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Stochastic linearization method with random
parameters for SDOF nonlinear dynamical systems:

prediction and identification procedures

C. Soize
Structures Department, Office NationaHdiides et de RechercheérBspatiales (ONERA),
BP 72, 92322 Chatillon Cedex, France

This paper describes firstly, the calculation of the Powerc8pl Density Function (PSDF) for
the stationary response of SDOF nonlinear second-ordeaindigal systems excited by a white
or a broad-band gaussian noise, and secondly, the idetdtficaf a single-degree-of-freedom
(SDOF) nonlinear dynamical second-order dynamical systewen by a broad-band or a colored
gaussian noise. The two aspects are based on the use of asdiodimearization method with
random parameters which is an efficient way of approximatinmeggPSDF. The gain obtained by
this method is shown on a SDOF nonlinear dynamical systenmaddition, it is shown that the
stochastic linearization method with random parameteasisfficient approach for identifying a
SDOF nonlinear dynamical system.

1 INTRODUCTION

Our purpose here is 1)- to calculate the Power Spectral Befasnction (PSDF) for the stationary
response of single-degree-of-freedom (SDOF) nonlingatam oscillators subjected to a white or
a broad-band Gaussian noise and 2)- to present an idenmdifigatocedure of a SDOF nonlinear
second-order dynamical system driven by a broad-band ouastan colored noise.

The statistical linearization methbd is quite general in the sense that the PSDF can be calculated
for multidimensional nonlinear dynamical systems. Uniodtely, when strong non-linear effects
exist, this method, while still yielding correct approxitizas of the root mean-square of responses,
overestimates the peak values of the PSDF and underessithatepectral bandwidtfis'?

There are many methods to determine approximate exprassiadhe PSDF, but there only a few
general comments about these approximate methods wilMea gi

The stochastic averaging method, initially developed bgtBhovich?, is an effective approximate
method for predicting stochastic response of SDOF nonlidgaamical systems subject to broad-
band random excitations. This method has been appliedsixédpnto the field of mechaniés19.
Recently, Bou&® proposed another method for constructing an approximaifoime PSDF of
weakly damped, strongly nonlinear random oscillators. sThethod is based on an equivalent
linear system with coefficients depending on the amplitudegss of the nonlinear oscillations,
and the amplitude process is derived by the averaging sttichmethod.

The Fokker-Planck equation method theoretically allowes ¢bnstruction of the matrix-valued
spectral density function to be obtained for the statiomasponse of multidimensional second-
order nonlinear random oscillators driven by vector-vel@aussian white nois¢& For such
systems exact expressions for spectra are nonexistentewowt should be noted that an exact
expression has been obtaifiéfifor the matrix-valued spectral density function of multidinsional
linear oscillators subjected to an external vector-val@adssian broad-band noise and an additive
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parametric stochastic excitation represented by a maalixed Gaussian broad-band noise. Starting
from this kind of approach, Valy Roy & Spano$' developed an interesting approximate expression
of PSDF for a SDOF nonlinear dynamical system based on asiecumethod.

Within the context of nonlinear dynamical system identifma, a general methodology and practical
techniques for analyzing a wide class of nonlinear systemsisting of parallel linear, bilinear and
trilinear systems, have been studied by Befidat

For many years, numerous publications have appeared omdsibr solving this type of problem,
but it is clear that the greatest difficulty is trying to exdetihem to multidimensional cases for
prediction and identification problems. Except for the Mo@arlo numerical simulation meth#d
which can solve practically any nonlinear stochastic poblthough with a high cost for large
multidimensional nonlinear systems, only the statistiicedarization method is really efficient at
the present time for nonlinear stochastic systems with ndagyees of freedom. Thus the incentive
is great to extend the classical statistical linearizatiwethod to improve the prediction of the
matrix-valued spectral density function for those casesrelthis method fails. In addition and
within this context, the problems related to nonlinear eystdentification are important.

To improve the linearization method, Crandaland Mile$ developed a heuristic approach for
estimating PSDF, based on the concept of an equivalent lgystéem with random parameters.

