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STRONG MAXIMUM PRINCIPLES FOR ANISOTROPIC

ELLIPTIC AND PARABOLIC EQUATIONS

JÉRÔME VÉTOIS

Abstract. We investigate vanishing properties of nonnegative solutions of anisotropic elliptic
and parabolic equations. We describe the optimal vanishing sets, and we establish strong
maximum principles.

1. Introduction and results

In dimension n ≥ 2, given −→p = (p1, . . . , pn) with pi > 1 for i = 1, . . . , n, the anisotropic
Laplace operator ∆−→p is defined by

∆−→p u =
n
∑

i=1

∂

∂xi

∇pi
xi

u , (1.1)

where ∇pi
xi

u = |∂u/∂xi|
pi−2 ∂u/∂xi. We are concerned with equations of the type

∆−→p u = f (x, u,∇u) in Ω (1.2)

and

−
∂u

∂t
+ ∆−→p u = f (x, t, u,∇u) in Ω × (0, T ) , (1.3)

where Ω is a domain in R
n, T is a positive real number, f is a continuous function, and ∆−→p

is as in (1.1). Anisotropic equations like (1.2) and (1.3) have strong physical background.
They emerge, for instance, from the mathematical description of the dynamics of fluids with
different conductivities in different directions. We refer to the extensive books by Antontsev–
Dı́az–Shmarev [3] and Bear [9] for discussions in this direction. They also appear in biology,
see Bendahmane–Karlsen [10] and Bendahmane–Langlais–Saad [12], as a model describing the
spread of an epidemic disease in heterogeneous environments.

In this paper, we investigate strong maximum principles for anisotropic equations of the
type (1.2) and (1.3). Given a subset K of Ω, we say that equations (1.2) and (1.3) satisfy a
strong maximum principle in K if any nonnegative solution which vanishes at some point in
K is in fact identically zero on the whole set K. As is well known (see, for instance, Protter–
Weinberger [41]), in case of the standard harmonic and heat equations, namely in case f = 0
and pi = 2 for all i = 1, . . . , n, equations (1.2) and (1.3) satisfy a strong maximum principle
in the whole domain Ω.

We show in this paper that in presence of anisotropy, the zeros of solutions may not spread
over the whole domain Ω, but they spread along directions where the anisotropic configuration
is minimal. We illustrate this fact with a first example. In the anisotropic configuration
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p1 = · · · = pn−1 = p−, pn = p+, p− < p+ one can check that a nonnegative stationary solution
of equations (1.2) and (1.3) with f = 0 on Ω = (0, +∞)n−1 × R is given by

U−→p (x1, . . . , xn) =
C |xn|

p+/(p+−p−)

(

∑n−1
i=1 x

p−/(p−−1)
i

)(p−−1)/(p+−p−)
, (1.4)

for some constant C = C (n,−→p ) > 0 under the assumptions that p+ > p−(n− 2)/(n− 1− p−)
and p− < n − 1. The function U−→p vanishes on the set (0, +∞)n−1 × {0} without vanishing
elsewhere in the domain. Functions of the form (1.4) were introduced, in a different context,
by Giaquinta [26] and Marcellini [31]. This example can be generalized by observing that
for any C > 0 and ε > 0, the function U−→p satisfies the inequality ∆−→p u ≤ λup−−1 on Ω =

(ε, +∞)n−1 × R for λ > 0 large.

In Theorem 1.1 below, we establish a strong maximum principle for elliptic inequalities of
the type

∆−→p u ≤ f (u) in Ω . (1.5)

In presence of anisotropy, the vanishing sets are of the form

Ω0 = {x ∈ R
n; [x, ξ0] ⊂ Ω and xi = ξ0,i ∀i ∈ I+} , (1.6)

for some point ξ0 = (ξ0,1, . . . , ξ0,n) in R
n, where I+ = {i ∈ {1, . . . , n} ; pi > p−} and p− =

min (p1, . . . , pn) is the minimum value in the anisotropic configuration. We prove our result
under the assumptions that the function f in the right hand sides of (1.5) is continuous,
nondecreasing, and such that

f (u) = O
(

up−−1
)

as u → 0 . (1.7)

We let W 1,−→p
loc (Ω) be the Sobolev space defined by

W 1,−→p
loc (Ω) =

{

u ∈ L
p+

loc (Ω) ;
∂u

∂xi

∈ Lpi

loc (Ω) ∀i = 1, . . . , n

}

,

where p+ = max (p1, . . . , pn) and where, for any real number p ≥ 1, Lp
loc (Ω) is the space of all

measurable functions on Ω which belong to Lp (Ω′) for all compact subsets Ω′ of Ω. We say

that a function u in W 1,−→p
loc (Ω) ∩ C0 (Ω) is a (weak) solution of the inequality (1.5) if for any

nonnegative smooth function ϕ with compact support in Ω, there holds

−

∫

Ω

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi−2
∂u

∂xi

∂ϕ

∂xi

dx ≤

∫

Ω

f (u) ϕdx .

