The mod 2 cohomology rings of SL_2 of the imaginary quadratic integers

Abstract : We establish general dimension formulae for the second page of the equivariant spectral sequence of the action of the SL_2 groups over imaginary quadratic integers on their associated symmetric space. On the way, we extend the torsion subcomplex reduction technique to cases where the kernel of the group action is nontrivial. Using the equivariant and Lyndon-Hochschild-Serre spectral sequences, we investigate the second page differentials and show how to obtain the mod 2 cohomology rings of our groups from this information.
Type de document :
Article dans une revue
Journal of Pure and Applied Algebra, Elsevier, 2015, Accepted for publication on July 21, 2015


https://hal.archives-ouvertes.fr/hal-00769261
Contributeur : Alexander Rahm <>
Soumis le : samedi 20 août 2016 - 18:04:05
Dernière modification le : mardi 23 août 2016 - 01:01:07

Fichiers

Berkove_and_Rahm_Revision8.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00769261, version 5
  • ARXIV : 1507.06144

Collections

Citation

Ethan Berkove, Alexander Rahm. The mod 2 cohomology rings of SL_2 of the imaginary quadratic integers. Journal of Pure and Applied Algebra, Elsevier, 2015, Accepted for publication on July 21, 2015. <hal-00769261v5>

Exporter

Partager

Métriques

Consultations de
la notice

17

Téléchargements du document

14