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Stochastic linearization method with random
parameters for SDOF nonlinear dynamical systems:

prediction and identification procedures

C. Soize
Structures Department, Office National d’Études et de Recherches Aérospatiales (ONERA),

BP 72, 92322 Chatillon Cedex, France

This paper describes firstly, the calculation of the Power Spectral Density Function (PSDF) for
the stationary response of SDOF nonlinear second-order dynamical systems excited by a white
or a broad-band gaussian noise, and secondly, the identification of a single-degree-of-freedom
(SDOF) nonlinear dynamical second-order dynamical systemdriven by a broad-band or a colored
gaussian noise. The two aspects are based on the use of a stochastic linearization method with
random parameters which is an efficient way of approximatingthe PSDF. The gain obtained by
this method is shown on a SDOF nonlinear dynamical system. Inaddition, it is shown that the
stochastic linearization method with random parameters isan efficient approach for identifying a
SDOF nonlinear dynamical system.

1 INTRODUCTION

Our purpose here is 1)- to calculate the Power Spectral Density Function (PSDF) for the stationary
response of single-degree-of-freedom (SDOF) nonlinear random oscillators subjected to a white or
a broad-band Gaussian noise and 2)- to present an identification procedure of a SDOF nonlinear
second-order dynamical system driven by a broad-band or a Gaussian colored noise.

The statistical linearization method1−7 is quite general in the sense that the PSDF can be calculated
for multidimensional nonlinear dynamical systems. Unfortunately, when strong non-linear effects
exist, this method, while still yielding correct approximations of the root mean-square of responses,
overestimates the peak values of the PSDF and underestimates the spectral bandwidths8−12

There are many methods to determine approximate expressions of the PSDF, but there only a few
general comments about these approximate methods will be given.

The stochastic averaging method, initially developed by Stratonovich13, is an effective approximate
method for predicting stochastic response of SDOF nonlinear dynamical systems subject to broad-
band random excitations. This method has been applied extensively to the field of mechanics14−19.
Recently, Bouc12 proposed another method for constructing an approximationof the PSDF of
weakly damped, strongly nonlinear random oscillators. This method is based on an equivalent
linear system with coefficients depending on the amplitude process of the nonlinear oscillations,
and the amplitude process is derived by the averaging stochastic method.

The Fokker-Planck equation method theoretically allows the construction of the matrix-valued
spectral density function to be obtained for the stationaryresponse of multidimensional second-
order nonlinear random oscillators driven by vector-valued Gaussian white noise20. For such
systems exact expressions for spectra are nonexistent. However, it should be noted that an exact
expression has been obtained9,20 for the matrix-valued spectral density function of multidimensional
linear oscillators subjected to an external vector-valuedGaussian broad-band noise and an additive
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parametric stochastic excitation represented by a matrix-valued Gaussian broad-band noise. Starting
from this kind of approach, Valéry Roy & Spanos11 developed an interesting approximate expression
of PSDF for a SDOF nonlinear dynamical system based on a recursion method.

Within the context of nonlinear dynamical system identification,a general methodology and practical
techniques for analyzing a wide class of nonlinear systems consisting of parallel linear, bilinear and
trilinear systems, have been studied by Bendat21.

For many years, numerous publications have appeared on methods for solving this type of problem,
but it is clear that the greatest difficulty is trying to extend them to multidimensional cases for
prediction and identification problems. Except for the Monte Carlo numerical simulation method22,
which can solve practically any nonlinear stochastic problem, though with a high cost for large
multidimensional nonlinear systems, only the statisticallinearization method is really efficient at
the present time for nonlinear stochastic systems with manydegrees of freedom. Thus the incentive
is great to extend the classical statistical linearizationmethod to improve the prediction of the
matrix-valued spectral density function for those cases where this method fails. In addition and
within this context, the problems related to nonlinear system identification are important.

To improve the linearization method, Crandall23 and Miles8 developed a heuristic approach for
estimating PSDF, based on the concept of an equivalent linear system with random parameters.

This paper deals with a stochastic linearization method with random parameters whose mathematical
aspects were discussed in 19919 and main ideas shortly presented in 199410. The adopted approach
is an alternative method for calculating the PSDF of a SDOF nonlinear dynamical system driven
by a white or a broad-band Gaussian noise. The paper also presents new results within the context
of nonlinear dynamical system identification. It is shown that the stochastic linearization method
with random parameters is an efficient approach for identifying a SDOF nonlinear second-order
dynamical system driven by a broad-band or a colored gaussian noise.

