
HAL Id: hal-00768517
https://hal.science/hal-00768517

Submitted on 21 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harmless, a Hardware Architecture Description
Language Dedicated to Real-Time Embedded System

Simulation
Rola Kassem, Mikaël Briday, Jean-Luc Béchennec, Guillaume Savaton, Yvon

Trinquet

To cite this version:
Rola Kassem, Mikaël Briday, Jean-Luc Béchennec, Guillaume Savaton, Yvon Trinquet. Harmless,
a Hardware Architecture Description Language Dedicated to Real-Time Embedded System Simu-
lation. Journal of Systems Architecture, 2012, 58 (8), pp.318-337. �10.1016/j.sysarc.2012.05.001�.
�hal-00768517�

https://hal.science/hal-00768517
https://hal.archives-ouvertes.fr

Harmless, a Hardware Architecture Description Language
Dedicated to Real-Time Embedded System Simulation

Rola Kassemc, Mikaël Bridaya, Jean-Luc Béchenneca, Guillaume Savatonb, Yvon
Trinqueta

aLUNAM Université, IRCCyN, 1 rue de la Noë, BP 92101 44321 Nantes cedex 3, France
bESEO, 4 rue Merlet de la Boulaye, BP 30926 49009 Angers cedex 01, France

cBeirut Arab University, P.O.Box 11 - 50 - 20 Riad El Solh 11072809 - Beirut, Lebanon

Abstract

Validation and Verification of embedded systems through simulation can be

conducted at many levels, from the simulation of a high-level application model

to the simulation of the actual binary code using an accurate model of the pro-

cessor. However, for real-time applications, the simulated execution time must

be as close as possible to the execution time on the actual platform and in this

case the latter gives the closest results. The main drawback of the simulation

of application’s software using an accurate model of the processor resides in the

development of a handwritten simulator which is a difficult and tedious task. This

paper presents Harmless1, a hardware Architecture Description Language (ADL)

that mainly targets real-time embedded systems. Harmless is dedicated to the

generation of simulator of the hardware platform to develop and test real-time

embedded applications. Compared to existing ADLs, Harmless 1) offers a more

flexible description of the Instruction Set Architecture (ISA) 2) allows to describe

the microarchitecture independently of the ISA to ease its reuse and 3) compares

favorably to simulators generated by the existing ADLs toolsets.

Keywords: Hardware Architecture Description Language, Instruction Set

1This work was supported by ANR (French National Research Agency) under Grant Number
ADEME-05-03-C0121.

Preprint submitted to Elsevier March 23, 2012

Simulation, Cycle-Accurate Simulation

1. Introduction

The benefits of simulation techniques for the design of software, in particular for

embedded systems, do not need to be justified anymore. They are complementary

of other V&V techniques (Verification & Validation), particularly formal V&V

techniques often based on coarse-grain models. Another benefit of simulation is the

possibility to design and validate software when the hardware is not yet available.

By using simulation, both software and hardware can be designed simultaneously

and time-to-market is reduced.

Simulation can be conducted at many levels, from the simulation of a high-

level model of the application to the simulation of the actual binary code on a

time-accurate model of the processor.

In our application field – real-time embedded systems – the simulation of the

actual binary code allows to get the closest results from the execution on the

actual platform, especially for the execution time. This application field includes –

embedded systems –, where executions timings are not a primary scope (functional

simulation is sufficient).

Two simulation approaches are attractive. The first approach consists of an In-

struction Set Simulator (ISS) that takes only the instruction behavior into account

independently of the timing of the instruction. The second approach is based on a

Cycle Accurate Simulator (CAS) which takes into account the instruction behavior

and the timing of the real system (it models the internal architecture). Both sim-

ulation schemes are interesting. A CAS is slow but essential for real-time system

simulation. An ISS has better performances and can be used to quickly execute

uninteresting portions of the code (from a real-time system simulation point of

view) until the CAS takes over to focus on the interesting parts. Some ISS can

2

also be associated to a structural simulator to offer both ISS and CAS advantages.

However, the development of a simulator by hand is a difficult and time-

consuming process, especially the simulator validation when it targets a complex

and modern processor. Moreover, most of this work is not reusable for a new

target architecture. So, in order to simplify this task, a Hardware Architecture

Description Language (ADL) can be used to describe the instruction set and the

microarchitecture of the processor. From this description, a simulator, among

other tools, can be generated.

Traditionally, the main goal of an ADL is design space exploration. Such a

language allows to describe the instruction set of a processor and the microar-

chitecture that implements this instruction set. Many ADLs exist such as nML,

MIMOLA, LISA, EXPRESSION, ArchC and MADL. These languages are pre-

sented in section 2.

This work presents Harmless (Hardware ARchitecture Modeling Language for

Embedded Software Simulation), a new ADL. Unlike existing ADLs, it is not ded-

icated to design space exploration but to the simulation of real-time applications.

The goal is to quickly build a simulator to develop and test embedded real-time

software, as in Béchennec et al. (2011) for instance. Other differences exist and

are highlighted hereafter. Harmless aims at fulfilling the following requirements:

• An incremental and flexible description of the ISA. The language should allow

a partial description of the instruction set. For instance, the binary formats

of the instructions are needed to generate a decoder but the behaviors are

not. So binary formats and behaviors should be described separately. The

language should also have the ability to model an ISA with variable length

instructions;

• An independent description of the microarchitecture. This point is an impor-

tant one for 2 reasons: 1) the microarchitecture description is not necessary

3

for functional simulation (ISS) and may be omitted initially. 2) the same

instruction set is shared by many different microarchitectures among a pro-

cessor family; an independent description allows to share the instruction set

description similarly;

• A concise description. The language should be focussed on the operations

used by the instructions (bit operations, bit field extraction, etc.) and should

allow the sharing of sub-descriptions;

• An easy to check description. The language should encompass the whole

description (for instance relying on C or on another general purpose language

to do the algorithmic parts should be avoided. Indeed it would lead to

unchecked description and likely to an erroneous behavior of the simulator).

This way the model may be checked extensively and description errors are

minimized;

• Good runtime simulation performances. It should compare favorably against

other generated simulators.

How Harmless satisfies these requirements is presented in section 3.

In the remaining of the paper, section 4 provides an in-depth presentation of

the language, section 5 presents the underlying model of the pipeline, sections

6 and 7 explain how the simulators (ISS and CAS) are generated and show the

performances obtained for some processor descriptions (e.g., description length,

speed, accuracy).

2. Related work

The goal of a Hardware Architecture Description Language (ADL) is the for-

mal description of a hardware architecture. An ADL differs from a Hardware

4

Description Language (HDL) by the abstraction level of the description. Well-

known HDLs such as Verilog or VHDL focus on the register transfer level and do

not provide a straightforward method to model instruction sets. An ADL allows to

model a processor architecture and aims at the automatic generation of tools such

as simulators, compilers, assemblers and linkers. First, this section will examine a

classification of ADLs. Then it will present some existing ADLs.

2.1. Classification

In this section we classify ADLs in the context of embedded processor design

(Mishra and Dutt (2008)), taking into consideration either Contents or Objectives,

as shown in figure 1.

ADLs

structural ADLs

(ex : MIMOLA)

mixed ADLs

(ex : LISA, Expression, MADL)

behavioral ADLs

(ex : nML, ISDL)

Validation-oriented

ADLs

Synthesis-oriented

ADLs

Simulation-oriented

ADLs

Compilation-oriented

ADLs

Objective

based

Content
based

Figure 1: ADLs classification based on contents and objectives (Mishra and Dutt (2008))

According to the contents of the description, ADLs may be classified in three

categories:

• behavioral : The ADL focuses on the instruction set and does not model

structural details. This type of ADLs can be used to generate an Instruction

5

Set Simulator (ISS). nML (Freericks (1991); Fauth et al. (1995)) and ISDL

(Hadjiyiannis et al. (1997)) are some examples;

• structural : The ADL models structural aspects of the processor (typically

RT-level). It can be used for cycle accurate simulation, but does not really

model the instruction set. MIMOLA (Bashford et al. (1994); Zimmermann

(1979)) is an example;

• mixed : The ADL captures both the structural and behavioral aspects. It

combines the benefits of the two other types. LISA (Zivojnovic et al. (1996);

Hoffmann et al. (2002)), EXPRESSION (Halambi et al. (1999)) and MADL

(Qin (2004)) are some examples.

According to the objectives, ADLs may be classified in four categories:

• synthesis : ADLs with a detailed model of the structural aspects of the pro-

cessor are suitable for hardware generation;

• validation: This kind of ADLs is suitable for functional verification of em-

bedded processors against processor specification;

• compilation: This kind of ADLs can be used to generate retargetable com-

pilers;

• simulation: ADLs that can generate a simulator of the processor. Behavioral

simulators are limited to instruction set simulators, whereas mixed simulators

can generate both ISS and CAS.

In reference to this classification the goal of Harmless is to generate both ISS

and CAS simulators. So Harmless is a mixed ADL from the content point of view

and a simulation oriented ADL from the objective point of view.

6

2.2. Behavioral ADLs

Behavioral ADLs aim at the description of the behavior of the processor without

detailing the hardware components. Two behavioral ADLs are briefly described

hereafter.