This paper deals with a stochastic linearization methol r@imdom parameters whose mathematical
aspects were discussed in 19@hd main ideas shortly presented in 1894The adopted approach
is an alternative method for calculating the PSDF of a SDORinear dynamical system driven
by a white or a broad-band Gaussian noise. The paper alserpsasew results within the context
of nonlinear dynamical system identification. It is showattthe stochastic linearization method
with random parameters is an efficient approach for ideinigha SDOF nonlinear second-order
dynamical system driven by a broad-band or a colored gaussiage.

The present developments are limited to the case of SDOFRneamldynamical systems. The
extension to multidimensional cases is in progtéss

2 NONLINEAR STOCHASTIC DIFFERENTIAL EQUATION OF THE PROBLE M

Consider the following SDOF nonlinear stochastic secomt&iodynamical system:

MQ(t) + 26MwoQ(t) + MwiQ(t) + £ f(Q(1), Q1)) = go X (1) (1)

whereM, &, wy andg are greater than zere,> 0, (¢,4) — f(q, ¢) is a real-valued function on
R x R. The stochastic proces$ is either a real-valued second-order stationary Gauss@eps
indexed byR, centered, mean-square continuous and having a powenrapeéensity function

w — Sx(w) (which is then integrable oR), or a normalized Gaussian white noise with power
spectral density functioSx (w) = 1/2 for all realw. In the last caseX is denoted byV'. Itis
assumed that the functigiwverifies the necessary conditions for Eq. (1) to have a urstat®nary
solution denoted ag, which is a centered second-order stochastic proce$s tetw — Sg(w)

be its PSDF. Finally, one denoteslags ,, the moments defined by

Vi = BQUPQO") = [ [ 0P qo(ad) dadi 2)

wherep 4y ¢ (¢: ¢) dg dq is the probability law of the random variab(@(t), Q(t)) onR? for all
fixedt. Therefore, one haﬁLO = MO,l = Ml,l =0 andngo < +00, MQQ < +00.
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3 LINEAR STOCHASTIC DIFFERENTIAL EQUATION WITH RANDOM PARA  METERS
FOR CONSTRUCTING AN EQUIVALENT SYSTEM

The linear stochastic differential equation with randomepaeters that will be used to approximate
Eq. (1) is written

MY (t) 4+ 26 Mwo(1 + O)Y () + Mw2 (1 +eA)Y (t) = go X (t) (3)

where M, &, wo, go, € and X are the previously defined quantities. TR&vector (0, A) is a
random variable, independent of the proc&ssand its probability lawPs A (df, d\) on R? verifies
the following property concerning its support :

SuppPe.a C [0o, +00[x[Ag, 00 (4)

whered, and \y are any real constants verifyirig+ 6y > 0 and1 + €\g > 0. In addition, one
assumes that probability lais 4 (d6, d\) verifies the inequalities

Po A (df,dN) Po A (df,dN)
// 1+e6)(1+eN) // (1+¢0) < foo (5)
Let us note that this model allows us to wrile A(df, d\) = dp @ Pa(dX) or Pg A (df,d\) =
Po(df) ® 09, Whered is the Dirac measure at the origin®f Consequently, one can use a model
with only one random parameter (stiffness or damping), d¢inwiro random parameters (stiffness
and damping). With the hypotheses defined by Eqgs. (4) and (3} be provetithat Eq. (3)hasa
second-order stationary solutidh For allt fixed inR, theR2-valued random variabl@’ (t), Y (t))

has a non gaussian probability density funct;gqt)yy(t)(y 7)) which is explicitly knowr?, and
the PSDF of procesg can be written as

4500 P@ A(d6, dN)
Sv(w) = @ [ /[R{Hex (222 rae2(2 ey O

0

in which
Co = g5/ (4EMPwyp) (7)

3.1 Expressions for the moments of a Gaussian colored exdiian

Let M, , be the moments defined by

My = BE(Y ()Y (¢ //y Uy vy W) dydy (8)
SinceY is a centered stationary process, one has
Miog=E{Y{#t)}=0 , Mo,1=E{Y#®)}=0 , Mi1=E{Y®)YH)}=0 . (9)
MomentsM, o = E{Y (t)?} and M, = E{Y (t)?} are given by the formulas
My = /RSY(W) dw , Moo= /[Rw2 Sy(w)dw (10)

in which Sy (w) is defined by Eq. (6).
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3.2 Expression for the moments of a Gaussian white excitato
In this case, for all reab one hasSx (w) = 1/27 and Egs. (5), (6) and (10) yi€ld