The present developments are limited to the case of SDOF nonlinear dynamical systems. The
extension to multidimensional cases is in progress27.

2 NONLINEAR STOCHASTIC DIFFERENTIAL EQUATION OF THE PROBLE M

Consider the following SDOF nonlinear stochastic second-order dynamical system:

MQ̈(t) + 2ξMω0Q̇(t) + Mω2
0Q(t) + εf(Q(t), Q̇(t)) = g0X(t) , (1)

whereM , ξ, ω0 andg0 are greater than zero,ε ≥ 0, (q, q̇) 7→ f(q, q̇) is a real-valued function onR× R. The stochastic processX is either a real-valued second-order stationary Gaussian process
indexed byR, centered, mean-square continuous and having a power spectral density function
ω 7→ SX(ω) (which is then integrable onR), or a normalized Gaussian white noise with power
spectral density functionSX(ω) = 1/2π for all realω. In the last case,X is denoted byẆ . It is
assumed that the functionf verifies the necessary conditions for Eq. (1) to have a uniquestationary
solution denoted asQ, which is a centered second-order stochastic process onR. Let ω 7→ SQ(ω)
be its PSDF. Finally, one denotes asMµ,ν the moments defined byMµ,ν = E(Q(t)µQ̇(t)ν) =

∫R ∫R qµq̇νpQ(t),Q̇(t)(q, q̇) dq dq̇ , (2)

wherepQ(t),Q̇(t)(q, q̇) dq dq̇ is the probability law of the random variable(Q(t), Q̇(t)) onR2 for all
fixed t. Therefore, one hasM1,0 = M0,1 = M1,1 = 0 andM2,0 < +∞, M0,2 < +∞.
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3 LINEAR STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM PARA METERS
FOR CONSTRUCTING AN EQUIVALENT SYSTEM

The linear stochastic differential equation with random parameters that will be used to approximate
Eq. (1) is written

MŸ (t) + 2ξMω0(1 + εΘ)Ẏ (t) + Mω2
0(1 + εΛ)Y (t) = g0X(t) , (3)

whereM , ξ, ω0, g0, ε andX are the previously defined quantities. TheR2-vector (Θ, Λ) is a
random variable, independent of the processX , and its probability lawPΘ,Λ(dθ, dλ) onR2 verifies
the following property concerning its support :

SuppPΘ,Λ ⊂ [θ0, +∞[×[λ0, +∞[ , (4)

whereθ0 andλ0 are any real constants verifying1 + εθ0 > 0 and1 + ελ0 > 0. In addition, one
assumes that probability lawPΘ,Λ(dθ, dλ) verifies the inequalities

∫R ∫R PΘ,Λ(dθ, dλ)

(1 + εθ)(1 + ελ)
< +∞ ,

∫R ∫R PΘ,Λ(dθ, dλ)

(1 + εθ)
< +∞ . (5)

Let us note that this model allows us to writePΘ,Λ(dθ, dλ) = δ0 ⊗ PΛ(dλ) or PΘ,Λ(dθ, dλ) =
PΘ(dθ)⊗ δ0, whereδ0 is the Dirac measure at the origin ofR. Consequently, one can use a model
with only one random parameter (stiffness or damping), or with two random parameters (stiffness
and damping). With the hypotheses defined by Eqs. (4) and (5),it can be proved9 that Eq. (3) has a
second-order stationary solutionY . For allt fixed inR, theR2-valued random variable(Y (t), Ẏ (t))
has a non gaussian probability density functionpY (t),Ẏ (t)(y, ẏ)) which is explicitly known9, and
the PSDF of processY can be written as

SY (ω) =
4ξC0

ω0
SX(ω)

∫R ∫R PΘ,Λ(dθ, dλ)

{(1+ελ−( ω
ω0

)2)2 + 4ξ2( ω
ω0

)2(1+εθ)2} , (6)

in which
C0 = g2

0/(4ξM2ω3
0) . (7)

3.1 Expressions for the moments of a Gaussian colored excitation

Let Mµ,ν be the moments defined by

Mµ,ν = E(Y (t)µẎ (t)ν) =

∫R ∫R yµẏνpY (t),Ẏ (t)(y, ẏ) dy dẏ . (8)