An historic reference on strong maximum principles for elliptic equations is Hopf [27]. We
refer to Protter–Weinberger [41] for a reference in book form on this topic. Our first result
states as follows.

Theorem 1.1. Let Ω be a nonempty domain in R
n and f be a continuous nondecreasing

function on R+ satisfying (1.7). Let u be a nonnegative solution in W 1,−→p
loc (Ω) ∩ C0 (Ω) of

inequality (1.5). If there holds u (ξ0) = 0 for some point ξ0 in Ω, then the function u is

identically zero on the set Ω0, where Ω0 is as in (1.6).

The vanishing sets Ω0 are the maximal sets on which the strong maximum principle holds
true, see (1.4).

Condition (1.7) is optimal among pure nonlinearities of the type f (u) = up−1. Indeed,
for any real number p in [1, p−), letting i be such that pi = p−, one can check that a non-
negative solution of the equation ∆−→p u = up−1 in R

n is given by the function Up,p− (x) =
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∣

∣1 − Cp,p−xi

∣

∣

p−/(p−−p)
, where Cp,p− = (p− − p)/((p

p−−1
− p(p− − 1)2)1/p−). Clearly, the functions

Up,p− do not satisfy strong maximum principles on sets of the form (1.6).

In Theorem 1.2 below, we establish strong maximum principles for parabolic inequalities of
the type

−
∂u

∂t
+ ∆−→p u ≤ f (u) in Ω × (0, T ) . (1.8)

We let L
−→p
loc(0, T ; W 1,−→p

loc (Ω)) be the function space defined by

L
−→p
loc(0, T ; W 1,−→p

loc (Ω)) =

{

u ∈ L
p+

loc(0, T ; L
p+

loc (Ω));
∂u

∂xi

∈ Lpi

loc(0, T ; Lpi

loc (Ω)) ∀i = 1, . . . , n

}

,

where p+ = max (p1, . . . , pn) and where, for any real number p ≥ 1, Lp
loc(0, T ; Lp

loc (Ω)) is the

space of all measurable functions u on Ω × (0, T ) such that
∫ t2

t1

∫

Ω′
|u|p dxdt < ∞ for all real

numbers 0 < t1 < t2 < T and all compact subsets Ω′ of Ω. We say that a function u in

L
−→p
loc(0, T ; W 1,−→p

loc (Ω)) ∩ C0 (Ω × (0, T )) is a (weak) solution of the inequality (1.8) if for any
nonnegative smooth function ϕ with compact support in Ω × (0, T ), there holds

∫ T

0

∫

Ω

u
∂ϕ

∂t
dxdt −

∫ T

0

∫

Ω

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi−2
∂u

∂xi

∂ϕ

∂xi

dxdt ≤

∫ T

0

∫

Ω

f (u) ϕdxdt .

A strong maximum principle for parabolic equations involving the standard Laplace operator
was obtained by Nirenberg [38]. We refer, once again, to the extensive book by Protter–
Weinberger [41] on this topic. Our result states as follows.

Theorem 1.2. Let Ω be a nonempty domain in R
n, T be a positive real number, and f be a

continuous nondecreasing function on R+ satisfying (1.7). Let u be a nonnegative solution in

L
−→p
loc(0, T ; W 1,−→p

loc (Ω))∩C0 (Ω × (0, T )) of inequality (1.8). Assume that there holds u (ξ0, t0) = 0
for some point ξ0 in Ω and some real number t0 in (0, T ). Let Ω0 be as in (1.6). Then we get

the following assertions.

(i) If p− < 2, then the function u is identically zero on the set Ω0 × {t0}.
(ii) If p− = 2, then the function u is identically zero on the set Ω0 × (0, t0].
(iii) If p− > 2, then the function u is identically zero on the set {ξ0} × (0, t0].

The vanishing sets in Theorem 1.2 are optimal in the sense that in case p− < 2, we get
existence of solutions which extinct in finite time (see Antontsev–Shmarev [5–8]), and in case
p− > 2, we get existence of solutions which vanish only on a time segment. As an example
in case p− > 2, letting i be such that pi = p−, one can consider the function Up− (x, t) =
(∣

∣1 − Cp−xi

∣

∣

p− / (1 − (p− − 2) t)
)1/(p−−2)

, where Cp− = (p− − 2) /(2p
p−−1
− (p− − 1)2)1/p− . As is

easily checked, the function Up− is a nonnegative solution of the equation ∂u/∂t = ∆−→p u in
R

n × (0, 1/ (p− − 2)), and we get Up− (x, t) = 0 if and only if xi = 1/Cp− .

