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bLinz Center of Mechatronics GmbH, Altenbergerstr. 69, 4040 Linz, Austria

Abstract

In the present paper, the mechanical modeling and the numerical simulation of
a pile of thin sheets under compressive and in-plane forces is presented. These
sheets are not glued or laminated, but interact through frictional contact only.
In applications, as for example the core of a large power transformer, such piles
may consist of thousands of sheets, which are of thickness below one millimeter,
while the dimensions of the pile reaches several meters. Also, several piles may
interact by a frictional connection. Such connections are realized by regions
where sheets from both stacks overlap mutually. Simulations using a properly
meshed original geometry and standard finite element models lead to billions of
unknowns for industrial applications. Additionally, the system is highly nonlin-
ear due to the heavily coupled contact conditions posed on thousands of inter-
faces. Simulations become extremely expensive in terms of both memory and
computation time, if not even unsolvable due to numerical convergence prob-
lems. The aim of this paper is to present a macroscopic material model, which
can be applied to an equivalent homogenized computational domain represent-
ing the interconnected sheet piles. An extension of the material law in regions
of mutual overlapping due to frictional connections is provided. When using the
present approach, the homogenized computational domain can be discretized by
a far smaller number of unknowns, while a good overall accuracy is retained.
The numerical solution of standardized test problems is presented and verified
against analytical considerations.

Keywords: thin sheets, homogenization, micro-macro approach, contact,
friction, continuum mechanics.

1. Introduction

The aim of the present paper is the derivation of a phenomenologically moti-
vated, macroscopic material law for the computational simulation of piles of thin
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sheets. This material law allows to treat the pile as one equivalent geometrical
solid body. Such a simplification of the geometry leads to reduced models, which
are sufficiently accurate for the computational analysis of stability properties.
Utilizing the proposed method, the distribution of stresses inside a sheet pile
can be determined with comparably small computational effort. All through
the paper, it is assumed that the sheets are not glued or laminated, but interact
through frictional contact only.

In previous works of the authors [1, 2], a suitable macroscopic material law
for the computational simulation of a single thin-sheet pile was proposed in total
formulation for two dimensional problems. In the present paper, an according
incremental material law formulation is presented. Additionally, this material
law is extended, such that more general problem setups can be considered.
Instead of modelling a single pile as in [1, 2], several piles which interact through
a frictional connection are considered. The frictional connection is realized by
mutual overlapping of sheet stacks. In applications, such tight overlaps are
frequently realized in order to connect different piles frictionally. A simple
model setup consisting of two interfingering piles is given in Figure 1. Such a
connection has a-priori no in-plane strength; only the application of a transversal
compressive force leads to some stability of the connection.

A standard approach to the computational simulation of mechanical prob-
lems is the finite element method. Powerful finite element software packages
such as ABAQUS [3] allow the numerical treatment of a large class of mechani-
cal problem setups. However, in the present case of thin-sheet piles, conventional
methods fail: industrial applications, e.g. the iron core of a large power trans-
former, include piles of dimension of several meters, while the thickness of a
single sheet ranges below one millimeter. Thus, a straightforward finite element
discretization of the geometry of a single pile leads to billions of elements. Ad-
ditionally, contact conditions have to be imposed on thousands of interfaces.
This leads to strongly coupled nonlinearities and extremely large systems of
equations, for which a numerical treatment becomes almost or truly impossible.

The usage of a macroscopic material model for an equivalent homogenized
computational domain, as suggested in this paper, is inspired by well-known
techniques. In the literature, such approaches are referred to as homogenization
of materials with periodic micro structure. An extensive overview on homoge-
nization techniques is given in the monograph by Nemat-Nasser and Hori [4].
Within this monograph, the solid with periodically distributed geometrical or
material inhomogeneities is replaced by a homogenized solid, the periodical elas-
ticity tensor is replaced by a matching constant tensor. For the material at hand
and considering a pile of sheets, the inhomogeneities at the micro-level matches
the contact conditions on the sheet interfaces and the homogenized solid at the
macro-level corresponds to the pile of sheets. The contact conditions can be
interpreted as local highly nonlinear springs, which are embedded into a global
material law in the homogenized case. Inspired by these techniques at hand, the
overall response of the system is modeled in an averaged sense. As presented
in [4], for general homogenization techniques a mapping back to the micro-
structure is possible. In the present paper this mapping to the single sheet level
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is not treated, since only the global response of the system is of interest.
To date, many contributions concerning homogenization techniques for com-

posite solids exist. Approaches for layered materials can be found e.g. in [5, 6].
However, the different layers are always laminated or glued, while in the problem
at hand sheets interact through frictional contact only. Existing models on de-
lamination and crack analysis, such as [7, 8], cannot be applied directly: in these
models, single small micro-cracks are considered, while the current problem in-
volves thousands of macro-scale contact interfaces. Homogenization methods
have also been developed for the numerical simulation of masonry structures,
see e.g. Sacco [9], in which elastic bricks are connected by weak layers of mortar,
in which cracks may develop.

The approach chosen in this paper is related to another technique developed
in connection with masonry structures: the so-called no-tension material, which
is introduced in the work of Heyman [10]. Theory on no-tension materials is
provided in [11, 12]. Different variants of the no-tension material were applied in
the simulation of brickwork or masonry [13, 14, 15]. It is a commonly accepted
fact that the no-tension model can give useful results concerning the overall
structural behavior and arising stress distributions in old masonry structures.
In [16], admissible static loads for a panel of no-tension material are discussed. In
contrast to no-tension materials, in the present case the strength of the material
is anisotropic due to the layered structure of the pile. While the former materials
cannot withstand tension in any direction, the material developed in the present
paper does not allow for tensile forces orthogonal to the sheet plane, while the
shear strain is limited by friction.