Mao = E{Y (t)?} = 00// ﬁ;edejg) < +4oo (11)
Moo = B(Y(1)?) = w2Co /[R Ji@ﬁ? < +oo . (12)

4 PREDICTION OF THE PSDF USING A STOCHASTIC LINEARIZATION ME THOD
WITH RANDOM PARAMETERS

In this section, the nonlinear system being driven by a Gansghite noise, one ha¥ = W and
thenSx (w) = 1/2x for all w in R. The stochastic linearization method with random pararaete
consists in constructing the probability measits s (d¢, d)\) in such a way as to minimize the
distance between the stationary stochastic procegsard Y verifying Eq. (1) and Eqg. (3)
respectively. There are several possible choices for thiarmte.

- Firstly, it can easily be verifiedthat processe§) andY cannot in general be stochastically
equivalent in the wide sense, i.e. no probability meastyg exists such that process@sand}”
have identical systems of marginal probability laws.

- Secondly, it can be provédhat, if equality P, V() = (t) O(t) of marginal probability laws
is used, then the probability measurg » must i)e a solution of the following integral equation on

R? :
L Prsco50000/@ 0.0 Pos(d8.40) = pg (0 (13)

where conditional probability density function,, ;) y, |+ (q,40, ) is an explicitly known
Gaussian probability density functibnExistence of a solution verifying Egs. (4), (5) and (13) is a
problem which is still open.

- Thirdly, the equality of a finite number of moments can better? and consequently, a finite
number of integral equations defined by these equalities brusolved. This problem is close to
the second one and is related to the representatidi, of as it is developed by Soi2e

- Finally, as the aim of the prediction is to construct the FSiDthe stationary response, it is quite
natural to determin&g by writing the equality of the second-order moments

Moo =Moo , Moo2=Mpa , (14)
and obviously, the normalization condition. So, one olstalie following formulatioftt°.
4.1 Problem to be solved

From Eq. (14), we deduce that probability measbige, (d6, d)\) onR?, having to verify condition
(4), is a solution of the following integral equations

Po A(dB, dN) //P@Aded)\
=S8 15
// 1+e0)(1+eN) 1+4¢0 0,2 (15)
whereS, o andS, » are the positive constants defined by
M2,0 Mo,2
So o= —= = 16
2,0 C() ’ 0,2 W(Z)C() ( )

A priori, the solution of this problem is not unique. Consently, one can define a subset of
probability laws such that there exists a unique soluffern, (d6, d\) of Eqg. (15) in this subset.
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4.2 Definition of a subsetP of probability laws on R

One defines the subsgtof probability lawsPx (dx) = px (x) dz onR, having parameters, € R,
a > 0andg > 0 and such that for alt € R

px(z) =a(l+ex)Wx(x) (17)

W () = Ly oo (€) (z — g)e P@=20)" (18)

This first-order finite expansion (17) in orthogonal polynal® with respect to the weight’x,
implies thatr — px (z) is a continuous function defined éhwith support|zg, +oo[ and with all
the mth-order moments finite. The following results can wved for the three types of modeling
corresponding to the cases where the nonlinear dynamisérsyhas a nonlinear stiffness, a
nonlinear damping or a nonlinear stiffness and damping.

4.3 Approximation of the PSDF for a SDOF nonlinear dynamicalsystem driven by a Gaussian
white noise
Case 1: Nonlinear stiffness|f Sy 2 = 1, i.e. if My 2 = w?Cy, then one can writég 4 (df, d)\) =
do ® Pa(dX) and chooséP, (d)\) in P with parameters > —1/e, ap > 0,67 >0

PA(dA) = an(1+ X)L 4oof(A) (A = Ag) e P20 gy (19)

ForallS; 0 > 0, if Ag is chosen such thit< 1+¢e)g < 82"3, then the problem defined in Section
4.1 has a unique solutidnvhich is given by Eq. (19) with
S2.0

2
S
Ba = T ( 20 ap =20 = (20)

2
4 80’2 — «52’0(1 + 8)\0)) ’ 8072

in which Sy 2 = 1. SinceSx (w) = 1/2x for all realw, approximationSy (w) given by Eq. (6) of
PSDFSg(w) can be written as

SY (w)

o0 —z?
_ 450082’0/ - x(l4+eg+Ax)e ™™ do (21)
0

TWo 1+6)\0+Aaz—(wi0)2)2+4£2(wi0)2} )

in which A = 27~1/2(S; 5 — (1 + €A1)) > 0. It should be noted that:

(i)- If S2,0 < 1, then one can choosg = 0.