We refer to Antontsev–Shmarev [5–8] for several results on the existence of solutions with
finite waiting time or finite extinction time and on the localization of solutions of para-
bolic equations like (1.3). Other possible references on anisotropic parabolic equations are
Antontsev–Chipot [2], Bendahmane–Karlsen [10, 11], Bendahmane–Langlais–Saad [12], and
Lieberman [29]. Elliptic equations like (1.2) also received much attention in recent years. Pos-
sible references on elliptic equations like (1.2) are Alves–El Hamidi [1], Antontsev–Shmarev [4],
Cianchi [13], D’Ambrosio [14], Di Castro [16], Di Castro–Montefusco [17],El Hamidi–Rakotoson
[19, 20], El Hamidi–Vétois [21], Fragalà–Gazzola–Kawohl [23], Fragalà–Gazzola–Lieberman
[24], Garćıa-Melián–Rossi–Sabina de Lis [25], Li [28], Lieberman [29, 30], Marcellini [32],



STRONG MAXIMUM PRINCIPLES FOR ANISOTROPIC ELLIPTIC AND PARABOLIC EQUATIONS 4

Mihăilescu–Pucci–Rădulescu [34], Mihăilescu–Rădulescu–Tersian [35], Namlyeyeva–Shishkov–
Skrypnik [36], Skrypnik [42], Tersenov–Tersenov [43], and Vétois [45–48].We refer to Mercaldo–
Rossi–Segura de León–Trombetti [33] for a description of the asymptotic behavior of solu-
tions of equations like (1.2) as p− → 1, and we refer to Di Castro–Pérez-Llanos–Urbano [18]
and Pérez-Llanos–Rossi [40] for the case p− → ∞, where p− = min (p1, . . . , pn) and p+ =
max (p1, . . . , pn) are the minimum and maximum values in the anisotropic configuration.

In the isotropic configuration where pi = p for all i = 1, . . . , n, the operator (1.1) is com-
parable, though slightly different, to the p-Laplace operator ∆p = div

(

|∇u|p−2 ∇u
)

. We refer
to Vázquez [44] where the strong maximum principle was established for elliptic equations
involving the p-Laplace operator. As for parabolic equations involving the p-Laplace opera-
tor, the question of the strong maximum principle was addressed in Nazaret [37]. For more
material on p-Laplace equations, we refer to the lecture notes by Peral [39].

We also mention the work by Fortini–Mugnai–Pucci [22] where maximum principles are
established for a general class of anisotropic inequalities in divergence form, in particular in
the case of variable exponents (see also Zhang [49] concerning this case).

The proofs of Theorems 1.1 and 1.2 rely on the comparison of solutions with a family of
anisotropic test functions (see (2.5) and (3.3)). We prove Theorem 1.1 in Section 2, and we
prove Theorem 1.2 in Section 3.

2. Anisotropic elliptic equations

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Renumbering, if necessary, the coordinates, we may assume that there
exists an index n− such that p1 = · · · = pn−

= p− and p− < pi for all i > n−. We let
ξ0 = (ξ0,1, . . . , ξ0,n) be a point in Ω such that u (ξ0) = 0. We proceed by contradiction and
assume that the function u is not identically zero on Ω0, where Ω0 is as in (1.6). We let P be
the set of points x in Ω such that u (x) > 0. Since Ω0 is arcwise connected and since both the
sets P ∩ Ω0 and Ω0\P are nonempty, we get that ∂P ∩ Ω0 is nonempty. We choose a point
ξ1 = (ξ1,1, . . . , ξ1,n) in P ∩ Ω0 such that

inf
x∈Ω0\P

n−
∑

i=1

|xi − ξ1,i|
p
−

p
−

−1 < inf
x∈∂Ω

n−
∑

i=1

|xi − ξ1,i|
p
−

p
−

−1 , (2.1)

where, by convention, inf ∅ = +∞. Since P is open, it follows from (2.1) that there exist a
positive real number r0 and a point ζ0 = (ζ0,1, . . . , ζ0,n) in Ω0\P such that ζ0 ∈ ∂B

p−
ξ1

(r0) and

B
p−
ξ1

(r0)\ {ζ0} ⊂ P , where

B
p−
ξ1

(r0) =

{

x ∈ R
n ;

n−
∑

i=1

|xi − ξ1,i|
p
−

p
−

−1 < r0 and xi = ξ0,i ∀i > n−

}

(2.2)

and

∂B
p−
ξ1

(r0) =

{

x ∈ R
n ;

n−
∑

i=1

|xi − ξ1,i|
p
−

p
−

−1 = r0 and xi = ξ0,i ∀i > n−

}

. (2.3)

For any positive real numbers δ and ε, we let A
−→p
ξ1

(r0, δ, ε) be the annular set defined by

A
−→p
ξ1

(r0, δ, ε) =

{

x ∈ R
n ; r0 − ε <

n
∑

i=1

δ
p
−

−pi
pi−1 |xi − δζ0,i − (1 − δ) ξ1,i|

pi
pi−1 < r0

}

. (2.4)
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Since B
p−
ξ1

(r0)\ {ζ0} ⊂ P , we get that for δ small and any ε, A
−→p
ξ1

(r0, δ, ε) is included in Ω.