2.2.1. nML

The nML language (Freericks (1991); Fauth et al. (1995)) was designed at the

Berlin Institute of Technology in Germany. The instruction set of the processor is

described as an attributed grammar (Paakki (1995)) that allows a hierarchization

and a sharing of common sub-parts of the description. This way, the description

of an instruction is viewed as an and-or tree where an or node expresses the alter-

native common parts of the instruction and an and node lists the composite parts

(their operands for instance). This hierarchization leads to a concise description.

Each node bears attributes like the image (binary format), the syntax (textual

representation) and the behavior. From the description, a functional simulator can

be generated.

nML is a simple and easy to learn language. However, variable-size instruction

sets are hard to describe and the image attribute does not support operations on

bit fields to decode and disassemble the instructions needing them.

nML extensions exist, such as Sim-nML (Rajesh and Moona (1999)) and GLISS-

nML (Ratsiambahotra et al. (2009)). Moreover, it has been used by the instruction

set simulator Sigh/Sim (Lohr et al. (1993)), the code generator CBC (Fauth and

Knoll (1993)) and the instruction simulation environment CHESS/CHECKERS

(Target (2003)).

2.2.2. ISDL

The Instruction Set Description Language ISDL (Hadjiyiannis et al. (1997,

2000)) has been developed at the Massachusetts Institute of Technology (MIT),

7

Cambridge, USA. Like nML, ISDL allows to describe the instruction set of the

processor as an attributed grammar. It has been used by the compiler AVIV

(Hanono and Devadas (1998)) and the simulator generator Gensim (Hadjiyiannis

et al. (1999)).

ISDL is more flexible and the semantics are stronger than that of nML. It

allows the description of a wide variety of architectures, with emphasis on VLIW

architectures (Very Long Instruction Word). Like in nML, the instruction set

description contains both structural and behavioral information. In addition, it

allows the description of the hardware configuration of the microarchitecture which

is mixed with the instruction behaviors.

An ISDL description is composed of six parts:

• The Instruction Word Format part to describe the architecture word instruc-

tion;

• The Storage Resources part to describe the size of memory, register files, and

special registers;

• The Global Definitions part to define tokens (can be used to group syn-

tactically related entities such as register names), non-terminals (allow the

sharing of common structures in the operation definitions, eg, addressing

modes), and split functions (define how a long constant, for example a long

memory address or immediate data, can be divided into several subfields

in the binary word of the instructions) that are used in other parts of the

description;

• The Instruction Set part to define the various operations using the functional

units, memories and buses;

• The Constraints part uses a set of boolean rules for the compiler to define

8

all operations that cannot be executed in parallel;

• The Optional Architectural Details part to give optimization information.

This is useful for the compiler to optimize the generated code.

ISDL can generate an instruction set simulator, but also a temporal simulator

based on the timing information specified in the operations. However, there is

no way to model the instructions dependancies and the concurrency found in a

pipeline.

As a conclusion, the behavioral ADLs allow a hierarchical description of in-

struction sets based on an attributed grammar. This feature allows the sharing

of common parts between the instructions by grouping them thereby simplifying

the description. But it is not possible to generate a cycle accurate simulator due

to the lack of some structural details (timing informations and the possibility to

describe the real operation of a pipeline).

2.3. Structural ADLs

In this section, we present some aspects of the MIMOLA ADL (Zimmermann

(1979); Bashford et al. (1994); Mishra and Dutt (2008)). This language is focused

on modeling the internal structure of a processor and targets hardware synthesis.

It was developed by Gerhard Zimmermann and a group of researchers at Radio

Astronomy Observatory of the University of Kiel, Germany.

MIMOLA is one of the first languages specifically designed for high-level syn-

thesis of processors. It allows to describe the hardware structure in the form of

a netlist of interconnected modules. In a MIMOLA description, the behavior of a

module is written in the program section by using a language similar to Pascal.

The user may choose to write the behavior at the application level or write an

instruction interpreter. The latter enables to obtain an instruction set in the final

design because the synthesis will generate a microcoded interpreter.

9

In general, MIMOLA is seen as a very low-level language and descriptions are

laborious to write and modify. As a consequence, the generated cycle accurate

simulators are slow.

2.4. Mixed ADLs

This section focuses on LISA, a mature mixed ADL that is now an industrial

product of Synopsys, EXPRESSION which is targeted at design space exploration

of System on Chip (SoC) architectures, MADL, which main idea is the use of the

Operation State Machine (OSM) to model microprocessors and ArchC, a SystemC

framework.

2.4.1. LISA

LISA was first introduced in Zivojnovic et al. (1996) and presented as a machine

description language that gives a formal description of programmable architec-

tures, their interfaces and peripherals. It allows the automatic (or semi-automatic)

generation of many tools such as C compiler, assembler, linker, simulator, profiler

and VHDL code generator for synthesis.

in Pees et al. (1999), six models of a LISA description are presented:

• the memory model describes storage parts, including registers and main

memory (size, alignment, etc.);

• the resource model describes hardware resources and their access properties

(read/write capability for registers, for instance);

• the behavioral model describes the hardware activity. The basic concept is

to represent the system behavior as a state machine;

• the instruction set model collects the hardware operations related to instruc-

tions, and verify their compatibility against the actual hardware;

10

• the temporal model defines sequences between instructions, including waiting

states;

• the microarchitecture model is used to group functionalities into one entity

(i.e. both addition and subtraction are part of the ALU).

The simulator generation requires the description of memory (simulation of

storage), behavior (operation simulation), instruction set (decoder/disassembler)

and timing models (operation scheduling).

In many aspects, the Instruction Set Architecture (ISA) defined in LISA in-

cludes ideas which are analogous to those of nML, and the binary format, behavior

and syntax of instructions are placed in the same view.

LISA allows to describe a pipeline in an abstract way (i.e., the designer does

not need to give the structure of the processor), but pipeline registers are explicitly

defined and instructions should reference these registers in their behavior. As a

result, when using the same ISA for different microarchitectures (case of PowerPC

or ARM instruction sets for example) the designer is forced to rewrite the behavior

of instructions.

2.4.2. EXPRESSION

EXPRESSION (Halambi et al. (1999)) is a mixed ADL for modeling, design

space exploration and verification of SoC which has been developed at the Univer-

sity of California, Irvine. From the descriptions, tools like simulator and compiler

may be generated.

A description is composed of two sections: the structure and the behavior. The

structure section has the following subsections:

• the components description: components are buses, functional units, etc. A

component may have attributes like ports, connections, accepted opcodes

and so on;

11

• the pipeline and data-tranfer paths description describes the arrangement of

the components and the connections between them. The pipeline describes

the instruction flow and the available data paths;

• the memory subsystem describes the memory subsystems components and

their connectivity.

The behavior section has the following subsections:

• the operation specification describes the instruction set of the processor. In-

structions having common characteristics are gathered in opgroups. For each

instruction, its operands, binary format and behavior are described.

• the instruction description exhibits the parallelism within instructions to

support VLIW instruction sets;

• the operation mapping gives the informations needed by a compiler for opti-

mization purpose.

SIMPRESS, the simulator generator, takes an EXPRESSION description as

input and generates an interpretative cycle accurate simulator. Authors reported

that the simulation is slow because of interpretative simulation. Another reason

would be that the boxes and wires model used in EXPRESSION incurs additional

data copy and synchronizations.

2.4.3. MADL

MADL (Qin (2004); Mishra and Dutt (2008)) is an Architecture Description

Language designed at University of Princeton (USA) that primarily targets cycle

accurate simulators and instruction set simulators. Its main characteristic is to

associate an Operation State Machine (OSM) to each instruction. As in figure 2,

12

extracted from Qin et al. (2004), the ADD instruction is modeled using a 5 states

OSM and the pipeline model is composed of 4 stages.

In the description, a section MACHINE describes the authorized states and edges

in the microarchitecture, which gets the instruction flow in the pipeline (using

keywords dedicated to automata description such as INITIAL, STATE, EDGE).

.

)

l

IF ID EX WB

RF

IF  fetch stage

ID  decode stage

EX  execution stage

WB  writeback stage

RF  register file

(a) A 4-stage pipeline

F D E
e
1

e
2

W

I

e
0

e
3

e
4

add src1, src2, dst

❛❧❧♦❝❛t❡ ■❋❛❧❧♦❝❛t❡ ■❋

❛❧❧♦❝❛t❡ ■❉✱ r❡❧❡❛s❡ ■❋❛❧❧♦❝❛t❡ ■❉✱ r❡❧❡❛s❡ ■❋

❛❧❧♦❝❛t❡ ❊❳✱ r❡❧❡❛s❡ ■❉

❛❧❧♦❝❛t❡ ❞�✁✱

✐♥q✉✐r❡ �✂✄✶✱ �✂✄✷

❛❧❧♦❝❛t❡ ❊❳✱ r❡❧❡❛s❡ ■❉

❛❧❧♦❝❛t❡ ❞�✁✱

✐♥q✉✐r❡ �✂✄✶✱ �✂✄✷

❛❧❧♦❝❛t❡ ❲❇✱ r❡❧❡❛s❡ ❊❳❛❧❧♦❝❛t❡ ❲❇✱ r❡❧❡❛s❡ ❊❳

r❡❧❡❛s❡ ❲❇✱ r❡❧❡❛s❡ ❞�✁r❡❧❡❛s❡ ❲❇✱ r❡❧❡❛s❡ ❞�✁

Figure 2: Madl OSM model example of the ADD instruction (Qin et al. (2004)).

