. Cf and . Ryckman, thus coupling charged matter to the electromagnetic field, and so originating the modern understanding of the principle of local gauge invariance ( " local symmetries dictate the form of the interaction " ) that lies at the basis of contemporary geometrical unification programs in fundamental physics. 68 See for instance Yang & Mills (1996) p. 95: " the electromagnetic field arises naturally by demanding invariance of the action [ . . . ] under local (x-dependent) rotations, Weyl derived the Maxwell equations from the requirement of local phase invariance, pp.183-91, 1954.

A. Afriat, How Weyl stumbled across electricity while pursuing mathematical justice, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, vol.40, issue.1, pp.20-25, 2009.
DOI : 10.1016/j.shpsb.2008.06.003

URL : http://arxiv.org/abs/0804.2947

A. Afriat, Weyl???s Gauge Argument, Foundations of Physics, vol.96, issue.5, pp.699-705, 2013.
DOI : 10.1007/s10701-013-9712-x

S. Y. Auyang, How is quantum field theory possible? Which symmetry? Noether, Weyl, and the conservation of electric charge, Studies in History and Philosophy of Modern Physics, vol.33, pp.3-22, 1995.

K. Brading and E. Castellani, Symmetries in physics: philosophical reflections, 2003.
DOI : 10.1017/CBO9780511535369

L. Broglie, P. De, and H. Brown, Recherches sur la théorie des quanta Aspects of objectivity in quantum mechanics, Thèse From physics to philosophy, pp.45-70, 1924.

T. Cao, Conceptual developments of 20th century field theories, 1997.

R. Coleman and H. Korté, Hermann Weyl: mathematician, physicist, philosopher, pp.161-388, 2001.

P. A. Dirac, The Fundamental Equations of Quantum Mechanics, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.109, issue.752, pp.642-53, 1925.
DOI : 10.1098/rspa.1925.0150

P. A. Dirac, The Quantum Theory of the Electron, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.117, issue.778, pp.610-634, 1928.
DOI : 10.1098/rspa.1928.0023

A. Einstein, Grundlage der allgemeinen Relativitätstheorie, Annalen der Physik, vol.49, pp.769-822, 1916.

R. Gambini and J. Pullin, A first course in loop quantum gravity, 2011.
DOI : 10.1093/acprof:oso/9780199590759.001.0001

M. Göckeler and T. Schücker, Differential geometry, gauge theories, and gravity, 1987.

T. Hawkins, Emergence of the theory of Lie groups, 2000.
DOI : 10.1007/978-1-4612-1202-7

R. Healey, On the Reality of Gauge Potentials, Philosophy of Science, vol.68, issue.4, pp.432-55, 2001.
DOI : 10.1086/392936

R. Healey, Gauging what's real: the conceptual foundations of contemporary gauge theories, 2007.
DOI : 10.1093/acprof:oso/9780199287963.001.0001

T. Levi-civita, Nozione di parallelismo in una varietà qualunque e conseguente specificazione geometrica della curvatura riemanniana " Rendiconti del Circolo matematico di Palermo, pp.173-205, 1917.

H. Lyre, The Principles of Gauging, Philosophy of Science, vol.68, issue.S3, pp.371-81, 2001.
DOI : 10.1086/392922

H. Lyre, Lokale Symmetrien und Wirklichkeit: eine Naturphilosophische Studie über Eichtheorien und Strukturenrealismus, 2004.

H. Lyre, Holism and structuralism in U(1) gauge theory, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, vol.35, issue.4, pp.643-70, 2004.
DOI : 10.1016/j.shpsb.2004.07.004

C. Martin, Gauge Principles, Gauge Arguments and the Logic of Nature, Philosophy of Science, vol.69, issue.S3, pp.221-255, 2002.
DOI : 10.1086/341848

C. Martin, On continuous symmetries and the foundations of modern physics, pp.29-60, 2003.
DOI : 10.1017/CBO9780511535369.004

O. 'raifeartaigh, L. O-'raifeartaigh, L. , and N. Straumann, Gauge theory: Historical origins and some modern developments, Reviews of Modern Physics, vol.72, issue.1, pp.1-23, 1997.
DOI : 10.1103/RevModPhys.72.1

A. Pais, Subtle is the Lord . . . ': the science and the life of Albert Einstein, 1982.

W. Pauli and P. Berlin-ramond, Wissenschaftlicher Briefwechsel, Band I: 1919-1929 Field theory: a modern primer Surplus structure from the standpoint of transcendental idealism: the " world geometries, Perspectives on Science, vol.11, pp.76-106, 1979.