Moreover, we get that for ε fixed and δ small, the point ζ0 belongs to A
−→p
ξ1

(r0, δ, ε). For any
positive real numbers λ and δ, we define our test function vλ,δ on R

n by

vλ,δ (x) = λδ
(

eλ
(

r0−
∑n

i=1(λ2δ)
p
−

−pi
pi−1 |xi−δζ0,i−(1−δ)ξ1,i|

pi
pi−1

)

− 1
)

. (2.5)

Letting ∆−→p be as in (1.1), we find

∆−→p vλ,δ (x) =
(

λ2δ
)p−−1

n
∑

i=1

(

pi

pi − 1

)pi−1

e(pi−1)λ
(

r0−
∑n

j=1(λ2δ)
p
−

−pj
pj−1 |xj−δζ0,j−(1−δ)ξ1,j |

pj
pj−1
)

×

(

piλ
2p

−
−pi−1

pi−1 δ
p
−

−pi
pi−1 |xi − δζ0,i − (1 − δ) ξ1,i|

pi
pi−1 − 1

)

. (2.6)

For any point x in A
−→p
ξ1

(r0, λ
2δ, ε), by (1.7), (2.5), and (2.6), we get

− ∆−→p vλ,δ (x) + f (vλ,δ (x))

≤ (λδ)p−−1

(

n
∑

i=1

(

pi

pi − 1

)pi−1

λp−−1e(pi−1)λε −
p

p−
− λp− (r0 − ε)

(p− − 1)p−−1 + C
(

eλε − 1
)p−−1

)

(2.7)

when λδ and λε are small, for some positive constant C independent of λ, δ, ε, and x. Choosing
λ large enough so that

λ >
(p− − 1)p−−1

p
p−
− r0

n
∑

i=1

(

pi

pi − 1

)pi−1

,

and then, choosing δ and ε small, it follows from (2.7) that vλ,δ is a C1-solution of the inequality

−∆−→p vλ,δ + f (vλ,δ) < 0 in A
−→p
ξ1

(

r0, λ
2δ, ε

)

, (2.8)

where A
−→p
ξ1

(r0, λ
2δ, ε) is as in (2.4). We let ∂1A

−→p
ξ1

(r0, λ
2δ, ε) and ∂2A

−→p
ξ1

(r0, λ
2δ, ε) stand for the

respective interior and exterior boundaries of the annular set A
−→p
ξ1

(r0, λ
2δ, ε). Since the function

u is positive on B
p−
ξ1

(r0), by continuity, we get the existence of a positive constant Cε such that

u > Cε on B
p−
ξ1

(r0 − ε), where B
p−
ξ1

(r0 − ε) is as in (2.2). Still by continuity of u, it follows

that u ≥ Cε on ∂1A
−→p
ξ1

(r0, λ
2δ, ε) for δ small. Since vλ,δ = λδ

(

eλε − 1
)

on ∂1A
−→p
ξ1

(r0, λ
2δ, ε) and

vλ,δ = 0 on ∂2A
−→p
ξ1

(r0, λ
2δ, ε), we then get vλ,δ ≤ u on ∂A

−→p
ξ1

(r0, λ
2δ, ε) for δ small. In particular,

there holds (vλ,δ − u)+ = 0 on ∂A
−→p
ξ1

(r0, λ
2δ, ε), where (vλ,δ − u)+ = max (vλ,δ − u, 0). Testing

(1.5) and (2.8) against (vλ,δ − u)+ and integrating by parts on A
−→p
ξ1

(r0, λ
2δ, ε), we then get

n
∑

i=1

∫

Wλ,δ,ε

(

∣

∣

∣

∣

∂vλ,δ

∂xi

∣

∣

∣

∣

pi−2
∂vλ,δ

∂xi

−

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi−2
∂u

∂xi

)

(

∂vλ,δ

∂xi

−
∂u

∂xi

)

dx

+

∫

Wλ,δ,ε

(f (vλ,δ) − f (u)) (vλ,δ − u) dx ≤ 0 , (2.9)

where

Wλ,δ,ε =
{

x ∈ A
−→p
ξ1

(

r0, λ
2δ, ε

)

; vλ,δ (x) > u (x)
}

.
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Since the function f is nondecreasing, it follows from (2.9) that

n
∑

i=1

∫

Wλ,δ,ε

(

∣

∣

∣

∣

∂vλ,δ

∂xi

∣

∣

∣

∣

pi−2
∂vλ,δ

∂xi

−

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi−2
∂u

∂xi

)

(

∂vλ,δ

∂xi

−
∂u

∂xi

)

dx = 0 ,

and thus that ∇u = ∇vλ,δ almost everywhere in Wλ,δ,ε. Since Wλ,δ,ε is open, we then get
that the function vλ,δ − u is constant in Wλ,δ,ε. By continuity of u and vλ,δ, it follows that

|Wλ,δ,ε| = 0, i.e. vλ,δ ≤ u in A
−→p
ξ1

(r0, λ
2δ, ε). In particular, we get u (ζ0) ≥ vλ,δ (ζ0) > 0. There

is a contradiction. This ends the proof of Theorem 1.1. �

3. Anisotropic parabolic equations

This section is devoted to the proof of Theorem 1.2. Renumbering, if necessary, the coor-
dinates, we may assume in what follows that there exists an index n− such that p1 = · · · =
pn−