Instruction set description is largely inspired by nML and LISA and uses an

AND-OR graph, which is a directed acyclic graph with only one source node. There

is one graph to describe both binary coding, syntax and behavior. However, the

instruction behavior description based on OSM is largely different from nML and

LISA because of the underlying OSM model. The description hooks the behavior

of the instruction onto edges of the OSM. For instance, in figure 2, the edge from

states E to W (called e_ex_w) may be described:

TRANS

13

e_ex_w: v_rd = v_rn + v_oprnd2;

The other parts of the description (reading operands, writing back result) are

described in less specific nodes dedicated to all triadic instructions.

The main advantage of this approach is the fast generated simulators (both

CAS and ISS). However, since each instruction behavior uses an OSM, the ISA is

tied to a particular microarchitecture and cannot be easily retargeted to a different

microarchitecture.

2.4.4. ArchC

ArchC (Azevedo et al. (2005)) is based on SystemC (Kranen (2006)), a set

of C++ libraries for electronic system modeling. As such, ArchC is not a self-

contained language, but a set of classes, data types and macros that can be com-

piled using the ArchC preprocessor and a standard-compliant C++ compiler.

From an ArchC model, several kinds of simulators can be generated: in inter-

preted simulators, the source model is transformed into passive C++ objects that

will be processed at runtime by a common simulation core; in compiled simulators,

the hardware architecture is mimicked by a set of custom C++ classes generated

from the source model. ArchC can be used to generate instruction set simulators

as well as cycle accurate simulators.

In ArchC, a processor model is composed of two sections:

• A description of the architectural resources: registers are declared and tied

to register formats. Additional resources include internal memory (for micro-

controllers), communication ports and pipeline stages.

• The instruction set: all instructions are declared separately and tied to in-

struction formats. This section also details the assembly language syntax,

the decoding process, and the duration (in clock cycles) of each instruction.

14

The behavior of the architecture is described as a set of C++ blocks attached

either to specific instructions, to specific instruction formats, or to all instructions.

In each of these blocks, the recommended style is to use switch statements to de-

cide which operations will be performed depending on the current pipeline stage.

Apart from standard C++ constructs, ArchC provides facilities for describing reg-

ister transfers, memory accesses and pipeline control (stall, delay, flush).

Compared to other ADLs presented in this section, ArchC appears more as a

set of facilities for writing simulators in C++, rather than a domain-specific lan-

guage for hardware architecture modeling. While nML was based on a grammar-

based approach for modeling common aspects of instructions, ArchC provides

non-hierarchical instruction formats and requires a separate description of the

assembly language and decoding for each instruction.

Finally, in ArchC, the functional behavior of instructions (arithmetic opera-

tions, register transfers) is mixed with the description of the pipeline control. As

a consequence, it will be more difficult to check the consistency of the model, to

make sure that modifications in one aspect do not impact the others, or to provide

different pipelines for the same instruction set.

3. Harmless requirements

As we have seen in section 2, most of the existing ADLs use a hierarchical

description of the ISA and allow to share common parts between the instructions.

However each aspect of the description (the binary format, the textual represen-

tation and the behavior) are put in the same hierarchy. This leads to a lack of

flexibility because, in most ISA, the best hierarchical description is not the same

for each aspect.

Mixed ADLs are needed for cycle accurate simulation. However, the pipeline

15

description is either mixed with the instructions behavior (LISA, MADL) or is

done using an explicit component net list, pipeline paths and data-transfer paths

(EXPRESSION). As a result, changing the pipeline description is difficult whereas

it is a common task in the development process in order to investigate various micro

controllers in the same family.

As shown in this section, Harmless addresses those issues by splitting the ISA

description in 3 views and by mapping devices ports used in the behavior view

onto the pipeline. Variable length ISA are supported too.

3.1. A simulation oriented mixed ADL

The main goal of Harmless is to provide support for both ISS and CAS simu-

lator generation. Designers will use the generated simulators to verify embedded

systems (both functionally and temporally); so Harmless does not focus on Design

Space Exploration: It is not designed to refine the description to allow hardware

synthesis (as VHDL or Verilog languages for instance). This difference is funda-

mental because the underlying internal model does not need to reflect the exact

structural hardware characteristics. In reference to figure 1, Harmless is a “mixed

ADL” for the content based criterion and “simulation oriented” for the objective

criterion.

The main expected characteristics are listed in section 1. The main features of

Harmless are defined out of these specifications and significantly differ from other

ADLs.

3.2. Incremental and flexible description of the ISA

Unlike other ADLs, Harmless provides a separate view for each aspect of an

ISA description (binary format, behavior and syntax). A set of trees composes

each of these views and each may have a different structure. This feature enables

the designer to choose the best structure for each view.

16

This approach allows to do the description of an ISA in an incremental and

flexible way. For example, ISA have often optional instructions that may be avail-

able on some micro-controllers only. In a Harmless description, the binary format

view would describe the whole ISA binary format. For the optional instructions,

the behavior view would either trigger an instruction unavailable exception or pro-

vide the behavior of the optional instructions. The ISA description in Harmless is

detailed in sections 4.1, 4.2 and 4.3.

Harmless allows to describe variable-length instruction sets. This feature is

handled in the format view by adding more bytes as a specific format is described.

Variable-length ISA description is detailed in 4.1.1.

3.3. Independent description of the microarchitecture

Information needed to compute the timing of the instructions are not part of

the ISA description. They are provided in the microarchitecture view through

a mapping of hardware devices ports (ALU operations, memory read/write, etc.)

used in the behavior view of the ISA onto the pipeline.

That way, the same ISA (ARM for example) may be mapped on different

microarchitectures easily (e.g., ARM7, ARM9 and ARM11). Unlike the way it

is managed in other ADLs, this description is very concise and easy to maintain.

This mapping and an example of the retargeting of the PowerPC ISA behavior are

shown in section 4.4.

3.4. A concise description

Harmless differs from a general purpose language (e.g., C, C++) by data

manipulation at the bit level. Variables are defined with their actual number

of bits and bit field extraction and concatenation are supported with a simple

syntax. In each view, the description can be split to multiple sub-descriptions to

17

share common parts. Input and output arguments and components’ methods may

be used in the behavior view.

3.5. An easy to check description

Harmless is a very easy to learn imperative language. It is a strongly typed

language. Arithmetic and shift operations do not implicitly overflow. For instance,

adding two n bits variables produces a n+ 1 bits result that requires a n+ 1 bits

variable to be stored.

No external C functions are allowed (contrary to LISA), so that semantic ver-

ifications remain possible at compile-time. For example, the Harmless compiler

checks that: 1) two different instructions may not share the same binary code

which is an ambiguous description (see section 6.2); 2) the mapping of instruction

onto the pipeline is coherent (see section 7.1.1).

The parser is written using an unambiguous LL1 grammar.

3.6. Good runtime simulation performances

One of the most penalizing architectural construct to simulate, in terms of

computation, is the pipeline. Because of structural, data or control hazards, its

behavior needs to be modeled to get a cycle accurate simulation. A classical way

is to implement the pipeline using a register transfer level (RTL) model. This is a

typical approach used by HDLs or by SystemC (Panda (2001)). As explained in

the beginning of this section, our language does not target hardware synthesis and

thus may use other internal representations as long as functional and temporal

behaviors of the simulator are accurate. In Harmless, we use an internal model

for the pipeline based on finite automata where each state represents a state of

the pipeline at a given time, and one transition is taken at each clock cycle. The

objective with this model is to bring a substantial part of the computation time

required to simulate the pipeline in the generation of this automaton, at compile

18

time. Thus, the runtime overhead is lower than when using a classical approach.

This approach is detailed in section 5.

A cycle accurate description of the memory hierarchy (memory cache, memory

latency, etc.) is not presented in this paper and is still a work in progress.

Performance comparison with other simulators, both handwritten and gener-

ated are made in section 7.2

4. Description of the language

Harmless uses 3 views to describe the ISA of the processor (as presented in

Kassem et al. (2009b)):

• the format view deals with the binary format of the instructions;

• the syntax view describes the textual format of the instructions;

• the behavior view describes the behavior of the instructions.

Each view is a set of trees where a node describes a piece of format, behavior or

syntax (i.e. the kind of the node). The temporal behavior is not part of the ISA.

The goal of each description is to share most of the common properties of each

view. So, like in a grammar specification language, each view allows to describe

whether a non-terminal node is built by aggregating sub-nodes (common properties

like addressing modes) or by selecting one node among several. By default, a non-

terminal node aggregates the sub-nodes. The select instruction allows to choose

one sub-node among several (or an aggregate of sub-nodes among several).

Each instruction is represented as a branch in a tree. Instructions sharing a

common part in a view share nodes in the roots of the tree, while specific parts

are located in leaves.

A node may have one or more tags. A set of tags along a branch of a tree is the

unique identifier of an instruction and is called the signature of the instruction.

19

Tags appear in the description part of a node. The syntactical representation of

a tag starts with the ‘#’ character, followed by an identifier. The signature of the

instruction is used to link instructions over the different views.

Let’s consider the ADD instruction of the PowerPC ISA as a guiding example

in the following sections. ADD stores the sum of registers rA and rB into register

rD. It behaves differently if the overflow is computed (suffix o) or if the condition

register is updated (suffix ‘.’). See figure 3.

❛��① ❛��①

❆✁✁

add rD,rA,rB (OE = 0 Rc = 0)

add. rD,rA,rB (OE = 0 Rc = 1)

addo rD,rA,rB (OE = 1 Rc = 0)

addo. rD,rA,rB (OE = 1 Rc = 1)

rD✦ (rA) + (rB)

The sum (rA) + (rB) is placed into rD.