(i)-1f S0 =1,1.e.ife =0,then\g = A =0.

(iii)- If S3 0 > 1, then it is necessary to choosg < 0 suchthal) < 1 +¢e)g < 82_5. In fact, the
lower bound\y = —1/¢ can also be used.

Case 2: Nonlinear damping If Spo = Sz, i.€. if Myo = ngz,o, then one can write
Po A (df,d)\) = Pg(df) ® 6y and choosePg(df) in P with parametergy, > —1/e, ag > 0,
Be >0:

Po(df) = ae(1 4 £0) 1, 1 oof(0) (6 — 6p) P00 g9 . (22)

ForallSyp 2 > 0, if 6y is chosen such that< 1 4 €6y < SO‘E, then the problem defined in Section
4.1 has a unigue soluti@nvhich is given by Eq. (22), with

71'&’:‘2 ( 8072

2
ﬁ@ - 4 1-— 80’2(1 + 690)) ’

g — 25@80’2 . (23)

Proba. Eng. Mech. 5 Christian Soize



SinceSx (w) = 1/2 for all realw, the approximatiot$y (w) given by Eq. (6) of the PSDF (w)
can be written as

4£C Feo y (1+eb0p+ By) e~V dy
So,2

W= 2 Jy (=@ PP 482 P (1+ebo+ By}

(24)

in which B = 27 =1/2(8; 5 — (1 +€6y)) > 0. It should be noted that:

(i)- If S2,0 = Sp,2 < 1, then one can chooglg = 0.

(II)- If 82’0 = 5072 =1,i.e. ife =0, then00 =B =0.

(iii)- If Sz.0 = Sp.2 > 1, thenitis necessary to choo%g< 0 suchthat < 1 + 6, < So‘é. Asin
case 1, the lower bourt#t) = —1/< can also be used.

Case 3: Nonlinear stiffness and damping If the hypotheses of cases 1 and 2 do not hold,
one consider® and A as independent random variables. Therefore, one wHtes(df, d\) =
Pg(df) ® Pa(dX), with Py (d)) given by Eq. (19) andPs (df) by Eq. (22). For allSy » > 0 and
Sa,0 > 0 such thatSy o # Sa 0 andSy 2 # 1, if A\ is chosen such thé@t < 1 4+ &)y < 80,282_73
andf, as in case 2, then the problem defined in Section 4.1 has aaiaaution given by Egs.
(19) and (22) with3, anday given by Eq. (20), andig andSg by Eq. (23). The approximation
Sy (w) given by Eq. (6) of the PSDE( (w) can then written as

8§Co$go/+°°/+°° 1+5)\0+Aaz)(1+690+By)xye_w2_92 dxdy

Sy (w) = (oo + Az— (292 482) 1 +200+ By}

(25)

with B as in case 2 and = 27~ 1/2(Sy 2S5 5 — (1 + €Ao)). It should be noted that:

(i)- If S2,0/So.2 < 1andSy 2 < 1, then one can choosg = 6, = 0.

(II)- If 82’0 = 5072 =1,ie. ife =0, then)\o =60y = A=B=0.

(iii)- If S20/So.2 > 1andSy 2 > 1, thenitis necessary to choosg < 0 suchthad < 1+e)g <
807282_73 andd, as in case 2. Asin cases 1 and 2, the lower bouwgds —1/¢ 6, = —1/e can
also be used.