= p− and p− < pi for all i > n−. For any positive real numbers µ, r, and any point (ξ, t)
in R

n × R+, we define the sets B
p−
(ξ,t) (µ, r) and ∂B

p−
(ξ,t) (µ, r) by

B
p−
(ξ,t) (µ, r) =

{

(x, s) ∈ R
n × R+ ;

n−
∑

i=1

|xi − ξi|
p
−

p
−

−1 + µ |s − t|
p
−

p
−

−1 < r and xi = ξi ∀i > n−

}

(3.1)
and

∂B
p−
(ξ,t) (µ, r) =

{

(x, s) ∈ R
n ×R+ ;

n−
∑

i=1

|xi − ξi|
p
−

p
−

−1 +µ |s − t|
p
−

p
−

−1 = r and xi = ξi ∀i > n−

}

.

(3.2)
As a preliminary step in the proof of Theorem 1.2, we prove the following lemma.

Lemma 3.1. Let Ω, T , f , and u be as in Theorem 1.2. Let µ be a positive real number.

Assume that there exist a positive real number r0 and two points (ξ0, t0) and (ξ1, t1) in Ω×(0, T )
such that u (ξ0, t0) = 0, (ξ0, t0) ∈ ∂B

p−
(ξ1,t1) (µ, r0), B

p−
(ξ1,t1) (µ, r0) ⊂ Ω0 × (0, T ), and u (x, t) > 0

for all points (x, t) in B
p−
(ξ1,t1) (µ, r0) \ {(ξ0, t0)}, where Ω0 is as in (1.6), B

p−
(ξ1,t1) (µ, r0) is as in

(3.1), and ∂B
p−
(ξ1,t1) (µ, r0) is as in (3.2). Then we get the following assertions.

(i) If p− ≤ 2, then ξ0 = ξ1.

(ii) If p− = 2 and µ > 1
4r0

(
∑n

i=1

(

pi

pi−1

)pi−1)2
, then t0 = t1 −

√

r0/µ.

(iii) If p− > 2, then t0 ≤ t1.

Proof of Lemma 3.1. We proceed by contradiction and assume that ξ0 6= ξ1 if p− < 2, either
ξ0 6= ξ1 or t0 > t1 if p− = 2, and t0 > t1 if p− > 2. Moreover, decreasing, if necessary, the real
number r0, we may assume that u (x, t) > 0 for all points (x, t) on ∂B

p−
(ξ1,t1) (µ, r0) \ {(ξ0, t0)},

where ∂B
p−
(ξ1,t1) (µ, r0) is as in (3.2). For any positive real numbers λ, µ, and δ, we define our

test function vλ,µ,δ on R
n × R+ by

vλ,µ,δ (x) = λδ
(

eλ
(

r0−
∑n

i=1(λ2δ)
p
−

−pi
pi−1 |xi−δξ0,i−(1−δ)ξ1,i|

pi
pi−1 −µ|t−δt0−(1−δ)t1|

p
−

p
−

−1

)

− 1
)

, (3.3)

where ξ0 = (ξ0,1, . . . , ξ0,n) and ξ1 = (ξ1,1, . . . , ξ1,n). We find

∂vλ,µ,δ

∂t
(x, t) =

p−
p− − 1

µλ2δeλ
(

r0−
∑n

i=1(λ2δ)
p
−

−pi
pi−1 |xi−δξ0,i−(1−δ)ξ1,i|

pi
pi−1 −µ|t−δt0−(1−δ)t1|

p
−

p
−

−1

)

× |δt0 + (1 − δ) t1 − t|
2−p

−

p
−

−1 (δt0 + (1 − δ) t1 − t) . (3.4)
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Moreover, letting ∆−→p be as in (1.1), we find

∆−→p vλ,µ,δ (x, t) =
(

λ2δ
)p−−1

n
∑

i=1

(

pi

pi − 1

)pi−1

× e(pi−1)λ
(

r0−
∑n

j=1(λ2δ)
p
−

−pj
pj−1 |xj−δξ0,j−(1−δ)ξ1,j |

pj
pj−1 −µ|t−δt0−(1−δ)t1|

p
−

p
−

−1

)

×

(

piλ
2p

−
−pi−1

pi−1 δ
p
−

−pi
pi−1 |xi − δξ0,i − (1 − δ) ξ1,i|

pi
pi−1 − 1

)

. (3.5)

As is easily seen, for δ small, for any i = 1, . . . , n and any point (x, t) in R
n ×R+, there holds

∣

∣

∣
|xi − δξ0,i − (1 − δ) ξ1,i|

pi
pi−1 − |ξ0,i − ξ1,i|

pi
pi−1

∣

∣

∣

≤ C
(

|ξ0,i − ξ1,i|
1

pi−1 |xi − ξ0,i| + |xi − ξ0,i|
pi

pi−1 + δ |ξ0,i − ξ1,i|
pi

pi−1

)