✵ ✂ ✻ ✶✵ ✶✶ ✶✂ ✶✻ ✷✵ ✷✶ ✷✷ ✸✵ ✸✶

✄☎ ❉ ✆ ❇ ❖❊ ✝✞✞ ❘❝

Figure 3: Representation of the add instruction in the PowerPC instruction set (Freescale (2005)).

D, A and B refers to register indexes. Combinations of the Rc and OE fields give 4 instruction

variants.

4.1. The format view

The format view describes the binary format of the instructions. It extracts

both the opcode and fields that are used in other views (behavior and syntax). By

default, a node aggregates the different declarations. The format tree representa-

tion of the ADD instruction is presented in figure 4.

The root node (Instruction) has to distinguish the add instruction in the

whole instruction set, based on a part of the binary code, in this case, the 6 most

20

#add

011111--

------10

0001010-

Instruction

StatusMayUpdate

#noStatus

#useStatus
#rd

rd

#ra

ra

#rb

rb

OvMayUpdate

#noOv

#useOv

011111--

------10

00010100

011111--

------10

00010101

011111--

-----010

0001010-

011111--

-----110

0001010-

Figure 4: Tree representation of the ADD instruction format and its 4 variants. Binary numbers

on top of nodes represent the binary format of instruction part. Node names are given under

nodes, if this is appropriate.

21

significant bits (bits 31 to 26) and the 11 less significant bits (bits 10 to 0). Note

that contrary to the PowerPC instruction set, Harmless considers bit 0 as the least

significant bit. So bits 31 to 26 in the Harmless description are bits 0 to 5 in figure

3 and bits 10 to 0 are bits 21 to 31.

The root node description would be:

1 format I n s t r u c t i o n −− de code opcode

2 select s l i c e { 3 1 . . 2 6 , 1 0 . . 0 }

3 case \m011111_−10_0001_010− i s

4 inst_add

5 case . . .

6 end select

7 end format

The select structure uses a bit mask (a binary number prefixed by \m) to indi-

cate which part of the slice is meaningless for the differentiation of the instructions:

bits denoted with the ‘-’ are irrelevant for the comparison. The underscore (‘_’) is

not taken into account and is used only to ease the readability. In that description,

if an instruction has the 6 most significant bits (bits 31 to 26) as 011111 and the

11 less significant bits as -100001010-, then this is an ADD instruction: the format

node inst_add is referenced.

The inst_add would be:

1 format inst_add

2 #add

3 StatusMayUpdate

4 rd

5 ra

6 rb

7 OvMayUpdate

22

8 end format

This node is the aggregation of:

• a tag, that will be used to identify an instruction (through its signature):

#add;

• calls to different other sub-nodes that are aggregated.

The StatusMayUpdate sub-node differentiates instructions that update the

condition code register (CCR) from others. The bit 0 (field Rc) is used here:

1 format StatusMayUpdate

2 select s l i c e {0}

3 case 0 i s #noS t a t u s

4 case 1 i s #u s e S t a t u s

5 end select

6 end format

The OvMayUpdate sub-node differentiates instructions that update the overflow

flag, based on bit 10 (field OE). Its structure is identical and provides either tag

#noOv or tag #useOv.

Sub-nodes ra, rb and rd refers to field operand extraction. They could be

declared directly inside the inst_add node, but with this approach, the rd node

may be called by other nodes (register operands are often at the same place in an

instruction set).

1 format rd

2 #rd

3 rD := s l i c e {25 . . 2 1}

4 end format

23

At line 3, a format field is extracted from the binary code of the instruction: rD

is obtained from the 5 bits (25 to 21). A slice may be signed or unsigned and has

an implicit type that depends on the number of bits it uses. In the example above,

rD is an unsigned 5 bits integer (u5 type in Harmless). Some basic operations

like left or right shifting and field concatenation may be performed when a field is

extracted.

Eventually, the description of the add instruction leads to generate 4 branches

in the description tree (see figure 5), with the definition of 4 instructions in Harm-

less.

Figure 5: Graphical representation of the description tree generated for the 4 variants of the add

instruction.

4.1.1. Variable-length instructions

Harmless format description supports variable-length instructions. When an

instruction is lengthened by adding a slice, the new length is valid for all the

children nodes but not for the sibling or parent nodes which use the previous in-

struction length. The incremental instruction description is flexible: an addressing

mode that requires to decode an extra word is described only once, even if other

instructions use it in another place (there was another word added earlier in the de-

24

scription tree). Here is an example extracted from the Atmel AVR instruction set.

Instruction binary code uses 16 bits on most instructions, except the CALL and JMP

that requires an extra word, as indicated by the ‘+’ in slice {15..0}+{15..0}

line 3 of the following description. The addr operand extracts 24 bits from this

instruction line 5.

1 −− opcode i s :

2 −− 1001 010K KKKK 11−K KKKK KKKK KKKK KKKK

3 format l ongCa l l s l i c e {15 . . 0}+{15 . . 0}

4 #LONGCALL

5 addr := s l i c e { 8 . . 4 , 0 } { 1 5 . . 0 }

6 select s l i c e {15 . . 9 , 3 . . 1}{ −}

7 case \b1001_010_111 i s #CALL

8 case \b1001_010_110 i s #JMP

9 end select

10 end format

4.1.2. Sub-format reuse

In some occasion, the same sub-format is used in more than one place (the

addressing mode is used twice). To differentiate same sub-formats, a tag suffix

should be added to the node name. For instance, in the HCS12 description, the

indexed addressing mode sub-format (xb_am) may be used in both the source and

the destination operands. This is indicated using the following description:

1 format idx_idx

2 xb_am@SRC

3 xb_am@DST

4 end format

25

where @SRC and @DST are the suffix (added at the end of sub-formats, to

differentiate them).

4.2. The syntax view

The syntax view describes the textual format of the instructions that is suitable

for program disassembly. This view is not required to generate only a simulator,

however this could help to disassemble programs during the debugging phase2.

This view binds a textual syntax to each instruction signature. As in the

format view, syntax nodes are associated to tags that are part of the signature.

The textual representation of the instruction is built by concatenating character

strings along the branch of the instruction description.

To highlight syntax description characteristics, we use the same example than

in the previous section, with the 4 variants of the add instruction. Its signature is:

#add, either #noStatus or #useStatus, #rd, #ra, #rb and either #noOv or #useOv.

The root node is:

1 syntax addInst

2 #add

3 "add"

4 useOvFlag

5 useStatus

6 " "

7 AMrDrArB

8 end syntax

Line 2 refers to a tag. Line 3 and 6 are simple character strings: These are parts

2For instance, the comparison of the disassembly generated by Harmless and by the GNU

objdump disassembler helped to validate both binary and syntax descriptions of PowerPC, ARM

and AVR ISA.

26

of the instruction mnemonic. useOvFlag and useStatus and AMrDrArB refers to

sub-nodes.

1 syntax useOvFlag

2 select

3 case #noOv

4 −− n o t h i n g t o w r i t e

5 case #useOv

6 "o"

7 end select

8 end syntax

As previously explained in the ISA description in figure 3, the add instruction

that deals with overflow flags is appended with a ‘o’ at the end of the mnemonic.

the useStatus nodes has the same structure and adds a ‘.’ at the end of the

mnemonic if the status register (CCR) should be updated. The AMrDrArB embeds

the syntactical description of all triadic instructions and refers to operand fields

decoded in the format part. Fields are typed (u5 here) and are checked against

the format view:

1 syntax AMrDrArB #rd #ra #rb

2 f i e ld u5 rD

3 f i e ld u5 rA

4 f i e ld u5 rB

5 "r\d,r\d,r\d" , rD , rA , rB

6 end syntax

In a syntax node, standard complex control structures such as if...then...else

can be used. This is needed to give more flexibility to the syntax. For instance,

when a field has a special value, the instruction may be viewed as a special one too.

This is often the case in RISC instruction sets, such as the PowerPC, where the

27

addi rD,0,value (add immediate) instruction translates to the simplified syntax

li rD,value (load immediate):

1 syntax addi

2 #add i #rd #ra #simm #noS t a t u s #noOv

3 f i e ld u5 rA

4 f i e ld u5 rD

5 f i e ld s16 SIMM

6 i f rA = 0 then

7 "li r\d,\d" , rD ,SIMM

8 else

9 "addi r\d,r\d,\d" , rD , rA , SIMM

10 end i f

11 end syntax

4.3. The behavior view

This last view is the most complex one. The behavior view binds a behavior to

each instruction signature and provides a way to describe the components which are

accessed by instructions. The description of the components is made in an object-

oriented way and contains data as well as methods. Methods are used by the

instruction set. For instance, a register file component provides read from register

and write to register methods; an Arithmetic and Logic Unit component provides

add, subtract, bitwise or, bitwise and, xor methods; a memory component provides

read and write methods with several data width. However, the description is only

functional and the time needed to invoke a method provided by a component or

the concurrency allowed to a method are not described at that stage but in the

microarchitecture view as shown in section 4.4.