4.4 Application: prediction of the PSDF of the stationary response of a Duffing oscillator
driven by a Gaussian white noise

We consider the Duffing oscillator defined by Eq. (1) withy, ¢) = Mwi¢®, X = W, M =1,
wo = 27 x 100, go having the valueg, 6 or 12. Two cases are studied:
Case 1. £ = 0.025 ande = 344 514.18
Case 2 £ = 0.0025 ande = 34 451.418.
For these two cases, the choice of the value isfsuch thatC, = 1/18, 0.5 and 2 fop, = 2, 6
and 12 respectively.
We know-2" that
S20 =7U(1,7%)/U0,7) <1 , Sp2=1 , (26)

in which~. = (2¢Cy)~1/? and wherd/ (a, ) is the parabolic cylinder function defined by

:E2

1
e 4

Ula,a) = p—

+o0 9
) / e "R3B Ra-3gR | (27)

Tla+ 1)
2
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whereI'(z) is the Euler function. For cases 1 and 2, Eq. (26) yields = 0.87942, 0.57920
and0.36596 for go = 2, 6 and12 respectively. Figures 1 to 4 give the normalized levels in:dB
101og;o(S(w)/So) with Sy = g3 /(27), of the PSDFS(w) as a function of frequency expressed in
hertz in the band 0 Hz - 350 Hz. For cases 1 and 2, figures 1 and@are the PSDE (w) = S (w)
(calculated by Monte Carlo numerical simulation of Eq. (1j)th the PSDFS(w) = Sg jin(w)
calculated by the statistical linearization method usiveggxplicit invariant measure of the nonlinear
system-?. One then has

26 1

mwo {(QF = (5)?)? +483( )%
inwhichQ? = 1 + e\, and\. = 3Co7: g(a2.

It can be seen in Fig.1-a that the the statistical lineaoramnethod yields correct predictions for
small-amplitude responses (small amplitude of the exoitaj, = 2 and a not-too-small damping
¢ = 0.025), but poor predictions when the amplitude of the responsgease, as shown in Figs.1-c
and 2-c. For the same cases 1 and 2, figures 3 and 4 compareDReSRS) = S (w) calculated
by Monte Carlo numerical simulation of Eq. (1), with the PSBfv) = Sy (w) calculated by the
stochastic linearization method with random parametess,by Eq. (21) with\q = 0. It can be
seen that correct predictions are obtained for small age lamplitude responses.

Sg.in(w) = Cy

(28)

5 IDENTIFICATION PROCEDURE BASED ON THE STOCHASTIC LINEARI ZATION
METHOD WITH RANDOM PARAMETERS

5.1 Definition of the identification problem

In this section, the identification problem under consiterais defined. One considers a SDOF
nonlinear stochastic second-order dynamical systemridesidy an unknown equation of type (1).
This means that there is a unique centered stationary regpdihe excitatiog, X of this system is

a physically realizable stochastic process which is avahkied second-order stationary Gaussian
process, centered and having a power spectral densityidanet— g3.Sx (w) which is known. An
experiment is realized. The nonlinear system is subjecte¢de known stochastic inpyt X and
trajectories of the stationary stochastic out@uare measured. Using the usual signal theory and
signal processing, estimates can be constructed of thergpaetral density function — S (w)

and momentsl, o = E{Q(t)?}, Moo = E{Q(t)?} of the stationary respongg. These quantities
are such that

Mg’():/SQ(w) dw M0’2:/w2 Sow)dw . (29)
R R

The identification problem is then defined as the followingneQwishes to construct a linear
stochastic differential equation with random parameteoihg like Eq. (3) in order to minimize
the "distance" between the measured power spectral ddosityion S and the power spectral
density functionSy given by the model. Therefore, the identification proceduwacerns the
calculation of the unknown constant coefficients sucii/ast, wg and the probability measure of
the random parameters. It is clear that the identificatiatgadure requires that the "distance" be
mathematically defined (see below).