, (3.6)

∣

∣

∣
|t − δt0 − (1 − δ) t1|

p
−

p
−

−1 − |t0 − t1|
p
−

p
−

−1

∣

∣

∣

≤ C
(

|t0 − t1|
1

p
−

−1 |t − t0| + |t − t0|
p
−

p
−

−1 + δ |t0 − t1|
p
−

p
−

−1

)

, (3.7)

and

∣

∣

∣

∣

|t − δt0 − (1 − δ) t1|
2−p

−

p
−

−1 (t − δt0 − (1 − δ) t1) − |t0 − t1|
2−p

−

p
−

−1 (t0 − t1)

∣

∣

∣

∣

≤











C
(

|t0 − t1|
2−p

−

p
−

−1 |t − t0| + |t − t0|
1

p
−

−1 + δ |t0 − t1|
1

p
−

−1

)

if p− ≤ 2

C
(

|t − t0|
1

p
−

−1 + δ
1

p
−

−1 |t0 − t1|
1

p
−

−1

)

if p− > 2
(3.8)

for some positive constant C independent of δ, x, and t. For any positive real numbers µ, δ,

and ε, we define the ellipsoidal ball B
−→p
(ξ0,t0) (µ, δ, ε) by

B
−→p
(ξ0,t0) (µ, δ, ε) =

{

(x, s) ∈ R
n × R+ ;

n
∑

i=1

δ
p
−

−pi
pi−1 |xi − ξ0,i|

pi
pi−1 + µ |t − t0|

p
−

p
−

−1 < ε

}

. (3.9)

Clearly, for µ large and for δ and ε small, B
−→p
(ξ0,t0) (µ, δ, ε) is included in Ω × (0, T ). For any

positive real numbers λ, µ, δ, ε, and any point (x, t) in B
−→p
(ξ0,t0) (µ, λ2δ, ε), by (1.7), (3.3)–(3.8),
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and since (ξ0, t0) ∈ ∂B
p−
(ξ1,t1) (µ, r0), we get

∂vλ,µ,δ

∂t
(x, t) ≤

p−
p− − 1

µλ2δ (3.10)

×



































































eCλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

(

|t1 − t0|
2−p

−

p
−

−1 (t1 − t0) + C
(

ε
p
−

−1

p
− + δ

))

if p− ≤ 2 and t0 ≤ t1

e−Cλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

|t1 − t0|
2−p

−

p
−

−1 (t1 − t0)

+ CeCλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

(

ε
p
−

−1

p
− + δ

)

if p− ≤ 2 and t0 > t1

e−Cλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

|t1 − t0|
2−p

−

p
−

−1 (t1 − t0)

+ CeCλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

(

ε
1

p
− + δ

1

p
−

−1

)

if p− > 2 and t0 > t1

and

−∆−→p vλ,µ,δ (x, t)+f (vλ,µ,δ (x, t)) ≤ (λδ)p−−1

( n
∑

i=1

(

pi

pi − 1

)pi−1

λp−−1e(pi−1)Cλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

−
p

p−
− λp−

(p− − 1)p−−1 e−(p+−1)Cλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

(

r0 − µ |t1 − t0|
p
−

p
−

−1

)

+ CeCλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

(

ε
p
−

−1

p
− + δ

)

+ C

(

eCλ(µ+1)
(

ε

p
−

−1

p
− +δ

)

− 1

)p−−1)

(3.11)

when δ, ε, and λ (µ + 1)
(

ε(p−−1)/p− + δ
)

are small, for some positive constant C independent
of λ, µ, δ, ε, x, and t. In case p− ≤ 2 and ξ0 6= ξ1, since (ξ0, t0) ∈ ∂B

p−
(ξ1,t1) (µ, r0), we get

µ |t1 − t0|
p−/(p−−1) < r0. We choose λ large enough so that



























λ >
(p− − 1)p−−1

p
p−
−

(

r0 − µ |t1 − t0|
p
−

p
−

−1

)

n
∑

i=1

(

pi

pi − 1

)pi−1

if p− < 2 and ξ0 6= ξ1

λ >
1

4
(

r0 − µ (t1 − t0)
2)

(

2µ (t1 − t0) +
n
∑

i=1

(

pi

pi − 1

)pi−1
)

if p− = 2 and ξ0 6= ξ1

(3.12)

It follows from (3.10), (3.11), and (3.12) that in case p− ≤ 2 and ξ0 6= ξ1, for δ and ε small,
the function vλ,µ,δ is a C1-solution of the inequality

∂vλ,µ,δ

∂t
− ∆−→p vλ,µ,δ + f (vλ,µ,δ) < 0 in B

−→p
(ξ0,t0)

(

µ, λ2δ, ε
)