For instance the following description shows a part of the alu component and

one of its methods for the PowerPC model:

28

1 component ALU {

2 −− c o n d i t i o n r e g i s t e r i s s p l i t i n 8 p a r t s

3 register u32 CR{

4 CR0 := s l i c e {31 . . 2 8}

5 CR1 := s l i c e {27 . . 2 4}

6 CR2 := s l i c e {23 . . 2 0}

7 CR3 := s l i c e {19 . . 1 6}

8 CR4 := s l i c e {15 . . 1 2}

9 CR5 := s l i c e {11 . . 8 }

10 CR6 := s l i c e {7 . . 4 }

11 CR7 := s l i c e {3 . . 0 }

12 }

13

14 −− upda t e CR0 when needed

15 void updateStatus (u33 r e s u l t) {

16 s32 tmp := (s32) (r e s u l t { 3 1 . . 0 })

17

18 i f tmp = 0 s then

19 CR.CR0 := 2 −− EQ

20 e l s e i f tmp > 0 s then

21 CR.CR0 := 4 −− GT

22 else

23 CR.CR0 := 8 −− LT

24 end i f

25

26 CR.CR0{0} := XER.SO −− I n t e g e r e x c e p t i o n r e g i s t e r summary

o v e r f l o w b i t

27 }

29

28 −− . . .

29 }

As for the two other views, the remaining of the behavior view is a set of

nodes which describes a piece of behavior. A behavior node contains a declaration

section with local variable declarations and other behavior node references, and

one or more do blocks to specify the algorithm of the instruction.

Harmless is a strongly-typed language. Since it is targeted at instruction set

description, it offers signed and unsigned data types with any number of bits.

The language has some important features. For instance, the sum of two n-bit

words produces an n + 1-bit result, thus the result is not truncated. This way,

the implementation of the carry or overflow computation is easier. Operators to

extract and concatenate bit fields are provided:

1 u16 va l1 := \x5500

2 u16 va l2 := \x0055

3 u17 r e s u l t := val1+val2 −− 17 b i t s

4 u1 car ry := r e s u l t {16} −− on l y MSB

5 u16 va lResu l t := r e s u l t { 15 . . 0 }

The following description is the behavior of the PowerPC ADD instruction:

1 behavior add_inst #rd #ra #rb #add

2 f i e ld u5 rD

3 f i e ld u5 rA

4 f i e ld u5 rB

5 u33 r e s u l t

6 u32 op1

7 u32 op2

8 do

9 op1 := SRU.GPR. read32 (rA) −− Sys tem R e g i s t e r Un i t Gene ra l

30

Purpose R e g i s t e r

10 op2 := SRU.GPR. read32 (rB)

11 r e s u l t := ALU. addInt (op1 , op2)

12 end do

13 select

14 case #useOv

15 do ALU. updateOverflow (r e s u l t) end do

16 case #noOv

17 end select

18 select

19 case #u s e S t a t u s

20 do ALU. updateStatus (r e s u l t) end do

21 case #noS t a t u s

22 end select

23 do

24 SRU.GPR. wr i te32 (rD , r e s u l t { 3 1 . . 0 })

25 end do

26 end behavior

Here, the add_inst behavior declares 3 local variables to store the registers

contents (op1 and op2) and the result of the operation. Then, it performs the

addition, using the related component (ALU.addInt). Eventually, the 4 variants

of the instructions are described (related to the overflow and the status register)

and the result is written back. Other behaviors may be called to describe the tree.

4.4. The microarchitecture view

The microarchitecture view describes the microarchitecture (i.e. pipeline, hard-

ware constraints) that implements the instruction set of the processor. It maps

the instruction set behavior view onto the microarchitecture description using the

31

components as shown hereafter on figure 6. This work presented in this section

is based on work previously published in Kassem et al. (2009a) with some correc-

tions about the pipeline description and extensions about the simulator generation.

Moreover, each device is now an instance of a component. Since the instruction

set refers to components, it remains independent of a specific microarchitecture

while devices allow to specify more than one instance of a component.

The microarchitecture is described in architecture and pipeline subviews.

The architecture subview is the interface between a set of hardware components

(e.g., registers, memory, ALU) and the definition of the pipeline. It allows to

express hardware constraints having consequences on the temporal sequence of

the simulator. It may contain many devices to control the concurrency between

instructions to access the same component.

Every device in the architecture is related to one component. The methods

of a component can be accessed by a port that allows to control the competition

during access to one or many methods. A port may be private to the microarchi-

tecture or shared (i.e. the port is not exclusively used by the microarchitecture, it

can be used by other bus masters for instance).

The pipeline subview describes a pipeline. A pipeline is mapped onto an

architecture subview and all stages are listed in order. In each stage, devices and

ports that can be accessed by the instruction set (through components’ methods)

are enumerated.

For instance, let’s consider the PowerPC 5516 (e200z1 core, Freescale (2008)).

The e200z1 core has 4 pipeline stages:

IFETCH Instruction Fetch From Memory;

DECODE/EA Instruction Decode / Register Read /

Operand Forwarding / Effective Address Calculation;

32

EXECUTE/MEM Instruction Execution / Memory Access;

WB Write Back to Registers

Needed devices and ports are:

• the memory with a fetch port for instruction fetch and a read/write port for

data access (program and data may be accessed simultaneously when they

are stored in flash memory and static ram respectively);

• the register file with a read port supporting 3 simultaneous reads and a write

port supporting 2 simultaneous writes;

• the arithmetic and logic unit;

• the effective address calculation unit;

• the branch processing unit.

The microarchitecture of this microprocessor is described through the 2 ob-

jects (architecture subview and pipeline subview). The description of the first

object (architecture) is as follows:

1 architecture PPC5516 {

2 device SRUDev : SRU {

3 read i s GPR. read8 | GPR. read16 |

4 GPR. read32 | spr . read

5 write i s GPR. wr i t e8 | GPR. wr i te16 |

6 GPR. wr i te32 | spr . write

7 port r s : read (3) ;

8 port rd : write (2) ;

9 }

10

33

11 device ALUDev : ALU {

12 −− an empty method l i s t means a l l t h e methods

13 port a l l ;

14 }

15

16 device EAUDev : e f f ec t ive_addres s_Unit {

17 port ef fAddrUnit : eff_addr_add ;

18 }

19

20 device memDev : mem {

21 read i s ram . read8 | ram . read16 |

22 ram . read32

23 write i s ram . wr i t e8 | ram . wr i te16 |

24 ram . wr i te32

25 shared port fetch : read ;

26 shared port l oadStore : read or write ;

27 }

28

29 device BPUDev : BPU {

30 port branch : absBranch ;

31 }

32 }

In this description, the devices are declared. For example, the device memDev

controls the concurrency to access the mem component (i.e. memory) by two shared

ports fetch and loadStore (i.e. this access can be made concurrently by other

bus masters). The port loadStore allows to access the methods read or write.

This is an exclusive access, i.e. if an instruction uses read in a stage of the pipeline,

the second method write may not be used concurrently. Read is an alias of read8,

34

read16 and read32 methods.

ALUDev.all

SRUDev.rs

SRUDev.rd

memDev.fetch

microarchitecture view

pipeline subview

behavior view

architecture subview

ADD:

mem.read

SRU.read

SRU.read

ALU.add

SRU.write

WBIFETCH DECODE_EA EXECUTE_MEM

Figure 6: Mapping of the instruction set behavior view onto the microarchitecture view using

component access. On the left, methods of components accessed by the ADD instruction are

shown. They are mapped onto the 4-stage pipeline, using devices, and ports that control the

concurrency between component accesses.

Sometimes, using any method of a component makes it unavailable. Instead of

forcing the user to give the list of all methods, an empty list (without the ‘:’) is

interpreted as a full method list. The ALUDev device uses this scheme in line 13 in

the example above .

The second object pipeline can be described as illustrated in the example

below.

1 pipeline e200z1 maps to PPC5516 {

2

3 stage IFETCH {

4 memDev : fetch

5 }

6

35

7 stage DECODE_EA {

8 BPUDev : branch

9 SRUDev : r s

10 EAUDev : ef fAddrUnit

11 }

12

13 stage EXECUTE_MEM {

14 ALUDev : a l l

15 memDev : l oadStore

16 }

17

18 stage WB {

19 SRUDev bypass in DECODE_EA : rd

20 }

21 }

In this example, the pipeline of the e200z1 core is declared and mapped on

the PPC5516 architecture. In this object, the devices and their ports as well as the

keywords (read and write) are used (see figure 6).

Contrary to Kassem et al. (2009a), there is no component method declared in

the pipeline description, but devices’ ports defined in the architecture subview.

Moreover, the internal modeling of instruction has been enhanced. It allows both

to take into account more complex instructions and to validate the correct mapping

of instructions onto the pipeline, see section 7.1.1.

When using a port in a pipeline stage, it is implicitly taken at the start of the

stage and released at the end of this stage. If a port needs to be held for more

than one stage, the stage where it is released is explicitly given.

The data forwarding can be also expressed in Harmless. Data forwarding is

36

indicated by the keyword bypass in followed by a list of pipeline stages as shown

at line 19 in the pipeline description above. Without the bypass in, forthcoming

instruction would wait until the end of WB to start their DECODE_EA. With it, the

result that will be written in port rd is available in the DECODE_EA stage of the

next instruction. So, the next instruction in the pipeline, even if it is dependent,

will not stall.

Let’s consider a second microarchitecture based on the same ISA (PowerPC) to

highlight the adaptability of Harmless: the e200z6 core (Freescale (2004)). Com-

pared to the e200z1, devices and ports are unchanged but this core has a 7-stages

pipeline with:

• 2 fetch stages;

• 1 decode stage, with the branch processing unit;

• 3 stages single path execute pipeline, with overlapped execution and feed-

forwarding;

• 1 write-back stage.