SinceY is a centered stationary process, one has

M1,0 = E{Y (t)} = 0 , M0,1 = E{Ẏ (t)} = 0 , M1,1 = E{Y (t)Ẏ (t)} = 0 . (9)

MomentsM2,0 = E{Y (t)2} andM0,2 = E{Ẏ (t)2} are given by the formulas

M2,0 =

∫R SY (ω) dω , M0,2 =

∫R ω2 SY (ω) dω , (10)

in whichSY (ω) is defined by Eq. (6).
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3.2 Expression for the moments of a Gaussian white excitation

In this case, for all realω one hasSX(ω) = 1/2π and Eqs. (5), (6) and (10) yield9

M2,0 = E{Y (t)2} = C0

∫R ∫R PΘ,Λ(dθ, dλ)

(1 + εθ)(1 + ελ)
< +∞ , (11)

M0,2 = E(Ẏ (t)2) = ω2
0C0

∫R PΘ(dθ)

1 + εθ
< +∞ . (12)

4 PREDICTION OF THE PSDF USING A STOCHASTIC LINEARIZATION ME THOD
WITH RANDOM PARAMETERS

In this section, the nonlinear system being driven by a Gaussian white noise, one hasX = Ẇ and
thenSX(ω) = 1/2π for all ω in R. The stochastic linearization method with random parameters
consists in constructing the probability measurePΘ,Λ(dθ, dλ) in such a way as to minimize the
distance between the stationary stochastic processesQ and Y verifying Eq. (1) and Eq. (3)
respectively. There are several possible choices for this distance.
- Firstly, it can easily be verified9 that processesQ and Y cannot in general be stochastically
equivalent in the wide sense, i.e. no probability measurePΘ,Λ exists such that processesQ andY
have identical systems of marginal probability laws.
- Secondly, it can be proved9 that, if equalityPY (t),Ẏ (t) = PQ(t),Q̇(t) of marginal probability laws
is used, then the probability measurePΘ,Λ must be a solution of the following integral equation onR2 : ∫R ∫R pYθ,λ(t),Ẏθ,λ(t)(q, q̇|θ, λ)PΘ,Λ(dθ, dλ) = pQ(t),Q̇(t)(q, q̇) , (13)

where conditional probability density functionpYθ,λ(t),Ẏθ,λ(t)(q, q̇|θ, λ) is an explicitly known

Gaussian probability density function9. Existence of a solution verifying Eqs. (4), (5) and (13) is a
problem which is still open.
- Thirdly, the equality of a finite number of moments can be written9 and consequently, a finite
number of integral equations defined by these equalities must be solved. This problem is close to
the second one and is related to the representation ofPΘ,Λ as it is developed by Soize9.
- Finally, as the aim of the prediction is to construct the PSDF of the stationary response, it is quite
natural to determinePΘ,Λ by writing the equality of the second-order momentsM2,0 = M2,0 , M0,2 = M0,2 , (14)

and obviously, the normalization condition. So, one obtains the following formulation9,10.

4.1 Problem to be solved

From Eq. (14), we deduce that probability measurePΘ,Λ(dθ, dλ) onR2, having to verify condition
(4), is a solution of the following integral equations

∫R ∫R PΘ,Λ(dθ, dλ)

(1 + εθ)(1 + ελ)
= S2,0 ,

∫R ∫R PΘ,Λ(dθ, dλ)

(1 + εθ)
= S0,2 , (15)

whereS2,0 andS0,2 are the positive constants defined by

S2,0 =
M2,0

C0
, S0,2 =

M0,2

ω2
0C0

. (16)

A priori, the solution of this problem is not unique. Consequently, one can define a subset of
probability laws such that there exists a unique solutionPΘ,Λ(dθ, dλ) of Eq. (15) in this subset.
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4.2 Definition of a subsetP of probability laws on R
One defines the subsetP of probability lawsPX(dx) = pX(x) dx onR, having parametersx0 ∈ R,
α > 0 andβ > 0 and such that for allx ∈ R

pX(x) = α(1 + εx)WX(x) , (17)

WX(x) = 1[x0,+∞[(x)(x − x0)e
−β(x−x0)2 . (18)

This first-order finite expansion (17) in orthogonal polynomials with respect to the weightWX ,
implies thatx 7→ pX(x) is a continuous function defined onR with support[x0, +∞[ and with all
the mth-order moments finite. The following results can be proved9 for the three types of modeling
corresponding to the cases where the nonlinear dynamical system has a nonlinear stiffness, a
nonlinear damping or a nonlinear stiffness and damping.