T. Ryckman, The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism, pp.61-88, 2003.
DOI : 10.1017/CBO9780511535369.005

T. Ryckman, The reign of relativity: philosophy in physics, 1915.
DOI : 10.1093/0195177177.001.0001

T. Ryckman, Hermann Weyl and ???First Philosophy???: Constituting Gauge Invariance, Constituting objectivity: transcendental perspectives on modern physics, pp.279-98, 2009.
DOI : 10.1007/978-1-4020-9510-8_17

L. Ryder, Quantum field theory, 1996.
DOI : 10.1017/CBO9780511813900

J. J. Sakurai, Advanced quantum mechanics Hermann Weyl's contributions to geometry in the years, pp.203-233, 1918.

E. Scholz, Hermann Weyl???s ???Purely Infinitesimal Geometry???, Proceedings of the International congress of mathematicians, pp.1592-1603, 1994.
DOI : 10.1007/978-3-0348-9078-6_92

E. Scholz, Weyls Infinitesimalgeometrie, pp.48-104, 1917.

E. Scholz, Hermann Weyl's Raum-Zeit-Materie and a general introduction to his scientific work, 2001.

E. Scholz, Hermann Weyls Analysis of the Problem of Space and the Origin of Gauge Structures, Science in Context, vol.17, issue.1-2, pp.165-97, 2004.
DOI : 10.1017/S0269889704000080

E. Scholz, Local spinor structures in V. Fock's and H. Weyl's work on the Dirac equation, pp.284-301, 1929.

E. Scholz, Introducing groups into quantum theory (1926???1930), Historia Mathematica, vol.33, issue.4, pp.440-90, 2006.
DOI : 10.1016/j.hm.2005.11.007

E. Scholz, Mathematische Physik bei Hermann Weyl ? zwischen " Hegelscher Physik " und " symbolischer Konstruktion der Wirklichkeit, pp.183-212, 2011.

M. Schlote and . Schneider, Mathematics meets physics: a contribution to their interaction in the 19th and the first half of the 20th century

E. Scholz, H. Weyl's and E. Cartan's proposals for infinitesimal geometry in the early 1920s, Boletim da Sociedada portuguesa de matemàtica, pp.225-270, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00007590

E. Schrödinger, Quantisierung als Eigenwertproblem (erste Mitteilung), Annalen der Physik, vol.79, pp.361-76, 1926.

K. A. Seelig, E. Einstein, Z. Verlag, and S. Sigurdsson, Journeys in spacetime, pp.15-47, 1960.

N. Straumann, Zum Ursprung der Eichtheorien bei Hermann Weyl, Physik Journal, vol.77, issue.19, pp.414-435, 1987.
DOI : 10.1002/phbl.19870431107

P. Teller, The Gauge Argument, Philosophy of Science, vol.67, pp.466-81, 2000.
DOI : 10.1086/392839

V. Vizgin, . Birkhäuser, and H. Weyl, Gravitation und Elektrizität, pp.147-59, 1918.

H. Weyl, Reine Infinitesimalgeometrie, Mathematische Zeitschrift, vol.2, issue.3-4, pp.384-411, 1918.
DOI : 10.1007/BF01199420

URL : http://www.digizeitschriften.de/download/PPN266833020_0002/PPN266833020_0002___log33.pdf

H. Weyl, Feld und Materie, Annalen der Physik, vol.22, issue.14, pp.541-63, 1921.
DOI : 10.1002/andp.19213701405

H. Weyl, . Gruppentheorie-und-quantenmechanik, L. Hirzel, and H. Weyl, GRAVITATION AND THE ELECTRON, Proceedings of the National academy of sciences, pp.323-357, 1928.
DOI : 10.1073/pnas.15.4.323

H. Weyl, Elektron und gravitation. I, Surveys in High Energy Physics, vol.5, issue.3, pp.330-52, 1929.
DOI : 10.1080/01422418608228774

H. Weyl, GRAVITATION AND THE ELECTRON, Proceedings of the National Academy of Sciences, vol.15, issue.4, pp.280-95, 1929.
DOI : 10.1073/pnas.15.4.323

H. Weyl, Geometrie und Physik, Die Naturwissenschaften, vol.42, issue.7, pp.49-58, 1931.
DOI : 10.1007/BF01516349

C. N. Yang and R. Mills, Conservation of Isotopic Spin and Isotopic Gauge Invariance, Physical Review, vol.96, issue.1, pp.191-196, 1954.
DOI : 10.1103/PhysRev.96.191