As Harmless clearly splits the instruction set architecture from the microarchi-

tecture view, only the pipeline sub-view should be adapted to get a model of the

e200z6 core from the e200z1 core. The pipeline sub-view of this core is:

1 pipeline e200z6 maps to e200z6Core {

2 stage Fetch1 {

3 memDev : fetch

4 }

5

6 stage Fetch2 {

7 }

8

37

9 stage Decode { −−For Branch P r o c e s s i n g Un i t

10 BPUDev : branch

11 SRUDev : r s

12 EAUDev : ef fAddrUnit

13 }

14

15 stage Execute1 {

16 ALUDev : a l l

17 }

18

19 stage Execute2 {

20 −− no p o r t a c c e s s

21 }

22

23 stage Execute3 {

24 memDev : l oadStore

25 }

26

27 stage Reg i s t e r {

28 SRUDev bypass in Execute2 : rd

29 }

30 }

The 8-entry Branch Target Buffer is not yet taken into account.

As a result, splitting the ISA description in 3 views and using instructions

signatures to bind a view to each others leads to a very flexible description. Having

the microarchitecture described separately adds flexibility by allowing easily the

retargeting of the ISA to a different microarchitecture.

38

5. Pipeline model

This section shows the internal model used for one of the most time-consuming

hardware features to simulate: the pipeline. As Harmless does not mainly target

any design space exploration, the internal pipeline model uses a finite state au-

tomaton and differs significantly from the real one. In this work, as a first step, we

consider only sequential pipelines, what we call a simple pipeline (i.e. no pipelines

working in parallel nor forking pipelines, that we consider as complex pipelines),

but our final goal is to model any of them. Indeed, we consider that a complex

pipeline is composed of a set of simple pipelines synchronized together and there-

fore a set of automata synchronized together. The choice of an automaton allows

to move a part of the required computing time from runtime to build time (done

only once, when generating the simulator). A state of the automaton represents

the pipeline state at a given time (see figure 7): the instruction type is known for

each stage of the pipeline. The link between the internal model and the high-level

microarchitecture description (section 4.4) is explained in section 7.

Figure 7: A state of the automaton represents the state of the pipeline at a given time. In this

example with a 4-stage pipeline, three instructions are in the pipeline at time t, and the ‘D’ stage

was stalled at time t-1. The automaton highlights the pipeline sequence, assuming that there is

only one instruction type (restriction only for clarity reason).

At each clock cycle, the pipeline goes from one state to another depending on

39

a new instruction that enters the pipeline and on hazards. They are classified into

three categories:

• Structural hazards arise from hardware resource conflicts when the hardware

is needed by two or more instructions at the same time;

• Data hazards are the result of a data dependency between instructions;

• Control hazards occur when a branch is taken in the program.

Control hazards are resolved in the simulator at runtime: instructions that

are in the delay slot of a taken branch instruction are dynamically replaced by

stalls. In its current state, Harmless does not handle delayed branches and can-

celled branches but this ability is currently considered. Constraints resulting from

structural and data hazards are used to generate this automaton and modeled

using resources.

5.1. Resources

Resources are defined as a mechanism to describe temporal constraints in the

pipeline. They are used to take account of structural hazards and data hazards.

Two types of resources are defined, internal resources to model static con-

straints and external resources to model dynamic constraints.

5.1.1. Internal resources

They can be compared to resources in (Müller (1993)). They model structural

hazards. An internal resource is fully managed by the pipeline, i.e., the state of

each internal resource (either taken or available) is fully defined by the pipeline

state (each instruction is defined for each stage of the pipeline). In that case,

when the automaton is built (and then the simulator), constraints described by

internal resources are statically resolved when the set of next states is built. So, no

computation overhead is required to check for this type of constraint at runtime.

40

For example, each pipeline stage is guarded by an internal resource. Each

instruction that enters a stage takes the associated internal resource, and releases

that resource when it leaves the stage. The resulting constraint is that each pipeline

stage gets at most one instruction.

As a second example, consider a pipeline associated to an exclusive unified

cache memory. Because concurrent accesses of instruction fetch and data read-

/write are fully defined by the state of the pipeline, an internal resource is used.

5.1.2. External resources

They represent resources that are shared with other hardware components such

as a system bus. It is an extension of internal resources to take into account

resources that must be managed dynamically (i.e., during the simulation). The

state of each external resources is required to choose the appropriate transition to

take.

For instance, in the case of a non exclusive memory controller, the pipeline

is locked if it performs a request whereas the controller is busy. Otherwise, the

pipeline stage that requests the memory access takes the resource. The memory

controller is not exclusive if other hardware components can perform a memory

access, such as a DMA or other peripherals.

An external resource is also used to check for data hazards. This external

resource is called the data dependency controller. Let’s consider a pipeline model

with 4 stages (Fetch, Decode, Execute and Write back) and no data forwarding,

as in figure 8. Operands are read in the Decode stage and written back in the

Write back stage. When an instruction is in the Fetch stage (step 1©), it checks

that all required registers are available (registers that will be read in the next

stage). This is one of the cases where the pipeline model differs from the real one.

Indeed checking the availability of registers cannot be done before the Decode

stage in the real pipeline. This operation updates the controller and its associated

41

external resource to either available or busy. The external resource state changes

the next transition taken in the internal automaton and thus the pipeline model

behavior: either it inserts a stall in the pipeline if the resource is busy, or it allows

instruction in the Fetch stage to get in the next stage. When an instruction enters

in the Decode stage, it first locks (step 2©) registers that will be updated (registers

with write access). These registers are unlocked in the Write Back stage (step 3©).

Figure 8: Interaction between the Data Dependency Controller and the pipeline model.

5.2. Instruction classes

To reduce the automaton state space, instructions that use the same resources

(internal and external) are grouped into instruction classes.

The number of instruction classes is limited to 2Rext+Rint (Rext and Rint are

respectively the number of external and internal resources in the system), but this

maximum is not reached because some internal resources, such as those preventing

more than one instruction to enter a pipeline stage, are shared by all instructions,

which leads to a lower number of instruction classes.

5.3. Internal finite automaton

The automaton represents all the possible simulation scenarios of the pipeline.

A state of the automaton represents a state of the pipeline, which is defined as the

list of all pairs (instruction class, pipeline stage) in the pipeline at a given time.

42

For a system with c instruction classes, there are c + 1 possible cases for each

pipeline stage s of the pipeline (each instruction class or empty). The automaton

is finite because it has at most (c + 1)s states. The initial state is the one that

represents an empty pipeline (i.e. all stages are empty). A transition is taken at

each clock cycle and its condition depends only on:

• the state of the external resources (busy or available);

• the instruction class of the next instruction that can be fetched in the

pipeline.

Internal resources are already resolved in the generated automaton and do not

appear in the conditions of the transitions. Other instructions in the pipeline

are already known for a given automaton state, thus only the next instruction

that will be fetched is necessary. This kind of transition condition is called a

basic condition. As many different conditions can appear to go from one state to

another, the transition condition is a disjunction of basic conditions.

The number of possible transitions is limited to at most c×2Rext for each state

(c is the number of instruction classes and Rext is the number of external resources

in the system). It implies that there are at most (c+2)s× 2Rext transitions for the

whole automaton.

6. Instruction Set Simulator generation

This section gives some details about the automatic simulator generation from

the instruction set description. First, the instruction model is introduced. Then,

the decoder generation is explained. Moreover, in order to speed up the simu-

lation process, an improvement using a software-based instruction cache is pre-

sented. Finally, some results on the generation process are given for four processor

descriptions.

43

6.1. Instruction Modeling

As indicated in section 4, in a Harmless description, an instruction corresponds

to a path in the tree. This approach allows the sharing of common parts among

different instructions. During the generation process, the tree structure will be

flattened and the generator will duplicate the common parts of the description in

the generated code for simulation efficiency (elimination of many function calls).

A C++ class represents an instruction and offers three main methods: the

constructor, the execution and the mnemonic functions.

6.1.1. The constructor

It is associated to the decode operation. Its goal is to identify the various

fields of the instruction binary code (register index, immediate, address), and

store values in the new object instance. The simulator context is never affected

by this operation.

6.1.2. The mnemonic function

This function returns a string containing the instruction mnemonic. It is as-

sociated to the syntax description in Harmless (section 4.2) and used for disas-

sembling. In the same way as the constructor, this function does not modify the

simulator context. If no syntax description is given for an instruction, a default

one is provided, returning the internal name of the instruction that is built from

the signature.

6.1.3. The execution function

This function is in charge of simulating the instruction execution. It is directly

linked to the instruction behavior description in Harmless (section 4.3). Using the

previous example based on the addition instruction, this function will read the

value of the 2 source registers, perform the addition and update the flag register,

44

and finally write back the result in the destination register. Even if the behavior

description is split into multiple parts to take advantage of common behaviors,

this function concatenates each part of the instruction behavior description, thus

removing time-consuming function calls in the generated simulator.

Note that instructions that do not have any behavior description have a default

execution that warns the user when executed. This is helpful when used in an

incremental description approach because a simulator can be generated with an

incomplete instruction set.

6.1.4. Classical interpretive execution approach

The execution of an instruction is initially based on an interpretive approach.