4.3 Approximation of the PSDF for a SDOF nonlinear dynamicalsystem driven by a Gaussian
white noise

Case 1: Nonlinear stiffness. If S0,2 = 1, i.e. ifM0,2 = ω2
0C0, then one can writePΘ,Λ(dθ, dλ) =

δ0 ⊗ PΛ(dλ) and choosePΛ(dλ) in P with parametersλ0 > −1/ε, αΛ > 0 , βΛ > 0 :

PΛ(dλ) = αΛ(1 + ελ)1[λ0,+∞[(λ) (λ − λ0) e−βΛ(λ−λ0)2 dλ . (19)

For allS2,0 > 0, if λ0 is chosen such that0 < 1 + ελ0 < S−1
2,0 , then the problem defined in Section

4.1 has a unique solution9 which is given by Eq. (19) with

βΛ =
πε2

4

( S2,0

S0,2 − S2,0(1 + ελ0)

)2

, αΛ = 2βΛ
S2,0

S0,2
, (20)

in whichS0,2 = 1. SinceSX(ω) = 1/2π for all realω, approximationSY (ω) given by Eq. (6) of
PSDFSQ(ω) can be written as

SY (ω) =
4ξC0

πω0
S2,0

∫ +∞

0

x (1+ελ0+Ax) e−x2

dx

{(1+ελ0+Ax−( ω
ω0

)2)2 + 4ξ2( ω
ω0

)2} , (21)

in whichA = 2π−1/2(S−1
2,0 − (1 + ελ1)) > 0. It should be noted that:

(i)- If S2,0 < 1, then one can chooseλ0 = 0.
(ii)- If S2,0 = 1, i.e. if ε = 0, thenλ0 = A = 0.
(iii)- If S2,0 > 1, then it is necessary to chooseλ0 < 0 such that0 < 1 + ελ0 < S−1

2,0 . In fact, the
lower boundλ0 = −1/ε can also be used.

Case 2: Nonlinear damping. If S0,2 = S2,0, i.e. if M0,2 = ω2
0M2,0, then one can write

PΘ,Λ(dθ, dλ) = PΘ(dθ) ⊗ δ0 and choosePΘ(dθ) in P with parametersθ0 > −1/ε, αΘ > 0,
βΘ > 0 :

PΘ(dθ) = αΘ(1 + εθ)1[θ0,+∞[(θ) (θ − θ0) e−βΘ(θ−θ0)2 dθ . (22)

For allS0,2 > 0, if θ0 is chosen such that0 < 1 + εθ0 < S−1
0,2 , then the problem defined in Section

4.1 has a unique solution9 which is given by Eq. (22), with

βΘ =
πε2

4

( S0,2

1 − S0,2(1 + εθ0)

)2

, αΘ = 2βΘS0,2 . (23)
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SinceSX(ω) = 1/2π for all realω, the approximationSY (ω) given by Eq. (6) of the PSDFSQ(ω)
can be written as

SY (ω) =
4ξC0

πω0
S0,2

∫ +∞

0

y (1+εθ0+By) e−y2

dy

{(1−( ω
ω0

)2)2 + 4ξ2( ω
ω0

)2(1+εθ0+By)2} , (24)

in whichB = 2π−1/2(S−1
0,2 − (1 + εθ0)) > 0. It should be noted that:

(i)- If S2,0 = S0,2 < 1, then one can chooseθ0 = 0.
(ii)- If S2,0 = S0,2 = 1, i.e. if ε = 0, thenθ0 = B = 0.
(iii)- If S2,0 = S0,2 > 1, then it is necessary to chooseθ0 < 0 such that0 < 1 + εθ0 < S−1

0,2 . As in
case 1, the lower boundθ0 = −1/ε can also be used.