The current approach is mechanically motivated by and based on well-known
contact conditions and Coulomb’s friction law, which can e.g. be found in the
book by Wriggers [17]. The conditions for frictional contact are posed not only
on sheet interfaces, but everywhere in the body. This task was accomplished for
the case of a single pile in two dimensions in preceding works [1, 2]. Frictional
connections have been treated by the authors [18] in two dimensions, the spatial
case was shortly addressed in [19]. This means that no tension orthogonal to
the sheet plane may arise, and that the shear stresses have to suffice Coulomb’s
friction law. This leads to a block behaving like a pile of very thin sheets with
no bending stiffness. This material model proved sufficiently accurate for the
desired applications. In the present paper, this approach shall be extended to
the treatment of regions where several piles interact through mutual overlapping.
In such regions of interfingering, the in-plane stress is bounded in terms of the
compressive force and various parameters describing the frictional connection
within the so called overlapping region. The obtained material model is of
similar form as models in elasto-plasticity, using the well-known duality between
contact and plasticity, see e.g. [20]. Thus, an according numerical treatment is
proposed.

In applications, homogenized blocks obeying the new material law can be
discretized much coarser than the complex geometry of the interconnected sheet
piles. Larger elements can be used, while the accuracy of the solution and the
overall response can be kept at a satisfactory level. The number of degrees of
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freedom is reduced dramatically, which also leads to better numerical stability
of the nonlinear system, and faster convergence than for the original system.

2. Problem description

A macroscopic material law for the simulation of thin-sheet piles is devel-
oped. The model is phenomenologically motivated; contact conditions, which
bound the contact forces on sheet interfaces for the original model, are posed
in the whole homogenized domain in an average sense. Compressive and shear
stresses are bounded to obey the contact conditions locally everywhere in the
equivalent homogenized body. The material law is characterized by according
unilateral constraint functions on the stress: in direction normal to the sheet
plane compressive forces are allowed only, and in the tangential sheet plane the
absolute value of the shear stress must obey Coulomb’s law of friction. These
constraints are described shortly in Section 3.2 and Section 3.3, respectively.

In applications, a connection of piles is achieved by means of a tight inter-
lock, where sheets from both piles overlap mutually. For an exemplary problem
setup, see Figure 1. Such a connection can a-priori withstand no in-plane ten-
sion and the piles may be moved relatively. By applying a compressive force
orthogonal to the overlaps of this connection, some in-plane strength of the
connection is gained by the friction acting between the overlapping interfaces
of the piles. Relative movements of the two piles due to small in-plane forces
are then blocked. In simulations, the macroscopic material model mentioned
above cannot be applied directly in such connecting regions. Thus, the above
model is extended, such that it represents the behavior of sheet piles connected
by regions of mutual overlapping. For the homogenized block, all relative mo-
tions of sheets are modeled by a continuous deformation. In Figure 2, such a
continuous deformation representing a shift of the piles of sheets is visualized.
The according constraints are described in Section 3.4.

2.1. Model setup and necessary assumptions

In the sequel, a model problem consisting of two different piles connected
in one overlapping region shall be considered. For a sketch of the model setup,
see Figure 1. A macroscopic material model shall be developed, which allows
to treat the piles as a single equivalent homogenized block, which is divided
in three sub-regions: two sub-regions corresponding to the piles, and a third
matching the region of mutual overlapping between the two blocks. Throughout
the remainder of this paper, the left and right parts shall be referred to as “single
pile regions”, while the connecting part is called “overlapping region”. For the
single pile regions, a macroscopic material model imitating frictional contact of
thin sheets is proposed. In the overlapping region, an extension of this material
model is discussed.

For the geometric description of the overlaps, the following convention is
introduced: the height of the whole overlapping region shall be addressed by hol,
while Nol is the total number of in-plane overlap interfaces. For large numbers of
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overlaps, then hol/Nol is approximately the thickness of one overlapping stack.
The “overlap length” lol shall denote the axial length of the interfaces, which
can be defined as the distance between the two single pile regions. For the two-
pile model problem, additionally the “overlap width” wol can be defined as the
third measure defining the overlapping region, and is equal to the depth of the
two piles.

A local coordinate system (e∗x, e
∗

y, e
∗

z) is attached to the homogenized block,
which allows to identify the directions of anisotropic behavior of the layered,
mutually overlapping sheets. The coordinate vector e∗z shall be orthogonal to
the sheet plane. According to this choice, the sheet plane shall sometimes be
considered as horizontal, while the direction orthogonal to this plane is referred
to as vertical. The e∗x and e∗y coordinates are aligned with the overlapping
region in such a way that e∗x points from pile 1 to pile 2, while e∗y is chosen such
that the triplet (e∗x, e

∗

y, e
∗

z) forms a Cartesian coordinate system. Then, e∗x is
aligned with the overlap length lol, while e∗y is aligned with the overlap width
wol. The macroscopic material law used in single pile regions is described by
the material friction parameter µ and the transverse direction e∗z only. For the
description of the local material behavior in overlapping regions, the following
set of parameters is sufficient

• the axial length of the overlapping region lol,

• the number of overlap interfaces per unit height ρol,

• the material friction parameter µ,

• the local coordinate system (e∗x, e
∗

y, e
∗

z).

The parameter ρol = Nol/hol depends on the number of overlap interfaces in
total, Nol, and the height of the overlapping region hol.

Throughout the sequel, the following two assumptions regarding the geo-
metrical setup and the external and internal forces acting in the equivalent
homogenized body are made:

Assumption 1. All deformations and strains are small, such that the theory

of linearized elasticity can be applied.

Assumption 2. The single elastic sheets are thin, such that their bending stiff-

ness can be neglected and homogenization of contact conditions is admissible.

Assumption 3. No local external forces act, which lead to a relative displace-

ment of single sheets, i.e. all external forces are distributed over many sheets or

a long area.

3. A nonlinear macroscopic material law

In the present paper, all vector and tensor fields are denoted as boldface
letters, second-order tensors are moreover underlined. The displacement vector
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is denoted by u, while ε = ε(u) is the linearized strain tensor defined by

ε(u) =
1

2

(

∇u+∇uT
)

. (1)

In the current work, it is assumed that the deformation of each single sheet is
small, such that it stays in the linear elastic range. Then, for each sheet, the
stress tensor σ depends linearly on the strain ε,

σ = D ε(u). (2)

The fourth order tensor D is the elasticity tensor, which is characterized by
Young’s modulus E and Poisson Ratio ν in the usual way.

