Eng., 2(1):22-23

[3] Lashuk I, Chandramowlishwaran A, Langston H,
Nguyen TA, Sampath R, Shringarpure A, Vuduc
R, Ying L, Zorin D, Biros G (2009) A massively
parallel adaptive fast-multipole method on hetero-
geneous architectures, SC’09, Int. Conf. for High
Performance Computing, Networking, Storage and
Analysis, pp. 58:1-58:12

[4] Arora N, Shringarpure A, Vuduc R (2009) Direct
N-body Kernels for Multicore Platforms, Int. Conf.
on Parallel Processing (ICPP), pp. 379-387

[5] Knight TJ, Park JY, Ren M, Houston M, Erez
M, Fatahalian K, Aiken A, Dally WJ, Hanrahan P
(2007) Compilation for Explicitly Managed Mem-
ory Hierarchies, 12th ACM SIGPLAN symposium
on Principles and practice of parallel programming,
PPoPP’07, pp. 226-236

[6] De Fabritiis G (2007) Performance of the Cell pro-
cessor for biomolecular simulations, Comput. Phys.
Commun., 176:660-664

[7] Luttmann E, Ensign D, Vaidyanathan V, Houston
M, Rimon N, Øland J, Jayachandran G, Friedrichs
M, Pande V (2009) Accelerating molecular dy-
namic simulation on the cell processor and Playsta-
tion 3, J. Comput. Chem., 30(2):268-274

[8] Swaminarayan S, Kadau K, Germann TC, Fos-
sum GC (2008) 369 Tflop/s molecular dynam-
ics simulations on the Roadrunner general-purpose
heterogeneous supercomputer, SC’08, Int. Conf.
for High Performance Computing, Networking,
Storage and Analysis

[9] Gumerov NA, Duraiswami R (2008) Fast multi-
pole methods on graphics processors, J. Comput.
Phys., 227:8290-8313

14

[10] Yokota R, Bardhan JP, Knepley MG, Barba LA,
Hamada T (2011) Biomolecular electrostatics us-
ing a fast multipole BEM on up to 512 GPUs
and a billion unknowns, Comput. Phys. Commun.,
182(6):1272-1283

[11] Chandramowlishwaran A, Williams S, Oliker L,
Lashuk I, Biros G, Vuduc R (2010) Optimizing and
tuning the fast multipole method for state-of-the-
art multicore architectures, Int. Parallel and Dis-
tributed Processing Symposium (IPDPS)

[12] Hu Q, Gumerov NA, Duraiswami R (2011) Scal-
able fast multipole methods on distributed het-
erogeneous architectures, SC’11, Int. Conf. for
High Performance Computing, Networking, Stor-
age, and Analysis

[13] Hu Q, Gumerov NA, Duraiswami R (2012) Scal-
able Distributed Fast Multipole Methods, 14th Int.
Conf. on High Performance Computing and Com-
munications (HPCC’12)

[14] Rahimian A, Lashuk I, Veerapaneni S, Chan-
dramowlishwaran A, Malhotra D, Moon L, Sam-
path R, Shringarpure A, Vetter J, Vuduc R, Zorin
D, Biros G (2010) Petascale Direct Numerical Sim-
ulation of Blood Flow on 200K Cores and Hetero-
geneous Architectures, SC’10, Int. Conf. for High
Performance Computing, Networking, Storage and
Analysis

[15] Yokota R, Barba L (2012) Hierarchical N-body
Simulations with Autotuning for Heterogeneous
Systems, Comput. Sci. Eng., 14(3):30-39

[16] Coulaud O, Fortin P, Roman J (2008) High per-
formance BLAS formulation of the multipole-to-
local operator in the Fast Multipole Method, J.
Comput. Phys., 227(3):1836-1862

[17] Coulaud O, Fortin P, Roman J (2010) High-
performance BLAS formulation of the adaptive
Fast Multipole Method, Math. Comput. Modelling,
51(3-4):177-188

[18] Takahashi T, Cecka C, Fong W, Darve E (2012)
Optimizing the multipole-to-local operator in the
fast multipole method for graphical processing
units, Int. J. Numer. Meth. Eng., 89(1):105-133

[19] Nyland L, Harris M, Prins J (2007) Fast N-Body
Simulation with CUDA, GPU Gems 3, pp. 677-695

[20] Fortin P, Lamotte JL (2009) Fast Multipole
Method on the Cell Broadband Engine: the Near
Field Part, Selected Papers from the int. Parallel
Computing Conf. (ParCo’2009), 19:323-330

[21] IBM (2008a) Basic Linear Algebra Subprograms
Library Programmer’s Guide and API Reference,
Software Development Kit for Multicore Accelera-
tion Version 3.1

[22] Bourgerie Q, Fortin P, Lamotte JL (2010) Effi-
cient Complex Matrix Multiplication on the Syn-
ergistic Processing Element of the Cell Processor,
Int. Conf. on Cluster Computing, Workshop on
Parallel Programming and Applications on Accel-
erator Clusters (PPAAC’10)