Case 3: Nonlinear stiffness and damping. If the hypotheses of cases 1 and 2 do not hold,
one considersΘ andΛ as independent random variables. Therefore, one writesPΘ,Λ(dθ, dλ) =
PΘ(dθ) ⊗ PΛ(dλ), with PΛ(dλ) given by Eq. (19) andPΘ(dθ) by Eq. (22). For allS0,2 > 0 and
S2,0 > 0 such thatS0,2 6= S2,0 andS0,2 6= 1, if λ0 is chosen such that0 < 1 + ελ0 < S0,2S−1

2,0

andθ0 as in case 2, then the problem defined in Section 4.1 has a unique solution given by Eqs.
(19) and (22) withβΛ andαΛ given by Eq. (20), andαΘ andβΘ by Eq. (23). The approximation
SY (ω) given by Eq. (6) of the PSDFSQ(ω) can then written as

SY (ω) =
8ξC0S2,0

πω0

∫ +∞

0

∫ +∞

0

(1+ελ0+Ax)(1+εθ0+By)xye−x2
−y2

dxdy

{(1+ελ0+Ax−( ω
ω0

)2)2+4ξ2( ω
ω0

)2(1+εθ0+By)2} (25)

with B as in case 2 andA = 2π−1/2(S0,2S−1
2,0 − (1 + ελ0)). It should be noted that:

(i)- If S2,0/S0,2 < 1 andS0,2 < 1, then one can chooseλ0 = θ0 = 0.
(ii)- If S2,0 = S0,2 = 1, i.e. if ε = 0, thenλ0 = θ0 = A = B = 0.
(iii)- If S2,0/S0,2 > 1 andS0,2 > 1 , then it is necessary to chooseλ0 < 0 such that0 < 1+ ελ0 <
S0,2S−1

2,0 andθ0 as in case 2. As in cases 1 and 2, the lower boundsλ0 = −1/ε θ0 = −1/ε can
also be used.

4.4 Application: prediction of the PSDF of the stationary response of a Duffing oscillator
driven by a Gaussian white noise

We consider the Duffing oscillator defined by Eq. (1) withf(q, q̇) = Mω2
0q

3, X = Ẇ , M = 1,
ω0 = 2π×100, g0 having the values2, 6 or 12. Two cases are studied:
Case 1: ξ = 0.025 andε = 344 514.18
Case 2: ξ = 0.0025 andε = 34 451.418.
For these two cases, the choice of the value ofε is such thatεC0 = 1/18, 0.5 and 2 forg0 = 2, 6
and 12 respectively.
We know5,20 that

S2,0 = γεU(1, γε)/U(0, γε) < 1 , S0,2 = 1 , (26)

in whichγε = (2εC0)
−1/2 and whereU(a, x) is the parabolic cylinder function defined by

U(a, x) =
e−

1

4
x2

Γ(a + 1
2
)

∫ +∞

0

e−xR− 1

2
R2

Ra− 1

2 dR , (27)
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whereΓ(z) is the Euler function. For cases 1 and 2, Eq. (26) yieldsS2,0 = 0.87942, 0.57920
and0.36596 for g0 = 2, 6 and12 respectively. Figures 1 to 4 give the normalized levels in dB:
10 log10(S(ω)/S0) with S0 = g2

0/(2π), of the PSDFS(ω) as a function of frequency expressed in
hertz in the band 0 Hz - 350 Hz. For cases 1 and 2, figures 1 and 2 compare the PSDFS(ω) = SQ(ω)
(calculated by Monte Carlo numerical simulation of Eq. (1)), with the PSDFS(ω) = SQ,lin(ω)
calculated by the statistical linearization method using the explicit invariant measure of the nonlinear
system5,20. One then has

SQ,lin(ω) = C0
2ξ

πω0

1

{(Ω2
e − ( ω

ω0
)2)2 + 4ξ2( ω

ω0
)2} , (28)

in whichΩ2
e = 1 + ελe andλe = 3C0γε

U(2,γε)
U(0,γε) .

It can be seen in Fig.1-a that the the statistical linearization method yields correct predictions for
small-amplitude responses (small amplitude of the excitation g0 = 2 and a not-too-small damping
ξ = 0.025), but poor predictions when the amplitude of the responses increase, as shown in Figs.1-c
and 2-c. For the same cases 1 and 2, figures 3 and 4 compare the PSDF S(ω) = SQ(ω) calculated
by Monte Carlo numerical simulation of Eq. (1), with the PSDFS(ω) = SY (ω) calculated by the
stochastic linearization method with random parameters, i.e. by Eq. (21) withλ0 = 0. It can be
seen that correct predictions are obtained for small and large amplitude responses.