All considerations concerning the macroscopic material have to be done in
the local coordinate system (e∗x, e

∗

y, e
∗

z). Let therefore, for α, β ∈ {x, y, z}

σ∗

α,β = (e∗α)
T
σ e∗β, (3)

ε∗α,β = (e∗α)
T
ε e∗β (4)

be stress and strain components with respect to the local coordinate system.
To avoid unnecessary complications, however, throughout the remainder of this
paper we assume that the local coordinate system is identical to the global one,
such that all asterisks can be omitted. Otherwise, the transformed quantities
given in equations (3) and (4) have to be used.

3.1. General framework for the macroscopic material law

The macroscopic material law is nonlinear, and modeled similar to elasto-
plastic material laws. Different constraint functions, which are treated similar
to yield functions in plasticity, describe the stress-strain relationship in the
homogenized block. Typically, such a constraint function will be given in the
form

f(σ) ≤ 0. (5)

For a detailed introduction into the theory of plasticity, the reader is referred to
the monographs of Ziegler [21], Simo and Hughes [22] or Dill [23]. The stress-
strain relationship is no longer linear. In the current approach, the strain tensor
ε is split into an elastic and an inelastic part,

ε = ε
e + ε

i. (6)

Thus, the inelastic part of strain ε
i is introduced, which corresponds to the aver-

aged relative movements of the sheets, as will be motivated in more detail later.
A similar approach was used by Angelillo [12] for the description of masonry
structures. In this work, the inelastic quantity is referred to as “additive free
deformation”. The stress depends then on the elastic part of strain ε

e = ε− ε
i,

σ = D ε
e = D

(

ε− ε
i
)

. (7)
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Using the virtual work of external forces δWext, the equations of virtual work
for the macroscopic material read

∫

V

D
(

ε− ε
i
)

: δε dV = δWext. (8)

As in plasticity, the inelastic strain ε
i may change in time (i.e. ε̇i 6= 0) only

as long as the condition f(σ) = 0 is satisfied. In plasticity, the set of stresses
for which f(σ) = 0 holds is addressed as yield surface. If, on the other hand,
f(σ) < 0, the inelastic strain rate must vanish, ε̇i = 0. This relation between
yield condition and inelastic strain rate can be rewritten equivalently as

f(σ) ε̇i = 0. (9)

As mentioned above, the inelastic part of strain is closely connected to the
relative movement of adjacent sheets. Thus, condition (9) ensures that a relative
movement of sheets may occur only if the respective contact condition f(σ) ≤ 0
is satisfied with equality on a local stress level. In case of f(σ) = 0, an update
rule for the inelastic part of strain has to be given, which determines the inelastic
strain rate ε̇

i depending on σ. This behavior is mathematically represented
by the Kuhn-Tucker type conditions

f(σ) ≤ 0, (10)

ε̇
i = λg with λ ≥ 0, (11)

f(σ) ε̇i = 0. (12)

Here, g is the update direction for the inelastic part of strain, which has to be
specified. In plasticity, the strain rate is chosen in direction orthogonal to the
yield surface, as proposed e.g. by Dill [23, Chapter 4]. This results in setting
the inelastic part of strain increment as a multiple of g = ∂f/∂σ. Such a
behavior is referred to as associative plasticity. For the homogenized material
developed in the sequel, both associative and non-associative update rules are
proposed. In Section 3.2 and Section 3.3, update rules proposed in [1, 2] for
the normal and tangential contact are provided. In Section 3.4, an appropriate
unilateral constraint function for the description of the in-plane strength of
a connection via an overlapping region is given. A matching update rule is
proposed and analyzed. The inelastic part of strain tensor will be split additively
into components accounting for the normal contact, the friction conditions, and
the additional conditions in the overlapping regions, which are denoted by ε

i
N ,

ε
i
T and ε

i
ol, respectively,

ε
i = ε

i
N + ε

i
T + ε

i
ol. (13)

The impact of the different contact phenomena is split on different strain com-
ponents, which makes it easy assignable. As will be seen later, only certain
components of the three latter tensors are non-zero, in total representing the
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inelastic part of strain, namely

ε
i
N :=





0 0 0
0 0 0
0 0 εizz



 , ε
i
T :=





0 0 εixz
0 0 εiyz
εixz εiyz 0



 , ε
i
ol :=





εixx εixy 0
εixy εiyy 0
0 0 0



 .

(14)

Thus, the splitting in Eq. (13) is unique. In the same manner, stress and strain
can be split additively, setting

ε = εN + εT + εol, σ = σN + σT + σol. (15)

These matrices shall be used as additive quantities in a mathematical sense only,
they do not represent physical stress or strain states.

3.2. Normal contact

Recall that the sheets are not glued but interact through frictional contact
only. This implies that no tensile surface stress orthogonal to the sheet plane can
appear on sheet interfaces. For the macroscopic material model, this condition is
posed everywhere in the homogenized domain, assuming that the sheet thickness
is much smaller than the total height of the pile of sheets. The latter condition
implies that the material cannot take any tensile stresses in direction normal to
the sheet plane ez. This leads to the inequality constraint

fN (σ) = σzz ≤ 0. (16)

In case of fN (σ) = 0, the inelastic part of strain rate is chosen as a multiple of
g
N

:= ∂fN/∂σ, which results in a transverse strain component rate ε̇
i
N ,

ε̇
i
N = λNg

N
= λN





0 0 0
0 0 0
0 0 1



 (17)

with non-negative Lagrangian multiplier λN ≥ 0. In case of an opening of
the sheets (positive gap), the unknown multiplier λN needs to be determined
from the inequality constraint of the normal force Eq. (16). Since in this case
the inelastic strain rate ε̇

i
N = λNg

N
6= 0, according to Eq. (9) the inequality

constraint (16) has to be satisfied with equality, fN(σ) = 0. Since the stress
depends on the inelastic strain, one can derive a corresponding equation for λN ,
which is not provided here. .