The execution process is given in figure 9 and is done through five consecutive tasks.

First, the decoder phase has to decode the binary code pointed by the program

counter (explained in depth in section 6.2). Then, the instruction object is created

(requiring a memory allocation) and fields are extracted from opcodes. After,

the execution of the instruction is performed and finally the instruction object is

deleted (requiring a memory deallocation). These steps have to be done for each

instruction in the program, and memory allocation/deallocation are particularly

penalizing in computation time. A more efficient approach based on a software-

based instruction cache is explained in section 6.3.

6.2. Decoding phase

The decoder is generated using the format description part. It is an important

part of the simulator generation. Since an instruction is represented as a branch in

a tree, the first operation made is to flatten the tree and to extract all the format

parts used in the description of each instruction. For each format, a couple mask/-

value allows to identify the significant bits and the bits that are not representative.

The condition (mask/value) is applied on the instruction binary code pointed by

45

Figure 9: Different phases to execute one instruction, using an interpretative approach

the program counter.

In order to facilitate computations, the internal representation of conditions

are encoded using Binary Decision Diagrams (BDD). This allows a very simple

verification that the instruction codes do not conflict: if two instructions have the

same binary code, then the conjunction of their BDD is not empty. Computing

the conjunction of the BDDs for all combinations of two instructions is sufficient

to verify that there is no code conflict in the instruction set.

With the internal use of BDDs, we obtain simple conditions, independently of

the underlying description. This means that the description of the format tree

has no influence on generated decoder performances, so many sub-nodes may be

used for readability and easily reuse of common format parts, without simulation

performance loss.

6.3. Efficient decoding phase using a software-based instruction cache

The execution process of the classical interpretive execution approach, pre-

sented in figure 9, has two major structural drawbacks:

• instructions of the embedded software under test inside a loop will be decoded

many times;

46

Figure 10: Execution of an instruction using the internal instruction cache.

• memory allocation/deallocation requires most of the computation time, when

creating and deleting the C++ instruction object;

However, due to the presence of loops, the execution of a program has a strong

temporal locality. To improve the previous approach, we added a software-based

instruction cache during the decoding phase. This instruction cache have only an

impact on computation performances, but does not change in any way the nature

of the simulated hardware. This approach is a simpler version of the Instruction

Set Compiled Simulation (Reshadi et al. (2003)). This cache is internal, it has

only low side effects: the memory containing the program to simulate must not be

modified during simulation because the change may not be taken into account, but

we could consider this by disabling the corresponding instructions in the cache.

This type of situation does not occur for our application field (embedded real-time

systems), and this technique retains all the advantages related to the interpretive

simulation approach (it does not depends on a specific program, as in the compiled

simulation).

47

The simulation principle using a software-based instruction cache is described in

figure 10. The first time the instruction is decoded, the software-based instruction

cache returns a miss and a C++ object of the instruction is allocated as in the

previous approach. The new instruction is stored in the cache (default cache size

is 32K entries). The next time the instruction have to be executed, the instruction

object is in the cache (the cache returns a hit). This way, the simulation time

is reduced because, in the decoding phase, the object allocation and deallocation

and the call to the constructor are removed.

In a Harmless simulator, the software-based instruction cache used is a direct-

mapped cache. This is the easiest to implement and the speediest because there

is no line lookup within the selected set. Experiences show the hit ratio is greater

then 90%.

The internal software-based instruction cache is only intended to speed-up the

computation time, this is not a model of a hardware cache of the CPU.

6.4. Results

In this section, we show some results about the simulator generation process

for different processors:

• The HCS12, which is a CISC processor with a variable-size instruction set

(from 1 to 8 bytes);

• The PowerPC, which is a RISC processor with a fixed instruction size (32

bits);

• The ARM, which is a RISC processor with a fixed instruction size (32 bits);

• The Atmel AVR, which is an 8-bit RISC processor (instruction length is 16

bits), even if some instructions use 32 bits.

48

These results give an overview of simulator performances and are available on

table 1. A simple example, based on calculating a Fibonacci sequence, is simulated

for each processor.

HCS12 PowerPC ARM AVR

Description length (lines) 2925 3208 5122 1408

Instructions generated (nb) 5590 332 341 90

Generation time of the simulator

source code from description (s)

30.4 s 4.3 s 3.5 s 0.4 s

Simulator source code size (C++

lines)
˜ 418000 ˜ 41000 ˜ 128000 ˜ 12000

Time to compile the simulator (s) 545.2 s 32.4 s 116.9 s 11.9 s

Time to execute 100 millions of in-

structions of a basic example (s)

3.2 s 3.2 s 3.7 s 3.8 s

Time to execute 100 millions of in-

structions of a basic example with-

out a software-based instruction

cache (s)

18.6 s 14.6 s 20 s 14.2 s

Table 1: This table presents some results about the ISS simulator generation. Experiments done

on an Intel Core 2 Duo @ 2 GHz (use of only one core)

The RISC-based architectures have fewer instructions than the CISC one that

has more than 5500. The significant number of addressing modes is not the only

reason, this is also due to the HCS12 architecture. Indeed, the HCS12 processor has

only a few registers, and for instance, the instruction that rotates left is expanded

into two instructions ROLA and ROLB, depending on the register considered (A or B).

In the Harmless description, we have two possibilities to describe these instructions.

The first one is to describe one instruction ROLx with one field parameter, and

49

the second one is to describe two different instructions. We chose the second one

to take advantages of the internal software-based instruction cache: increasing the

decoder complexity and simplifying the behavior description (and thus increasing

the simulation speed).

As indicated above, the HCS12 model has more than 5500 instructions, this

increases the time to generate the simulator and to compile the generated C++

files, but these processes are done only once. We can notice that if the verification

of the conflicts in the instruction set is disabled (it is relevant only when describ-

ing the format part), the time to generate simulator sources is reduced to 18.7 s.

Most ARM instructions are conditional, which leads to increase the code of the

behavior of each instruction. An ISS simulator is built in less than 10 minutes for

a CISC-based architecture and in less than 2 minutes in the case of a RISC-based

architecture.

The simulator generation process is executed once for each model. So the most

important point to compare is simulation speed, which refers to the last two lines

of the table 1. We can notice that the computation time required for the four

models are in the same order of magnitude (less than 4 s with a software-based

instruction cache and 20 s without cache). This result shows the importance of a

software-based instruction cache that can prevent multiple decodings of the same

instruction: the suppression of the software-based instruction cache leads to a loss

of 80% in performance.

Finally, the results show the good performance of simulators generated auto-

matically from the description of multiple processors (HCS12, PowerPC, ARM

and AVR). Other simulations are presented in section 7.3, based on the Mibench

benchmark suite.

50

7. Cycle Accurate Simulator generation

This section presents the different steps of the CAS simulator generation from

the description of both the ISA and the processor microarchitecture.

This section first bridges the gap between the microarchitecture description

(section 4.4) and the internal pipeline model (section 5). Then it focuses on the

generation of the internal representation of a sequential pipeline which is a finite-

state automaton. This finite-state automaton generated by p2a is used as an

input of the a2cpp tool. a2cpp generates the C++ code simulating the pipeline

mechanism. Eventually, some results on the simulator generation process from

several descriptions of processors are presented and analyzed.

Figure 11: CAS simulator development chain. Here, we focus on the compiler part that deals with

the generation of the pipeline specification file and the p2a tool that generates the finite-state

automaton from a pipeline specification.

7.1. Generation of the intermediate pipeline representation

The internal pipeline model presented in section 5 is based on several character-

istics such as pipeline stages, instruction classes and constraints through internal

and external resources, while the microarchitecture is described with the architec-

ture view.

51

First, the generation of instruction classes is explained. Then we present the

instruction execution principle in the different stages of the pipeline.

7.1.1. Instruction class generation

Starting from the architecture and behavior views, instructions are grouped

into classes to reduce the automaton size. As indicated above, an instruction class

gathers instructions that use the same port (shared or not) the same number of

times at the same pipeline stage. Each port corresponds to an internal resource

and each shared port corresponds to an external resource.

The instruction class generation is done when mapping instructions onto the

pipeline as in figure 6. The Harmless compiler first builds an oriented graph of

the components’ methods used for each instruction, using the behavior view of the

ISA description.

Then, it matches each graph to the oriented graph of the devices’ ports defined

in the architecture subview, using the pipeline description (algorithm 1). The

52

algorithm recursively explore the oriented graph.
Algorithm 1: The simplified algorithm to map one instruction onto the pipeline

mapInstructionOnPipeline. The device/port oriented graph is built when mapping

the instruction onto the pipeline. Initial parameters are the list of pipeline stages

and the root node of the component’s method oriented graph.

input : stageList // a list of pipeline stages

input : instructionNode // a node of the oriented graph of components’

methods used by instruction

output : bool: mappingFound

bool foundStage ← false

for each pipeline stage in stageList while not foundStage do
foundStage ← component’s method of instructionNode matches one port in

current pipeline stage and this port can be taken

if not foundStage then
remove the stage in stageList;

if foundStage then // start recursion and set device node
bool subOk ← true

// explore subnodes, starting from the current stage (recursion)

for subnodes of instructionNode while subOk do
mappingFound ← mapInstructionOnPipeline(stageList, subnode)

add the node to the graph of devices’ ports accesses.

else
Report an error: "The instruction cannot map onto the pipeline"

It allows to verify that components’ methods are accessed in a correct order so

that the ISA can be mapped onto the pipeline.