5 IDENTIFICATION PROCEDURE BASED ON THE STOCHASTIC LINEARI ZATION
METHOD WITH RANDOM PARAMETERS

5.1 Definition of the identification problem

In this section, the identification problem under consideration is defined. One considers a SDOF
nonlinear stochastic second-order dynamical system, described by an unknown equation of type (1).
This means that there is a unique centered stationary response. The excitationg0X of this system is
a physically realizable stochastic process which is a real-valued second-order stationary Gaussian
process, centered and having a power spectral density function ω 7→ g2

0SX(ω) which is known. An
experiment is realized. The nonlinear system is subjected to the known stochastic inputg0X and
trajectories of the stationary stochastic outputQ are measured. Using the usual signal theory and
signal processing, estimates can be constructed of the power spectral density functionω 7→ SQ(ω)

and momentsM2,0 = E{Q(t)2},M0,2 = E{Q̇(t)2} of the stationary responseQ. These quantities
are such that M2,0 =

∫R SQ(ω) dω , M0,2 =

∫R ω2 SQ(ω) dω . (29)

The identification problem is then defined as the following. One wishes to construct a linear
stochastic differential equation with random parameters looking like Eq. (3) in order to minimize
the "distance" between the measured power spectral densityfunction SQ and the power spectral
density functionSY given by the model. Therefore, the identification procedureconcerns the
calculation of the unknown constant coefficients such asM , ξ, ω0 and the probability measure of
the random parameters. It is clear that the identification procedure requires that the "distance" be
mathematically defined (see below).

In order to simplify the presentation, one will limit the developments to the case where the unknown
nonlinear physical system has a linear damping and a nonlinear stiffness. Therefore, the model
which can be identified is the linear stochastic equation with random parameters:

MŸ (t) + CẎ (t) + K(1 + Λ)Y (t) = g0X(t) , (30)
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whereM , C =2ξMω0, K =Mω2
0 are unknown real positive coefficients and where the probability

law PΛ(dλ) of the real-valued random variableΛ belongs toP (defined in Section 4.2). From Eqs.
(3), (6) and (30), we deduce that the power spectral density functionSY of the stationary solution
Y of Eq. (30) can be written as

SY (ω) =
4ξC0

ω0
SX(ω)

∫R PΛ(dλ)

{(1+ελ−( ω
ω0

)2)2 + 4ξ2( ω
ω0

)2} , (31)

in whichω0 =(K/M)1/2, ξ=C/(2Mω0), C0 is given by Eq. (7), wherePΛ(dλ) is defined by Eq.
(19) with ε = 1 and the parametersλ0, αΛ, βΛ are such that (see Section 4.3, case 1):λ0 > −1,
αΛ > 0 andβΛ > 0. Consequently, one has

PΛ(dλ) = αΛ(1 + λ)1[λ0,+∞[(λ) (λ − λ0) e−βΛ(λ−λ0)
2

dλ . (32)

Normalization condition ∫R PΛ(dλ) = 1 (33)

implies a relation betweenαΛ, βΛ andλ0 which can be written as

αΛ = h(βΛ, λ0) =
4βΛ

√
βΛ√

π + 2
√

βΛ(1 + λ0)
. (34)

Substituting Eq. (34) into the right-hand side of Eq. (32) yields

PΛ(dλ | βΛ, λ0) = h(βΛ, λ0) (1 + λ)1[λ0,+∞[(λ) (λ − λ0) e−βΛ(λ−λ0)2 dλ . (35)

From Eqs. (31) and (35), it can be seen thatSY depends only on parametersβΛ andλ0. Conse-
quently, Eq. (31) can be rewritten as

SY (ω | βΛ, λ0) =
4ξC0

ω0
SX(ω)

∫R PΛ(dλ | βΛ, λ0)

{(1+ελ−( ω
ω0

)2)2 + 4ξ2( ω
ω0

)2} , (36)

in whichPΛ(dλ | βΛ, λ0) is given by Eq. (35).