3.3. Frictional contact

In the general case of contacting bodies, Coulomb’s law of friction has to
hold on each sheet interface. The relation of tangential contact force (=friction
force) vector FT , material friction parameter µ, and normal contact force FN is
given as

‖FT ‖ ≤ µ|FN |, (18)
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where ‖·‖ denotes the Euclidean norm of a vector. In the macroscopic material,
Coulomb’s law of friction is applied in a local form. The tangential contact force
vector FT is related to the shear stress vector σT , which is defined along with
the shear strain vector εT by

σT :=





σxz

σyz

0



 , εT :=





εxz
εyz
0



 , (19)

Note that these vectors correspond to the tensor components εT and σT defined
by the additive splitting (15). On the basis of Coulomb’s friction law (18)
assigned to the stress level, the absolute value of the stress vector σT is bounded
by the friction coefficient µ times the absolute value of the compressive stress
σzz ,

fT (σ) := ‖σT ‖ − µ|σzz | ≤ 0. (20)

This condition is similar to the Mohr-Coulomb yield condition (see e.g. the
monograph of Mang and Hofstetter [24], which is used for brittle materials or
rubble piles. In the present case, the anisotropic nature of the sheet pile with
respect to the vertical ez-direction is incorporated.

Choosing the inelastic strain rate ε̇
i
T as a multiple of ∂fT/∂σ leads to a

non-vanishing rate of the inelastic shear strain component ε̇
i
T as well as of

the inelastic transverse strain ε̇
i
N , since the constraint function fT (σ) depends

not only on σT , but also on the normal stress component σzz . Instead, an
approach motivated from contact mechanics is used, where relative sliding of
the contact interfaces occurs in direction of the tangential stress vector σT .
In the framework of constraint functions and yield rules, a different constraint
function f∗

T with fixed compressive stress σ0
zz is used,

f∗

T (σ) := ‖σT ‖ − µ|σ0
zz |. (21)

The inelastic strain rate ε̇
i
T is proposed to be proportional to g

T
:= ∂f∗

T /∂σ,
which leads to

ε̇
i
T := λTgT

=
λT

‖σT ‖





0 0 σxz

0 0 σyz

σxz σyz 0



 . (22)

with λT ≥ 0. The inelastic strain component ε
i
T corresponds to the relative

sliding movement in the tangential plane of the contact interfaces, which is the
exey-plane here. The dimensionless tensor component g

T
is related to the local

direction of sliding σT , while the scalar λT is related to the absolute value of
the relative displacement.

3.4. Frictional connections

A third constraint function, which accounts for the overlaps of a frictional
connection of two piles, is derived subsequently. This overlapping region is
not only anisotropic with respect to the e∗z-direction, but also with respect to

9
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the local in-plane coordinates e∗x and e∗y. Thus, recall that all considerations
have to be done using the local coordinate system (e∗x, e

∗

y, e
∗

z), where tensor
components are computed according to Eqns. (3) and (4). In order not to
complicate notation, all asterisks are omitted in the following.

Let FN be the total compressive force in the overlapping region. In Fig-
ure 3(a), a connection of two piles via one single horizontal interface is de-
picted. For this case, the Euclidean norm of the in-plane force vector Fol =
[Fol,x Fol,y 0]T acting on a surface orthogonal to ex is limited by the material
friction coefficient µ times |FN |, ‖Fol‖ ≤ µ|FN |. In the case under considera-
tion, there are Nol interfaces of stacks from left and right pile. This leads to
Nol sliding surfaces, and the necessary in-plane force is multiplied by a factor
Nol, as is depicted in Figure 3(b). Thus the necessary condition for sliding of
the two piles reads

‖Fol‖ ≤ µNol|FN |. (23)

In order to transfer condition (23) to the stress level, a hexahedral of in-
finitesimal height dz and width dy is considered. The hexahedral shall be of
macroscopic length lol in direction ex, such that it extends over the whole over-
lap length. In a finite element implementation, this volume may be resolved
by several finite elements along the macroscopic length lol in x-direction. For
a sketch of the hexahedral including the single sheets, see Figure 4(a). The
homogenized equivalent is displayed in Figure 4(b). Over the height of this
hexahedral, Nol = ρoldz overlap interfaces are expected on average. The total
compressive force FN from Eq. (23) is related to the compressive transverse
stress σ̄zz averaged over the overlap length,

FN = lol dy σ̄zz with σ̄zz(y, z) =

∫ lol

0

σzz(x, y, z) dx. (24)

The in-plane force vector Fol corresponds to the in-plane stress vector σol, as
sketched in Figure 4

Fol = dy dzσol with σol :=





σxx

σxy

0



 . (25)

Note that the in-plane stress vector σol corresponds to the stress component σol

defined by the additive splitting (15). The necessity of the averaging procedure
in Eq. (24) can be motivated as follows: a relative motion of the piles in direction
ex takes place only if the in-plane force Fol reaches the critical value with respect
to the total compressive force FN in (24). Then, the interfaces slide along the
whole overlap length. In case the overlapping connection is discretized by several
finite elements in ex direction, the averaging (24) is done over all these elements.

Inserting the representations from Eq. (24) and Eq. (25) into the constraint
on the in-plane force from Eq. (23) and using that the number of overlap inter-
faces is ρoldz for the infinitesimal cube leads to the bound

dy dz ‖σol‖ ≤ µ ρol lol dy dz|σ̄zz|. (26)

10
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Expressing the corresponding bound by an according constraint function fol
leads to

fol(σ) := ‖σol‖ − µ ρollol|σ̄zz | ≤ 0. (27)

In the following, an update law for the inelastic part of strain rate ε̇
i
ol con-

cerning the overlap constraint function fol shall be developed. Therefore, the
non-trivial case fol(σ) = 0 is assumed, since otherwise the inelastic strain com-
ponent εiol remains constant by setting ε̇

i
ol = 0, as implied by the Kuhn-Tucker

type conditions (9). It will turn out that the definition of the additive inelas-
tic part of strain component εiol in Eq. (14) was an appropriate choice for the
constraint function fol.