, (3.13)

where B
−→p
(ξ0,t0) (µ, λ2δ, ε) is as in (3.9). In case p− = 2 and t0 = t1 +

√

r0/µ, we assume that

µ > 1
4r0

(
∑n

i=1

(

pi

pi−1

)pi−1)2
, we let λ be an arbitrary positive real number, and we also find

(3.13) for δ and ε small. In case p− > 2 and t0 > t1, without assumption on λ and µ, we
still get (3.13) for δ and ε small. Now, we claim that there exists a positive constant Cε such

that u ≥ Cε on B
−→p
(ξ1,t1) (µ, λ2δ, r0)∩∂B

−→p
(ξ0,t0) (µ, λ2δ, ε) for δ small, where B

−→p
(ξ1,t1) (µ, λ2δ, r0) and

B
−→p
(ξ0,t0) (µ, λ2δ, ε) are as in (3.9). In order to prove this claim, we proceed by contradiction and

assume that there exist a sequence of positive real numbers (δα)α and a sequence of points

(ξα, tα)α such that δα → 0, u (ξα, tα) → 0 as α → +∞, and (ξα, tα) ∈ B
−→p
(ξ1,t1) (µ, λ2δα, r0) ∩
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∂B
−→p
(ξ0,t0) (µ, λ2δα, ε) for all α. Up to a subsequence, we get that (ξα, tα) converges to a point

(ξ∞, t∞) in B
p−
(ξ1,t1) (µ, r0)∩∂B

p−
(ξ0,t0) (µ, ε), where B

p−
(ξ1,t1) (µ, r0) and ∂B

p−
(ξ0,t0) (µ, ε) are as in (3.1)

and (3.2). By continuity of the function u, we get u (ξ∞, t∞) = 0, and thus (ξ∞, t∞) = (ξ0, t0).

Since (ξα, tα) ∈ B
−→p
(ξ1,t1) (µ, λ2δα, r0) for all α and since ξ1,i = ξ0,i for all i > n−, it follows that

n
∑

i=n−+1

(

λ2δα

)

p
−

−pi
pi−1 |ξα,i − ξ0,i|

pi
pi−1 < r0 − µ |tα − t1|

p
−

p
−

−1 −

n−
∑

i=1

|ξα,i − ξ1,i|
p
−

p
−

−1 = o (1) (3.14)

as α → +∞. On the other hand, since (ξα, tα) ∈ ∂B
−→p
(ξ0,t0) (µ, λ2δα, ε) for all α, we get

n
∑

i=n−+1

(

λ2δα

)

p
−

−pi
pi−1 |ξα,i − ξ0,i|

pi
pi−1 = ε−µ |tα − t0|

p
−

p
−

−1 −

n−
∑

i=1

|ξα,i − ξ0,i|
p
−

p
−

−1 = ε+o (1) (3.15)

as α → +∞. There is a contradiction between (3.14) and (3.15). This ends the proof of our

claim, namely that there exists a positive constant Cε such that u ≥ Cε on B
−→p
(ξ1,t1) (µ, λ2δ, r0)∩

∂B
−→p
(ξ0,t0) (µ, λ2δ, ε) for δ small. Since vλ,µ,δ ≤ λδ

(

eλr0 − 1
)

in B
−→p
(ξ1,t1) (µ, λ2δ, r0) and vλ,µ,δ ≤ 0

in (Rn × R+) \B
−→p
(ξ1,t1) (µ, λ2δ, r0), we then get vλ,µ,δ ≤ u on ∂B

−→p
(ξ0,t0) (µ, λ2δ, ε) for δ small.

In particular, there holds (vλ,µ,δ − u)+ = 0 on ∂B
−→p
(ξ0,t0) (µ, λ2δ, ε), where (vλ,µ,δ − u)+ =

max (vλ,µ,δ − u, 0). Testing (1.8) and (3.13) against (vλ,µ,δ − u)+ on B
−→p
(ξ0,t0) (µ, λ2δ, ε) (up to

an approximation in terms of Steklov averages, see, for instance, DiBenedetto [15]), we get

1

2

∫

Wλ,µ,δ,ε,t

|vλ,µ,δ − u|2 dx

+
n
∑

i=1

∫ t

0

∫

Wλ,µ,δ,ε,s

(

∣

∣

∣

∣

∂vλ,µ,δ

∂xi

∣

∣

∣

∣

pi−2
∂vλ,µ,δ

∂xi

−

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

pi−2
∂u

∂xi

)

(

∂vλ,µ,δ

∂xi

−
∂u

∂xi

)

dxds

+

∫ t

0

∫

Wλ,µ,δ,ε,s

(f (vλ,µ,δ) − f (u)) (vλ,µ,δ − u) dxds ≤ 0 (3.16)

for all real numbers t in (0, T ), where

Wλ,µ,δ,ε,t =
{

x ∈ R
n ; (x, t) ∈ B

−→p
(ξ0,t0)

(

µ, λ2δ, ε
)

and vλ,µ,δ (x, t) > u (x, t)
}

.