5.2 Identification procedure

The identification procedure is based on a "true" stochasticlinearization method with random
parameters and has two main steps.
(i)- The first step allows constant coefficientsM , C andK in Eq. (30) to be identified using the
concept of "true" stochastic linearization method (see below).
(ii)- In the second step, parametersβΛ andλ0 of the probability lawPΛ(dλ | βΛ, λ0) are identified
in order to minimize the "distance" between the PSDFSQ, which is measured, and the PSDFSY

given by the model defined by Eq. (30). This method will be called a "true" stochastic linearization
method with random parameters.

Step 1: Identification of constant coefficients using a "true" stochastic linearization method
Since the stochastic linearization method is an efficient method for predicting the second-order
moments of the stationary response, it is quite natural to use it within the context of an identification

Proba. Eng. Mech. 8 Christian Soize



problem in order to identify the constant coefficientsM , C andK. The "true" stochastic lineariza-
tion method starts from the recent works of Kozin24 and has been developed by Fillatre25,26. In
this work25,26,Kozin’s results have been extended to the case of the identification of multidimen-
sional nonlinear second-order dynamical systems whose mass, damping and stiffness matrices are
unknown and excitations are colored noises. In this extension, a second minimization criterion,
as well as an iterative algorithm for readjusting the second-order moments, has been introduced in
order to improve the proximity of the mass matrices of the linearized and nonlinear systems. In this
method, a first minimization problem is defined as

d2(M, C, K) = min
(M̂,Ĉ,K̂)∈E

d2(M̂, Ĉ, K̂) , (37)

in which the minimization is performed in an appropriate subsetE such that the identified linearized
system be asymptotically stable and whered2 is the square of the distance such that

d2(M̂, Ĉ, K̂) = E
{
‖g0X(t) − (M̂ Q̈(t) + Ĉ Q̇(t) + K̂ Q(t))‖2

}
. (38)

This method is called a "true" stochastic linearization because it refers to the fact that the mathe-
matical expectation that enters into the right-hand side ofEq. (38) is calculated from the true joint
probability law of the random variablesQ(t), Q̇(t), Q̈(t), g0X(t) for all fixedt inR,and is contrasted
to Gaussian stochastic linearization. Within the context of the identification procedure, it should be
noted that this "true" stochastic linearization is achieved using the signal processing based on the
measured trajectories of the input and ouput stochatic processes of the nonlinear systems24,25,26

(see the beginning of this section). This means that, sinceQ, Q̇, Q̈ andg0X are the output and input
stationary stochastic processes of the nonlinear dynamical system (output and input are measured),
the mathematical expectation in Eq. (38) is estimated without introducing any approximation or
additional hypotheses on the joint probability law of random variablesQ(t), Q̇(t), Q̈(t), g0X(t) .
Herein, this method which is adapted to the multidimensional identification problem, is applied to
the SDOF nonlinear system in order to indentify coefficientsM , C andK. It should be noted that,
if the identification was stopped at this step 1, then one would obtain an identified model which
would give correct prediction for the second-order moments(see Section 4.4), but which would give
bad predictions for the power spectral density function in some cases (as it is explained in Section
4.4). This is the reason why a second step is included to improve the identification procedure.

Step 2: Final identification step using a "true" stochastic linearization method with random
parameters. In this step, coefficientsM , C andK in the right-hand side of Eq. (30) are known
(identified in step 1). Now, the problem is to identify parametersβΛ andλ0 appearing in Eq. (36).
Let D be the subset ofR2 such thatD = [0 , +∞[×] − 1 , +∞[. Let D2(β̂Λ, λ̂0) be the square of
the distance such that

D2(β̂Λ, λ̂0) =

∫R |SY (ω | β̂Λ, λ̂0) − SQ(ω)|2 dω , (39)

whereSQ is the estimated PSDF (from the measurements) andSY is given by Eq. (36). One then
looks into a problem of finding(βΛ, λ0) ∈ D fulfilling the minimum ofD2(β̂Λ, λ̂0), i.e.