As in the case of tangential contact, a constraint function f∗

ol(σ) is intro-
duced, where the average compressive stress σ̄zz is fixed at a constant value
σ̄0
zz ,

f∗

ol(σ) := ‖σol‖ − µρollol|σ̄
0
zz|. (28)

Again, the inelastic strain rate is chosen as a multiple of an update direction
g
ol
,

ε̇
i
ol = λolgol

. (29)

However, in contrast to the cases of normal and tangential contact, no associa-
tive flow rule is applicative in this case. The choice of g

ol
shall be motivated

in the following phenomenological considerations in the infinitesimal volume
(lol, dy, dz) from Figure 4(b). In case of sliding overlaps (fol(σ) = 0), the stress
vector σol acting on the eyez-plane leads to a relative displacement of the two
piles in this direction. In Figure 5, this relative displacement of the two piles
is depicted, where the infinitesimal hexahedral from Figure 4(b) is depicted in
top view. Using the relative displacement rate u̇r of the two piles, this fact is
described by the relation

u̇r =
λol

‖σol‖
σol. (30)

The scalar λol is the absolute value of the relative displacement, and acts as a
Lagrangian multiplier.

In the homogenized setup, a corresponding continuous “inelastic displace-
ment” ui has to be used. In Figure 6, the homogenized equivalent of Figure 5
is shown. In the infinitesimal region, the continuous inelastic displacement is
obtained from a linear interpolation of the relative displacement increment u̇r

with respect to the x-direction along the length lol. This interpolated inelastic
displacement is given by

u̇i = x
λol

‖σol‖
σol. (31)

Using the displacement gradient increment ∇u̇i, one obtains a local formu-
lation for the direction of the inelastic rate

∇u̇i =
λol

‖σol‖





σxx 0 0
σxy 0 0
0 0 0



 . (32)
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The corresponding (linearized) inelastic part of strain tensor reads then

ε̇
i
ol =

1

2

(

∇u̇i + (∇u̇i)T
)

=
λol

‖σol‖





σxx
1
2
σxy 0

1
2
σxy 0 0
0 0 0



 = λolgol
, (33)

with the update direction g
ol

defined by

g
ol
:=

1

‖σol‖





σxx
1
2
σxy 0

1
2
σxy 0 0
0 0 0



 . (34)

According to the above definition of g
ol
, the inelastic strain rate ε

i
ol is set

according to Eq. (29).
Note that the described constraint functions (16), (20) and (27) can also be

considered in an multi-surface plasticity framework [25].

4. Computational treatment of the macroscopic material law

In the sequel, the algorithmic treatment of the nonlinear macroscopic ma-
terial law in a computational code shall be discussed. To this end, it is as-
sumed that the homogenized block is discretized into finite elements resolving
the borders of the overlapping region, but not the single sheet level. An itera-
tive procedure for the computation of the inelastic quantities is proposed. The
three constraint functions fN , fT and fol are treated consecutively, as inspired
by contact mechanics: first, the inelastic part of strain ε

i
N is computed, which

determines the contact pressure σzz . For a fixed value of εiN and thereby a
fixed contact pressure, values for ε

i
T corresponding to sliding motions and ε

i
ol

corresponding to relative displacements of piles are obtained. The authors point
out that the order of the sequence of the updates is important. However, for
fixed contact pressure, the two later updates are independent, and can be done
in any order, since different components of the inelastic part of strain tensor
are concerned. In each element, the inelastic strains are approximated in the
integration points of an appropriate Gaussian quadrature rule. The conditions
of the nonlinear macroscopic material law given in Eqns. (16), (20) and (27) are
imposed in these integration points. The following notation is specified for the
iterative step k:

• values associated to iterative step k are labeled by an upper index k, such
as the displacement vector uk, the strain tensor εk = ε(uk), the inelastic
strain ε

i,k, and the stress tensor σk = D (εk − ε
i,k),

• in step k, values for uk−1 and ε
i,k−1, which were approved in the previous

step, are given,

• inelastic strains from step k − 1 and k are linked by the inelastic strain
update dεi,k via

ε
i,k = ε

i,k−1 + dεi,k. (35)
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This strain update is split uniquely into three independent quantities,
dεi,k = dεi,kN + dεi,kT + dεi,kol as implied by Eq. (14).

It is proposed to employ a return mapping type iteration procedure, which is
sketched briefly in the following:

Algorithm 1. Given an initial inelastic strain ε
i,0, starting from k = 1 iterate:

1. compute uk as a solution to the equation of virtual work (8) using the

given inelastic strain ε
i,k−1,

2. if the stress tensor σ
k := D (ε(uk)− ε

i,k−1) satisfies the complementarity

condition Eq. (9) for fN , fT and fol in all integration points with given

error tolerance, return, else,

3. compute the inelastic strain update dεi,kN according to Section 4.1,

4. compute the inelastic strain update dεi,kT according to Section 4.2,

5. compute the inelastic strain update dεi,kol according to Section 4.3,

6. goto step 1.

In the following, update laws for the inelastic strain updates dεi,kN , dεi,kT and dεi,kol
shall be developed. The update laws are based on a return mapping algorithm,
which is frequently used in elasto-plastic computations. The updates are done
consecutively for the three different constraint functions in an appropriately
ordered sequence. To this end, it is assumed that in iterative step k, an inelastic
strain ε

i,k−1 from the previous step is given, and that uk has been computed
according to Step 1 of Algorithm 1.