Since the function f is nondecreasing, it follows from (3.16) that for any real number t in
(0, T ), there holds

∫

Wλ,µ,δ,ε,t

|vλ,µ,δ − u|2 dx = 0 .

We then get |Wλ,µ,δ,ε,t| = 0, i.e. vλ,µ,δ ≤ u in B
−→p
(ξ0,t0) (µ, λ2δ, ε). In particular, we get u (ξ0, t0) ≥

vλ,µ,δ (ξ0, t0) > 0. There is a contradiction. This ends the proof of Lemma 3.1. �

Now, we can prove Theorem 1.2 by using Lemma 3.1.

Proof of Theorem 1.2. To begin with, we assume that p− ≤ 2 and prove that the function
u is identically zero on the set Ω0 × {t0}, where Ω0 is as in (1.6). We let P be the set of
points (x, t) in Ω × (0, T ) such that u (x, t) > 0. We proceed by contradiction and assume
that P ∩ (Ω0 × {t0}) is not empty. In a similar way as in the proof of Theorem 1.1, we can
choose a positive real number r0 and two points ζ0 = (ζ0,1, . . . , ζ0,n) and ξ1 = (ξ1,1, . . . , ξ1,n)
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in Ω0 such that u (ζ0, t0) = 0, ζ0 ∈ ∂B
p−
ξ1

(r0), and B
p−
ξ1

(r0) × {t0} ⊂ P , where B
p−
ξ1

(r0) and

∂B
p−
ξ1

(r0) are as in (2.2) and (2.3). We let h : [0, 1] → R+ be defined by

h (δ) = inf
(x,t)∈(Ω0×(0,T ))\P

(

n−
∑

i=1

|xi − δξ1,i − (1 − δ) ζ0,i|
p
−

p
−

−1 + |t − t0|
p
−

p
−

−1

)

. (3.17)

Since u (ζ0, t0) = 0, we get h (δ) → 0 as δ → 0. In particular, we get ∂B
p−
(δξ1+(1−δ)ζ0,t0) (1, h (δ)) ⊂

Ω0 × (0, T ) and B
p−
(δξ1+(1−δ)ζ0,t0) (1, h (δ)) ⊂ P for δ small, where B

p−
(δξ1+(1−δ)ζ0,t0) (1, h (δ)) and

∂B
p−
(δξ1+(1−δ)ζ0,t0) (1, h (δ)) are as in (3.1) and (3.2). Since P is open, it follows that for δ small,

the infimum in (3.17) is achieved, i.e. there exists a point (ζδ, tδ) on ∂B
p−
(δξ1+(1−δ)ζ0,t0) (1, h (δ))

such that u (ζδ, tδ) = 0. By Lemma 3.1, we get ζδ = δξ1 + (1 − δ) ζ0, and thus h (δ) =

|tδ − t0|
p−/(p−−1) for δ small. It follows from (3.17) that for δ1 and δ2 small, there holds

h (δ1) ≤

n−
∑

i=1

|ξ1,i − ζ0,i|
p
−

p
−

−1 |δ2 − δ1|
p
−

p
−

−1 + h (δ2) .

In particular, for δ small, the function h is differentiable and h′ = 0 on [0, δ]. It follows that
the function h is constant on [0, δ]. Since h (0) = 0, we then get h = 0 on [0, δ], i.e. u = 0 on
[δξ1 + (1 − δ) ζ0, ζ0] × {t0}. There is a contradiction. This ends the proof of the first part of
Theorem 1.2. Now, we assume that p− ≥ 2, and we prove that the function u is identically
zero on the set {ξ0}× (0, t0]. We proceed by contradiction and assume that there exists a real
number t1 in (0, t0) such that u (ξ0, t1) > 0. Since P is open, we get B

p−
(ξ0,t1) (µ, ε) ⊂ P for µ

large and ε small, where B
p−
(ξ0,t1) (µ, ε) is as in (3.1). We may assume that the real number µ

is large enough so that µ > 1
2ε

∑n
i=1

(

pi

pi−1

)pi−1
. Increasing, if necessary, the real number t1,

since P is open, we may assume that

t1 = sup
{

t ∈ (0, t0) ; B
p−
(ξ0,t1) (µ, ε) ⊂ P

}

.

It follows that there exists a point (ξ2, t2) on ∂B
p−
(ξ0,t1) (µ, ε) such that t2 > t1 and u (ξ2, t2) = 0.

We get a contradiction with Lemma 3.1. This ends the proof of Theorem 1.2. �
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[18] A. Di Castro, M. Pérez-Llanos, and J. M. Urbano, Limits of anisotropic and degenerate elliptic problems,

Commun. Pure Appl. Anal. (2011). To appear.
[19] A. El Hamidi and J.-M. Rakotoson, On a perturbed anisotropic equation with a critical exponent, Ricerche

Mat. 55 (2006), no. 1, 55–69.
[20] , Extremal functions for the anisotropic Sobolev inequalities, Ann. Inst. H. Poincaré Anal. Non
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