D2(βΛ, λ0) = min
(β̂Λ ,̂λ0)∈D

D2(β̂Λ, λ̂0) . (40)

The constrained optimization problem defined by Eq. (40) is solved using a global minimization
algorithm with constraints, based on the used of an iterative method in which an optimization
problem of a convex function is solved at each iteration27 .
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5.3 Application: identification of a SDOF nonlinear dynamical system driven by a Gaussian
colored noise

In this example, the "experimental data basis" is generatedby a Monte Carlo numerical simulation
of the Duffing oscillator

MQ̈(t) + 2ξMω0Q̇(t) + Mω2
0Q(t) + εMω2

0 Q(t)3 = g0X(t) . (41)

Four "experiments" are constructed by numerical simulation:
Case 1: M =1, ω0 =2π×100, ξ=0.025, ε=344 514.18, C =2ξMω0 =31.41, g0 =2 or 6.
Case 2: M = 1, ω0 = 2π×100, ξ = 0.0025, ε = 34 451.418, C = 2ξMω0 = 3.14, g0 = 2 or 6.
For these four cases, X is a real-valued second-order stationary Gaussian process indexed byR,
centered, having a power spectral density function such that for all ω in R,

SX(ω) =
1

2π
1[−2π×150 ,−2π×50](ω) ∪ 1[2π×50 ,2π×150](ω) , (42)

in which 1B(ω) = 1 if ω ∈ B and= 0 if ω 6∈ B. Stochastic process X is simulated using a
bandpass Butterworth linear filter of order 6, whose lower and upper cutoff frequencies are50 Hz
and150 Hz respectively.
Step 1 and step 2 of the identification procedure yields:
Case 1 :M =1; C =31.41; K =449962 and645336, βΛ =81.79 and6.02, λ0 =−0.106 and−0.344
for g0 =2 and6, respectively.
Case 2 :M =1; C =3.14; K =452467 and647548, βΛ =51.13 and5.25, λ0 =−0.134 and−0.346
for g0 =2 and6, respectively.
Figures 5 and 6 give the normalized levels in dB :10 log10(S(ω)/S0) with S0 = g2

0/(2π), of the
PSDFS(ω) as a function of frequency expressed in hertz. For cases 1 and2, these figures compare
the "experimental" PSDFS(ω) = SQ(ω) (Monte Carlo numerical simulation of Eq. (41)), with
the PSDFS(ω) = SY (ω) calculated with the identification method. It can be seen that a correct
identification is obtained for small and large amplitude responses.

6 CONCLUSIONS

We have presented a stochastic linearization method with random parameters which allows us to
calculate an approximation of the power spectral density functions of stationary responses of SDOF
nonlinear second-order dynamical systems.
One has seen that this method yields accurate predictions ofthe power spectral density function
for the stationary reponse of the stochastic Duffing oscillator driven by a Gaussian white noise,
whereas the power spectral density function is not correctly predicted in any of the cases by the
usual statistical linearization method.
This stochastic linearization method with random parameters has also been used to develop an
identification procedure of SDOF nonlinear second-order dynamical systems driven by Gaussian
colored noises. The results obtained for the identificationof a Duffing oscillator are good enough.
Presently, the prediction and identification procedures have been developed only for SDOF nonlinear
second-order dynamical systems. The extension of the proposed identification method to the
multidimensional cases is possible and is is in progress.
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de doctorat de Math́ematiques de l’Université Pierre et Marie Curie, Paris, Septembre 1995.

Proba. Eng. Mech. 12 Christian Soize



dB

Hertz                                                       

  Fig. 1-a : g0 = 2.00                                                                                                                                                                                  

                                                                                                                                                                                                                                                              
 

dB

Hertz                                                       

  Fig. 1-b : g0 = 6.00                                                                                                                                                                                  

                                                                                                                                                                                                                                                              
 

dB

Hertz                                                       

  Fig. 1-c : g0 = 12.00                                                                                                                                                                                 

                                                                                                                                                                                                                                                              
 

dB

Hertz                                                       

  Fig. 2-a : g0 = 2.00                                                                                                                                                                                  

                                                                                                                                                                                                                                                              
 

dB

Hertz                                                       

  Fig. 2-b : g0 = 6.00                                                                                                                                                                                  

                                                                                                                                                                                                                                                              
 

dB

Hertz                                                       

  Fig. 2-c : g0 = 12.00                                                                                                                                                                                 

                                                                                                                                                                                                                                                              
 

Fig.1 : CASE 1                      

numerical simulation

- - - -   Classical SLM 
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Fig. 5_b : g0 = 6.00
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Fig. 6_a : g0 = 2.00
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Fig. 6_b : g0 = 6.00
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