4.1. Update rule for dεi,kN

In Step 3 of Algorithm 1, it is required to find an update dεi,kN . Defining the
intermediate stress quantity σ

0,k and the update direction gk
N

corresponding to
Eq. (17)

σ
0,k := D (εk − ε

i,k−1), gk
N

:=





0 0 0
0 0 0
0 0 1



 , (36)

the update dεi,kN is chosen in the following way

dεi,kN := λNgk
N
. (37)

The quantity λN is still to be specified. In case of fN (σ0,k) ≤ 0, when the

contact pressure is non-positive, the inelastic strain update is set to zero, dεi,kN =
0. The case fN(σ0,k) > 0 shall be considered in the following. A return mapping
strategy is applied, where λN is chosen such that the linearized constraint is
satisfied with equality,

fN (σ0,k) +
∂fN
∂σ

(σ0,k) ·
(

σ
k − σ

0,k
)

=

fN (σ0,k) +
∂fN
∂σ

(σ0,k) ·
(

−D dεi,kN
)

= 0. (38)
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Using that ∂fN/∂σ = gk
N

and the update equation (37) leads to

fN(σ0,k)− λNgk
N

:
(

Dgk
N

)

= 0. (39)

This leads to the following choice for λN

λN =
fN (σ0,k)

gk
N

: (Dgk
N
)
=

fN (σ0,k)

Dzzzz
. (40)

4.2. Update rule for dεi,kT

In Step 4 of Algorithm 1, an update dεi,kT has to be computed. This is done

similarly to the update computation for dεi,kN described in Section 4.1. The
intermediate stress quantity σ

0,k is redefined such that it already contains the
normal inelastic strain update,

σ
0,k := D (εk − ε

i,k−1 − dεi,kN ). (41)

The tangential update direction corresponding to Eq. (22) reads

gk
T
:=

1

‖σ0,k
T ‖





0 0 σ0,k
xz

0 0 σ0,k
yz

σ0,k
xz σ0,k

yz 0



 =
1

‖σ0,k
T ‖

σ
0,k
T . (42)

The update dεi,kT is chosen as a multiple of the update direction gk
T
,

dεi,kT := λTg
k
T
. (43)

The quantity λT is set to zero in case the constraint inequality fT (σ
0,k) ≤ 0

is satisfied. Otherwise, λT is chosen as a solution to the linearized constraint
equation according to the return mapping scheme, which reads similar to the
equation for λN (38), but where for the derivative ∂fT /∂σ instead of fT the
constraint function f∗

T with fixed compressive stress σ0
zz from Eq. (21) is used.

Straightforward manipulations as already presented in Section 4.1 lead to

f∗

T (σ
0,k)− λTg

k
T
:
(

Dgk
T

)

= 0. (44)

The parameter λT is then chosen as

λT =
fT (σ

0,k)

gk
T
: (Dgk

T
)
= ‖σ0,k

T ‖2
fT (σ

0,k)

4Dxzxz(σ
0,k
xz )2 + 4Dyzyz(σ

0,k
yz )2

. (45)

This value is always well-defined in the case of fT (σ
0,k) > 0, which was assumed

above.
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4.3. Update rule for dεi,kol
In Step 5 of Algorithm 1, the aim is to find in each integration point an

inelastic strain update dεi,kol , which is done in a similar procedure as described
in Sections 4.1 and 4.2. As in Section 3.4, the two-dimensional case is con-
sidered only. The intermediate stress quantity σ

0,k from Eq. (41) can be used
again. From a careful inspection of the subsequent considerations, one finds that
equivalently the tangential inelastic part of strain update dεi,kT can be included,
setting

σ
0,k := D (εk − ε

i,k−1 − dεi,kN − dεi,kT ). (46)

Both settings of σ0,k will lead to equivalent results. The update direction gk
ol
is

set corresponding to Eq. (34),

gk
ol
:=

1

‖σ0,k
ol ‖





σ0,k
xx

1
2
σ0,k
xy 0

1
2
σ0,k
xy 0 0
0 0 0



 . (47)

The update dεi,kol is chosen as a multiple of the update direction gk
ol
,

dεi,kol := λolg
k
ol
. (48)

The choice of λol has yet to be specified. In case the constraint condition
fol(σ

0,k) ≤ 0 is satisfied, λol is set to zero. Otherwise, it is chosen such that the
linearized constraint condition

f∗

ol(σ
0,k) +

∂f∗

ol

∂σ
(σ0,k) ·

(

σ
k − σ

0,k
)

= 0. (49)

is satisfied, where for the derivative fol is replaced by the constraint function
f∗

ol with fixed average compressive stress σ0
zz from Eq. (28). The choice of dεi,kol

according to Eq. (48) leads to

fol(σ
0,k)− λol

∂f∗

ol

∂σ
(σ0,k) :

(

Dgk
ol

)

= 0. (50)

Inserting definitions of f∗

ol from Eq. (28) and gk
ol

from Eq. (47), one obtains λol

by straightforward algebraic manipulations:

λol = ‖σ0,k
ol ‖2

fol(σ
0,k)

Dxxxx(σ
0,k
xx )2 +Dxyxy(σ

0,k
xy )2

. (51)

This value is well-defined as long as ‖σ0,k
ol ‖ 6= 0, which is always the case if the

constraint condition fol(σ
0,k) ≤ 0 is not satisfied.

5. Examples

The examples provided in this section are chosen such that they show the
correctness of the macroscopic material law, as the obtained results coincide
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with analytical values up to a great accuracy. Thus, geometry and setup of
the model are highly simplified. The interested reader is referred to [18, 26] for
computational results in two and three spatial dimensions, where also compar-
isons to full-scale finite element contact models have been conducted. In the
current paper, no comparative results to such full-scale models are provided,
since convergence of the highly nonlinear frictional contact problem could not
be obtained for discretizations using a sufficient number of contacting sheets.

The model setup is of very simple geometry: Two piles of layered sheets
are connected in one region of mutual overlapping. Together, the two piles
form a block of 300 × 100 × 100 mm, the length of the overlaps is assumed
as 20 mm. The overlaps are arranged in two different manners: first, they
are aligned orthogonal to the axial ex-direction, while in a second case, the
overlapping region is distorted, such that the sheets are no longer rectangular
but trapezoidal. These setups are sketched in Figure 7.