In order to simplify the presentation, one will limit the ddopments to the case where the unknown
nonlinear physical system has a linear damping and a naulistéfness. Therefore, the model
which can be identified is the linear stochastic equatioh vahdom parameters:

MY (t)+CY (1) + K(1+A)Y(t) = goX(t) (30)
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whereM, C'=2¢£ Mwy, K = Mw? are unknown real positive coefficients and where the prdibabi

law Py (d)) of the real-valued random variablebelongs toP (defined in Section 4.2). From Egs.
(3), (6) and (30), we deduce that the power spectral densitgtion Sy of the stationary solution

Y of Eqg. (30) can be written as

B 4500 PA(d)‘>
Sv(w) = = Sx(w)/[R{(1+5A_(§0)2)2+4§2(§0)2} ’

(31)

in whichwy = (K/M)'/2,£=C/(2Mwy), Cy is given by Eq. (7), wher@, (d)\) is defined by Eq.
(19) withe = 1 and the parametery), ay, 3x are such that (see Section 4.3, caseXy):> —1,
ax > 0andpgy > 0. Consequently, one has

PA(dA) = aa (14 M) Ling, 4oof(A) (A = Ag) e O304 (32)
Normalization condition
/ Py(d)) =1 (33)
R
implies a relation between,, 51 and\y which can be written as
48a+/ B
= h(Ba, o) = ) 34

Substituting Eq. (34) into the right-hand side of Eq. (3D\gs
P (dX] Bas M) = h(Ba, M) (14 Mg oof(X) (A = Ag) e PO ax . (35)

From Eqgs. (31) and (35), it can be seen thatdepends only on parametesg and\y. Conse-
qguently, Eg. (31) can be rewritten as

4£Co Pa(dA | Bas ho)
wo SX(W>/[R{(1_1_8)\_(%0)2)24_452(%0)2} s

in which Py (d\ | Ba, Ao) is given by Eq. (35).

Sy (w|Ba, Ao) =

(36)

5.2 ldentification procedure

The identification procedure is based on a "true" stochdistarization method with random
parameters and has two main steps.

()- The first step allows constant coefficients, C and K in Eq. (30) to be identified using the
concept of "true" stochastic linearization method (seewg|

(i)- In the second step, parametets and Ao of the probability lawPy (dA | 54, Ao) are identified
in order to minimize the "distance" between the PSRJ; which is measured, and the PSBF
given by the model defined by Eq. (30). This method will beexhH "true" stochastic linearization
method with random parameters.

Step 1: Identification of constant coefficients using a "trué stochastic linearization method
Since the stochastic linearization method is an efficienthow for predicting the second-order
moments of the stationary response, it is quite naturaléatwgthin the context of an identification
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problem in order to identify the constant coefficients C and K. The "true” stochastic lineariza-
tion method starts from the recent works of KaZirand has been developed by Fill&fré®. In
this work?:26 Kozin’s results have been extended to the case of the idwitdn of multidimen-
sional nonlinear second-order dynamical systems whoss,idamping and stiffness matrices are
unknown and excitations are colored noises. In this exténs second minimization criterion,
as well as an iterative algorithm for readjusting the seemmttr moments, has been introduced in
order to improve the proximity of the mass matrices of thedirized and nonlinear systems. In this
method, a first minimization problem is defined as

ds(M,C, K) = min g & = o d2(M,C,K) (37)

in which the minimization is performed in an appropriateseth such that the identified linearized
system be asymptotically stable and whejses the square of the distance such that

do(M,C, K) = E{|lgoX (t) — (M Q(t) + CQ(t) + K Q(t))|*} . (38)

This method is called a "true" stochastic linearizationause it refers to the fact that the mathe-
matical expectation that enters into the right-hand sidegf(38) is calculated from the true joint
probability law of the random variabléx(t), Q(t), Q(t), go X (¢) for all fixedt in R, and is contrasted
to Gaussian stochastic linearization. Within the contéxte identification procedure, it should be
noted that this "true" stochastic linearization is achéeusing the signal processing based on the
measured trajectories of the input and ouput stochaticgss®s of the nonlinear systeth$’»26
(see the beginning of this section). This means that, $ihe@, Q) andgy X are the output and input
stationary stochastic processes of the nonlinear dyn&asystem (output and input are measured),
the mathematical expectation in Eq. (38) is estimated withatroducing any approximation or
additional hypotheses on the joint probability law of rantieariablesQ(t), Q(t), Q(t), go X (t) .
Herein, this method which is adapted to the multidimendiaetification problem, is applied to
the SDOF nonlinear system in order to indentify coefficigWtsC' and K. It should be noted that,
if the identification was stopped at this step 1, then one dvobltain an identified model which
would give correct prediction for the second-order momésgs Section 4.4), but which would give
bad predictions for the power spectral density functionome cases (as it is explained in Section
4.4). This is the reason why a second step is included to imedite identification procedure.