[23] Coulaud O, Fortin P, Roman J (2007) Hybrid
MPI-thread parallelization of the Fast Multipole
Method, 6th Int. Symposium on Parallel and Dis-
tributed Computing (ISPDC), pp. 391-398

[24] Nabors K, Korsmeyer FT, Leighton FT,
White J (1994) Preconditioned, Adaptive,
Multipole-Accelerated Iterative Methods for
Three-Dimensional First-Kind Integral Equations
of Potential Theory, SIAM J. Sci. Comput.,
15(3):713-735

[25] Arevalo A, Matinata RM, Pandian M, Peri E,
Ruby K, Thomas F, Almond C (2008) Program-
ming the Cell Broadband Engine Architecture, Ex-
amples and Best Practices, IBM Redbook SG24-
7575

[26] IBM (2008b) Cell Broadband Engine Program-
ming Handbook, Including the PowerXCell 8i Pro-
cessor, Version 1.11

[27] Kurzak J, Dongarra J (2007) Implementation of
mixed precision in solving systems of linear equa-
tions on the Cell processor, Concurr. Comput.:
Pract. Exper., 19(10):1371-1385

[28] Williams SW, Shalf J, Oliker L, Husbands P,
Yelick K (2005) Dense and Sparse Matrix Oper-
ations on the Cell Processor. Lawrence Berkeley
National Laboratory: LBNL Paper LBNL-58253

[29] Kurzak J, Alvaro W, Dongarra J (2009) Opti-
mizing Matrix Multiplication for a Short-Vector
SIMD Architecture - CELL Processor, Parallel
Comput., 35(3):138-150

15

[30] Kurzak J, Buttari A, Dongarra J (2008) Solving
Systems of Linear Equations on the CELL Proces-
sor Using Cholesky Factorization, IEEE T. Parall.
Distr., 19(9):1175-1186

[31] Kistler M, Gunnels J, Brokenshire D, Benton
B (2009b) Petascale computing with accelerators,
14th ACM SIGPLAN symposium on Principles
and practice of parallel programming, PPoPP’09,
pp. 241-250

[32] Kistler M, Gunnels J, Brokenshire, D, Benton, B
(2009a) Programming the Linpack benchmark for
the IBM PowerXCell 8i processor, Scientific Pro-
gramming, 17(1-2):43-57

[33] Hamada T, Narumi T, Yokota R, Yasuoka K,
Nitadori K, Taiji M (2009) 42 TFlops hierarchi-
cal N-body simulations on GPUs with applications
in both astrophysics and turbulence, SC’09, Int.
Conf. for High Performance Computing, Network-
ing, Storage, and Analysis, pp. 62:1-62:12

[34] Augonnet C, Thibault S, Namyst R, Wacrenier
PA (2011) StarPU: a unified platform for task
scheduling on heterogeneous multicore architec-
tures, Concurr. Comput.: Pract. Exper., 23(2):87-
198

16

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

D
ow

nw
ar

d+
di

re
ct

 (
lo

g)
 ti

m
e

(s
ec

on
ds

)

Q8200 SP BLAS
Q8200 DP BLAS
X5650 SP BLAS
X5650 DP BLAS

Q8200 SP Rotations
Q8200 DP Rotations
X5650 SP Rotations
X5650 DP Rotations

PowerXCell 8i SP
PowerXCell 8i DP

L2 error

(a) Uniform, serial

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

D
ow

nw
ar

d+
di

re
ct

 (
lo

g)
 ti

m
e

(s
ec

on
ds

)

L2 error

(b) Uniform, multi-thread

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

D
ow

nw
ar

d+
di

re
ct

 (
lo

g)
 ti

m
e

(s
ec

on
ds

)

L2 error

(c) Cylinder, serial

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

D
ow

nw
ar

d+
di

re
ct

 (
lo

g)
 ti

m
e

(s
ec

on
ds

)

L2 error

(d) Cylinder, multi-thread

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

F
M

M
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

L2 error

(e) Uniform, serial

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001 0.01

F
M

M
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

L2 error

(f) Uniform, multi-thread

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

F
M

M
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

L2 error

(g) Cylinder, serial

 10

 100

 1000

 1e-10 1e-09 1e-08 1e-07 1e-06 1e-05 0.0001 0.001

F
M

M
 (

lo
g)

 ti
m

e
(s

ec
on

ds
)

L2 error

(h) Cylinder, multi-thread

Figure 7: Comparison between one PowerXCell 8i, one low-end Q8200 CPU and one high-end X5650 CPU
for uniform and cylinder distributions of 8Mi particles. We use P = 7 in SP and P ∈ {7, 15, 23} on the
PowerXCell 8i. On CPU we use P ∈ {3, 5, 7} in SP and P ∈ {3, 5, 7, . . . , 21, 23} in DP. Results on the Q8200
in DP for the cylinder distribution and P = 23 with BLAS are not presented here since they imply swapping
on the 8 GB of memory available with the Q8200

17