In both settings, a constant, distributed surface load pN is applied to the
top surface of the two piles. The vertical z-displacement is fixed at the bottom
surface, other bearings are described separately for the different load cases.
The block is made of steel, with a Young’s modulus of E = 2 · 105 N/mm2,
and a Poisson ratio ν = 0.3. To simplify analytical considerations, gravity
effects are not included in the model. The piles are connected such that they
have a total number of Nol = 10 interfaces, which leads to an overlap density
ρol = Nol/hol = 0.1. The friction coefficient of the surface of the sheets is set to
µ = 0.2. The three sub-regions of the homogenized block are equally distributed
discretized, see Figure 7. Height and width of the block are discretized by
the same number of elements ny = nz. The total number of elements in x-
direction consists 2 · nx elements in the left and right pile, plus nx,ol elements
along the length of the frictional connection in the center. For the distorted
overlapping region, the elements are distorted accordingly. Linear hexahedral
finite elements are used in each of the three sub-regions of the homogenized
block. All implementations have been done in the framework of the research
software HOTINT [27].

5.1. Orthogonal overlapping connection

In the sequel, two piles of rectangular sheets are connected in one region
of mutual overlapping, as described above. Thus, the overlaps are aligned or-
thogonal to the axial ex-direction. Three different load cases are considered:
Relative axial and transverse displacements applied to the piles, as well as an
applied moment.

5.1.1. Load case 1: Applied axial force

The first experiment is concerned with pulling apart the two piles in axial
x-direction of the block. Thus, the x-displacement of the first pile is fixed on its
left hand side, while a given, constant displacement is prescribed on the right
hand side of the second pile. The y-component of the displacement is fixed
in one single node to eliminate rigid body motions. The setup is displayed in
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Figure 8. The vertical pressure is chosen as pN = 0.25 N/mm2. Then, the
contact normal stress σzz is constant in the whole block, and of value σzz = pN .
By integration one obtains the total compressive force acting in the overlapping
region

FN = pN · lol · wol = 500 N (52)

Inserting this value into Eq. (23) leads to an expected pull force

Fol = µ ·Nol · FN = 1000 N. (53)

In computations, the in-plane pull force was measured as the force inflicted by
the prescribed displacement on the right end of the block. One expects a linear
relation of axial displacement and measured force while the in-plane force is
smaller than the limit force Fol, and a stagnation of the pull force at a constant
level afterwards.

The block was discretized by different numbers of finite elements nx, ny, nz

and nx,ol. Due to the special setup leading to constant stresses, already a
discretization using three finite elements only, i.e. nx = ny = nz = nx,ol = 1,
led to accurate results, which are presented below. Small differences to analytic
values arise from chosen error tolerances in the nonlinear iterations.

Figure 9 shows the measured pull force in the computational experiment. In
the simulation, a force of Fpull = 1.0011 kN was found, which means a relative
error of 0.11% compared to the analytical value of 1 kN. The graphic shows
that the measured force coincides with the pull force of an elastic block before
sliding starts, and then stays constant at the expected value.

5.1.2. Load case 2: Applied transversal force

The second example is concerned with the behavior of the overlapping mate-
rial block in case of a force acting in transverse direction of the overlaps. To this
end, the first pile is fixed on the front surface, while a constant y-displacement
is prescribed on the front surface of the second pile. A corresponding setup is
displayed in Figure 10. Such a configuration leads to inelastic shear stresses in
the overlapping region. The necessary force to achieve a relative displacement of
the blocks is computed in the same way as in the first load case of axial pulling,
leading to a value of Fol = 1 kN for a distributed top load pN = 0.25 N/mm2.
A very coarse discretization with nx = ny = nz = 3 and nx,ol = 1 is employed
successfully.

In Figure 11, the measured force is displayed as a function of the applied
displacement. As in the case of axial pulling, a linear relationship between
displacement and force can be seen in the elastic regime while the measured
force is below the limit value Fol. Afterwards, the pull force stagnates at this
constant value. The error measured in computations is approximately 0.03%.
The gradual transition from the behavior of an elastic block to the analytical
sliding is due to the fact that the sliding starts earlier near the prescribed y-
displacement. When the whole block is moving, the value of the analytic sliding
is reached.
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5.1.3. Load case 3: Applied moment

In the third load case, the moment necessary to turn the piles relatively shall
be determined. To this end, again an axial x-displacement is prescribed on the
right hand side of the second pile, while the first pile is fixed on its left hand side
as done in load case 1. In the current load case, the prescribed x-displacement
is not constant, but linear in the transverse coordinate y. Thus, it results in
an applied moment, and a stress distribution linear in y for an elastic block. A
corresponding model setup is shown in Figure 12.

Again, analytical considerations are employed to verify the behavior of the
macroscopic material law. Relative sliding of the blocks occurs whenever the
stress σxx reaches the critical value of σmax

xx = µρollol|σzz|. In the current
example, the stress is independent of the spatial coordinates x and z, but linear
in y, as is visualized in Figure 13(b). Thus, the relative sliding motion of the
two piles will not start at once as in load case 1 where the stress was constant,
but a continuous shift from elastic to inelastic behavior is expected. The sliding
motion will start for the stress distribution (see Figure 13(b))

σxx(y) = σmax
xx ·

2y

wol
y ∈ [−

wol

2
,
wol

2
]. (54)

The interfingering piles slide everywhere for the limiting stress distribution
where the absolute value of the stress σxx reaches the maximum σmax

xx every-
where (see Figure 13(d))

σxx(y) = sign(y)σmax
xx y ∈ [−

wol

2
,
wol

2
]. (55)

An evolution of the stress distribution for increasing applied displacements is
depicted in Figure 13(a-d).

In computations, the distributed top load pN = 0.015 N/mm2 was used.
Then, σmax

xx = 0.006 N/mm2. For this case, the applied moment respecting the
stress distribution from Eq. (54) under which the block starts sliding is given
by

M1 :=

∫ hol

0

∫ wol/2

−wol/2

σxx(y)y dydz

= 100 · σmax
xx ·

2

100

y3

3

∣

∣

∣

y=50

y=−50
= 1000 Nm.

Total sliding and a stagnation of the moment is expected for the moment cor-
responding to the stress distribution from Eq. (55)

M2 :=

∫ hol

0

∫ wol/2

−wol/2

σxx(y)y dydz

= 100 · σmax
xx · y2

∣

∣

∣

y=50

y=0
= 1500 Nm.