Step 2: Final identification step using a "true" stochastic inearization method with random
parameters. In this step, coefficientd/, C and K in the right-hand side of Eq. (30) are known
(identified in step 1). Now, the problem is to identify paraens, and)\, appearing in Eq. (36).
Let D be the subset dk2 such thatD = [0, +oo[x] — 1, +oo|. Let Dy(B4, Ao) be the square of
the distance such that

Da(Bas ho) = / 1Sy (] Bas Do) — So(@)|2dw (39)

whereSj, is the estimated PSDF (from the measurements)&na given by Eq. (36). One then
looks into a problem of findingG, Ao) € D fulfilling the minimum of Dy (8a, A\o), i.€

DQ(ﬁA, )\0) = min(B\A:XO)E,D DQ(ﬁA, )\0) . (40)

The constrained optimization problem defined by Eqg. (40plges] using a global minimization
algorithm with constraints, based on the used of an itezatiethod in which an optimization
problem of a convex function is solved at each iteraian
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5.3 Application: identification of a SDOF nonlinear dynamical system driven by a Gaussian
colored noise

In this example, the "experimental data basis" is genefatelMonte Carlo numerical simulation
of the Duffing oscillator

MQ(t) + 26 MwoQ(t) + MwiQ(t) + e Mw2 Q(t)% = go X (t) . (41)

Four "experiments" are constructed by numerical simutatio

Case 1. M =1,wy=2mx100,£=0.025,=344514.18, C =26 Mwy=31.41, go=2 0or 6.

Case 2: M =1, wyp =27 x100, £ =0.0025, ¢ =34451.418, C =26 Mwy = 3.14, go =2 or 6.
For these four cases, X is a real-valued second-order séajicdGaussian process indexed by
centered, having a power spectral density function sudiféhall w in R,

1
Sx(w) = =L _27x150,—27x50] (W) U 125 x50 2xx150] (W) (42)

2
in which1gp(w) = 1if w € Band= 0if w ¢ B. Stochastic process X is simulated using a
bandpass Butterworth linear filter of order 6, whose lowet apper cutoff frequencies at® Hz
and150 Hz respectively.
Step 1 and step 2 of the identification procedure yields:
Case 1 :M=1; C'=31.41; K =449962 and545336, 5 =81.79 and5.02, A\ =—0.106 and-0.344
for go=2 and6, respectively.
Case 2 :M =1; C=3.14; K =452467 andb47548, B =51.13 and5.25, Ay =—0.134 and—0.346
for go=2 and6, respectively.
Figures 5 and 6 give the normalized levels in dB)log;,(S(w)/So) with Sy = ¢2/(27), of the
PSDFS(w) as a function of frequency expressed in hertz. For cases 2,dhdse figures compare
the "experimental” PSDE(w) = Sg(w) (Monte Carlo numerical simulation of Eq. (41)), with
the PSDFS(w) = Sy (w) calculated with the identification method. It can be seeh d@heorrect
identification is obtained for small and large amplitudeases.

6 CONCLUSIONS

We have presented a stochastic linearization method witthara parameters which allows us to
calculate an approximation of the power spectral densitgtions of stationary responses of SDOF
nonlinear second-order dynamical systems.

One has seen that this method yields accurate predictiotieegiower spectral density function
for the stationary reponse of the stochastic Duffing odoitldriven by a Gaussian white noise,
whereas the power spectral density function is not cogrquidicted in any of the cases by the
usual statistical linearization method.

This stochastic linearization method with random paramsel@s also been used to develop an
identification procedure of SDOF nonlinear second-orderadyical systems driven by Gaussian
colored noises. The results obtained for the identificatioa Duffing oscillator are good enough.
Presently, the prediction and identification procedurgs baen developed only for SDOF nonlinear
second-order dynamical systems. The extension of the peapaentification method to the
multidimensional cases is possible and is is in progress.
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Fig. 5_a: g0 =2.00 Fig.6_a:g0=2.00
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