In computations, different discretizations of the model block were used. As
the expected stress distributions are linear, for this load case a sufficiently small
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mesh size is needed to obtain good results. Figure 14 displays the measured
moment for a discretization with nx = ny = nz = 6, where the frictional
connection is resolved by nx,ol = 3 elements along its length. The first sliding
motion is expected at M1 = 1 kNm, and total sliding is expected at M2 =
1.5 kNm. This moment was measured at M2 = 1.4965. The overall accordance
with the analytical values is good.

5.2. Distorted overlapping connection

Additionally, piles of non-rectangular sheets connected frictionally by mutual
overlapping were considered, as depicted in Figure 7(b). To account for the non-
rectangular nature of the sheets, a local coordinate system (e∗x, e

∗

y, e
∗

z) had to
be used. Different angle were chosen for the direction of the overlaps. The
numerical results were satisfying, analytical values for the maximum admissible
in-plane pull forces were reproduced by the numerical methods with similar
accuracy as was obtained for the rectangular sheets independent of the chosen
angle, where the same numbers of elements were used. In the following, results
are provided in detail only for the case of axial pulling (load case 1).

5.2.1. Load case 1: Axial pulling

The setup is similar to load case 1 for the orthogonal overlaps given above.
Bearings and the compressive distributed load pN = 0.25 N/mm2 are kept at
the original level. The necessary pull force Fol is computed in the same way as
above, leading to a value of Fol = 1 kN.

Again, the force necessary to pull the stack apart is measured. Figure 15
shows the measured force as a function of the applied axial x-displacement. The
behavior is equivalent to the results obtained for the orthogonal overlaps, as is
expected. The maximal measured pull force lies at 1.0001 kN, which results in
a relative error of approximately 0.01%.

6. Conclusion

A homogenized material model for the computational simulation of thin-
sheet piles has been presented in previous works of the authors [1, 2]. The
application of this material law to large piles leads to a significant reduction of
unknowns and thereby to an according decrease of CPU-time compared to full-
scale contact computations. The main contribution of this work is the extension
of this material to regions, where different piles interact by mutual overlapping.
Phenomenological considerations lead to constraints applied to in-plane stresses,
which are treated similar to yield functions known from elasto-plasticity. A
numerical procedure for the algorithmic treatment of the nonlinear macroscopic
material law is provided. The material behavior was verified by computations
for model problems where the simulation results could be compared to analytical
values. These analytical values were reached with high accuracy even for coarse
discretizations. The experiments imply that the proposed homogenization is
feasible also for more complicated problem setups, as known from practical
applications, e.g. iron cores of large power transformers.
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[3] Dassault Systèmes, Simulia, Abaqus Unified FEA,
http://www.simulia.com (2008).

[4] S. Nemat-Nasser, M. Hori, Micromechanics: overall properties of heteroge-
neous materials, Vol. 37 of North-Holland Series in Applied Mathematics
and Mechanics, North-Holland Publishing Co., Amsterdam, 1993.

[5] A. E. Omri, A. Fennan, F. Sidoroff, A. Hihi, Elastic-plastic homogenization
of layered composites, European Journal of Mechanics – A/Solids 19 (4)
(2000) 585–601.

[6] C. Pellegrino, U. Galvanetto, B. Schrefler, Numerical homogenization of pe-
riodic composite materials with non-linear material components, Interna-
tional Journal for Numerical Methods in Engineering 46 (10) (1999) 1609–
1637.
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FIGURE 1: Model problem consisting of two piles connected by one over-
lapping region. The local coordinate system (e∗x, e

∗

y, e
∗

z), length lol, width wol,
and height hol of the overlapping region are depicted.

FIGURE 2: Left: Relative sliding motion for two piles. Right: Correspond-
ing continuous deformation in a homogenized overlapping region.

FIGURE 3: (a) For one single interface, the norm of the in-plane force ‖Fol‖
needs to be smaller or equal µ|FN |; (b) for multiple interfaces, the term µ|FN |
is multiplied by the number of interfaces Nol.

FIGURE 4: Hexahedral of infinitesimal width dy, height dz, spanning the
whole overlap length lol in x-direction: (a) microscopic view including single
sheets, (b) homogenized equivalent macroscopic view with averaged compressive
force FN .

FIGURE 5: Microscopic view: relative displacement for a constant stress
vector σol. Relative displacement u̇r and σol point into the same direction.

FIGURE 6: Macroscopic view: homogenized model of the setup shown in
Figure 4, using the “inelastic” displacement u̇i of the two stacks. The “inelastic”
displacement gradient u̇i

,x with respect to normal direction and σol point into

the same direction. The “inelastic” displacement gradient u̇i
,y with respect to

transverse direction vanishes.
FIGURE 7: Different setups for the model problem: Two piles are con-

nected in one region of mutual overlapping, which is (a) orthogonal to the axial
x-direction, (b) distorted at a certain angle. The block is discretized using
nx, ny, nz and nx,ol elements in the different directions.

FIGURE 8: Model setup for load case 1 (applied axial force).
FIGURE 9: Axial force necessary for a given x-displacement of an elastic

block and a block of the macroscopic material including an overlapping region.
FIGURE 10: Model setup for load case 2 (applied transversal force).
FIGURE 11: graphics/transverseforceTransversal force necessary for a given

y-displacement of an elastic block and a block of the macroscopic material in-
cluding an overlapping region.

FIGURE 12: Model setup for load case 3 (applied moment).
FIGURE 13: Evolution of the stress distribution in the overlapping region

for an increasing linear prescribed displacement. (a) no sliding, (b) marks the
distribution where sliding starts, (c) sliding in parts of the overlapping region,
(d) limiting case: the piles move relatively in the whole overlapping region.

FIGURE 14: Moment necessary for a given x-displacement of an elastic
block and a block of the macroscopic material including an overlapping region.

FIGURE 15: Axial force necessary for a given x-displacement of an elastic
block and a block of the macroscopic material including an overlapping region.
Different angles of the overlapping region were chosen.
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