To flatten the oriented graph of ports, a port is added in the list of the required

port access if it is present in at least one branch of the graph.

Here is a partial description of the PowerPC addi instruction (add with immediat)

to highlights the mapping. The contents of register R0 is hardwired to 0:

1 i f rA != 0 then

53

2 op1 := SRU.GPR. read32 (rA)

3 else

4 op1 := 0

5 end i f

6 −− add w i t h imm

7 r e s u l t := ALU. addInt (op1 , SIMM)

8 SRU.GPR. wr i te32 (rD , r e s u l t)

A graphical representation of the oriented graph extracted from the behavior of

the ADDI is in the figure 12, including the instruction fetch in memory.

Figure 12: Oriented graph to model the instruction access to components’ methods of the in-

struction ADDI

The corresponding oriented graph of ports usage is in figure 13. It shows all

the valid paths available for the pipeline (model e200z1 defined in section 4.4),

and highlights in bold the graph of the ADDI instruction.

Then, for the ADDI instruction, the following ports are used: memDev.fetch,

SRUDev.rs, ALUDev.all and SRUDev.rd. The port SRUDev.rs is present in only

one branch but it is put in the list of the required port when paths of the graph

are merged. Here the special case of register R0 is removed. The Instructions that

are using the same ports at the same pipeline stage and the same number of times

than this instruction are grouped into the same instruction class.

54

Figure 13: Oriented graph to model the valid paths (devices/ports) of instructions. The path of

the instruction ADDI is highlighted in bold.

The mapping of the instructions onto the pipeline described in this section

differs from the one presented in Kassem et al. (2009a). The latter does not use any

oriented graph, but only a flat list of component’s methods accesses. Consequently,

it does not allow to check that the instruction description maps correctly onto the

pipeline.

In the description of the PowerPC 5516 microarchitecture (see section 4.4)

there are 2 shared ports loadStore and fetch (which are translated to external

resources). In addition, 1 external resource is used to check for data dependencies

during simulation. Other ports are interpreted as internal resources. In the end,

12 resources are used:

• 4 for the pipeline stages (One for each stage);

• 1 for the integer unit management: all;

• 2 to constrain the accesses to System Register Unit’s (SRU) methods: rs

and rd;

55

• 1 for the Branch Processing Unit (BPU): branch;

• 1 for the Effective Address Unit (EAU): effAddrUnit;

• 2 for the memory accesses (external): fetch and loadStore;

• 1 resource to check data dependencies (implicit and external): dataDep.

For this model, 21 instruction classes are generated.

Reduction of the number of instruction classes. The size of the automaton (the

execution model of the pipeline) increases polynomially with the number of in-

struction classes (see section 5.3). This often causes a combinatorial explosion.

Therefore it is interesting to minimize this number.

The number of external resources cannot be reduced because they can be taken

by other hardware components that operate concurrently, such as a memory con-

troller. These resources rule the dynamic constraints that will be solved during

the simulation. So the reduction of instruction classes focuses only on internal re-

sources by eliminating private ports (not shared) that do not represent constraints

on the use of component methods.

For example, let’s consider a processor in which the register bank allow n

accesses in parallel. If we consider all the combinations of instructions in the

pipeline, we can get the combination that requires the maximum of parallel accesses

m that may be done. If this maximum is equal or lower than authorized accesses

in description, there is no constraint and the associated internal resource can be

removed at compile time.

We distinguish two cases for performance reasons:

• if the internal resource can be taken in only one stage of the pipeline, the

resource can be deleted if its usage by all instructions (which require this

resource) does not exceed the usage permitted in the architecture subview;

56

• a general case where it is necessary to test all possible combinations of in-

structions in execution state in the pipeline (their number is given by the

mathematical arrangement As
c, where s is the number of pipeline stages and

c the number of instruction classes), to see if, at any time, the port usage

specified in the architecture subview does not exceed the port capacity (i.e.

no structural hazard can occur). The resource is removed in that last case.

Let’s consider again the example that describes the microarchitecture of the

PPC5516 processor composed of a 4-stage pipeline e200z1 mapped onto the archi-

tecture named PPC5516. Using this model, the 21 instruction classes are reduced

to 2 instruction classes. Indeed, before the reduction, 5 ports (not shared) are

needed (all, rs, rd, effAddrUnit and branch). After the reduction, none of the

unshared ports remains

7.1.2. Internal automaton generation

The internal automaton represents all the possible simulation scenarios of the

pipeline (see section 5.3). The generation of this automaton is performed by the

external tool p2a. p2a takes as input the pipeline specifications based on pipeline

stages, the instruction classes and the resources that have been extracted and min-

imized from the Harmless high level description. Here is presented the generator

algorithm 2, based on a breadth-first exploration graph.

At start the states list contains the initial state of the automaton which is an

empty pipeline. From that initial state, the algorithm computes all the possible

basic conditions and get the set of next states. New next states are added to the

state list. The algorithm does the same computation for each state of the states

list. It stops when there is no new state to add to the states list.

The main function of this algorithm is the one that can get the next automa-

ton state, when a basic condition is known. From a generic pipeline model, this

57

Algorithm 2: Generation of the automaton pipeline model.

- Create a list that contains the initial automaton state;

- Create an automaton, with the initial automaton state;

while list is not empty do

- Get an automaton state in the list (start state);

- Generate all the possible basic conditions (combinations of external

resources, combined with the instruction class of the next instruction fetched);

for each basic condition do
- Get the next automaton state (this is a deterministic automaton), using

the basic condition and the start state;

if the state is not yet included in the automaton then

- Add the new automaton state (target state) in the list;

- Add the new automaton state in the automaton;

- Update (or create) the transition’s condition, by adding a basic

condition (disjunct);

- Remove automaton start state from the list;

58

function computes the next state of the automaton, taking account all the con-

straints brought by resources (internal and external) as shown in the algorithm 3.

A pipeline is modeled as an ordered list of pipeline stages, where each pipeline

stage is an internal resource. In this algorithm, the pipeline stages in the loop are

taken from the last to the first, because the pipeline stage that follows the current

one must be empty to get a new instruction. This algorithm allows to detect sink

states in the automaton (not shown in the algorithm 3, for clarity reason). A sink

state corresponds to deadlock in pipeline and consequently to a wrong description.

Algorithm 3: Function that gets the next automaton state, from a given state,

with a known basic condition.

for each pipeline stage, from the last to the first do

if there is an instruction class in the current stage then
if resources required by the instruction class can be taken in the next

pipeline stage then

- Instruction class releases resources in the current pipeline stage;

if there is a next pipeline stage then

- Instruction class is moved in the next pipeline stage;

- Resources required in the next pipeline stage are taken;

- Instruction class is removed from the current stage;

Combinatorial explosion There is a combinatorial explosion when the com-

plexity of the modeled pipeline increases. As presented in section 5.3, the automa-

ton is bounded by (c+1)s states and (c+2)s×2Rext transitions. The maximum size

of the automaton increases exponentially with the pipeline depth and the number

of external resources, and in a polynomial way with the number of instruction

classes. For short pipelines (typically 5 to 6 stages), no combinatorial explosion is

observed. For deeper pipelines, the automaton may be too big. One of the solution

59

to solve this problem is to split the pipeline into two or more parts to generate

two or more smaller automata that are synchronized using external resources.

7.2. Results

This section shows some results about the generation process and execution of

both ISS and CAS simulators, as well as a comparison with a real target processor.

Eventually, the simulators generated by Harmless are compared to other existing

simulators.

All simulations are done on an Intel Core2Duo@2.4 Ghz processor. The simu-

lator is single threaded and uses only one core.

7.2.1. Generation process

We focus in this section on two widely used instruction sets: ARM(v5) and

PowerPC. The generation of the simulator sources from the Harmless description

is not significant (respectively 9.6s and 4.6s) and the compilation of the simulator

binary takes 140.6s and 59.5s. As these generated simulators are interpreted sim-

ulators, they do not depend on the simulated application software. The generated

process is run only once.

We consider the 2 cycle accurate models defined in section 4.4. The first one is

the PowerPC 5516 from Freescale, with a e200z1 core (Freescale (2008)) having a

4-stages pipeline and the second is a e200z6 core (Freescale (2004)) with a 7-stages

pipeline.

The generation of the simulator sources from the description of the e200z1 and

e200z6 models take 7.8s and 12.9s respectively. The automata modeling these

pipelines have 1405 and 26 913 states respectively. The simulator binary is built

from its C++ sources in 79s and 81s. This is quite acceptable as simulators are

built only once.

60

7.3. Benchmark

We ran theAutomotive and Industrial Control MiBench benchmark suite (Guthaus

et al. (2001)). Even if these benchmarks are dedicated to the automotive context,

they require the use of a filesystem; Harmless has been updated to allow the use

of the host filesystem through stubs. Figure 14 shows the results on the two ISS

and the two CAS models.

ARM (ISS)

PPC (ISS)

PPC (e200z1)

PPC (e200z6)

0 Kinst/s 8 000 Kinst/s 16 000 Kinst/s 24 000 Kinst/s 32 000 Kinst/s 40 000 Kinst/s

throughput

qsort (small) qsort (large) basic math (small)
basic math (large) Susan (small) Susan (large)

Figure 14: Mibench Automotive benchmark. It shows the instruction throughput in Kinst/s.

It shows that the ISS models are really faster than CAS ones, with an aver-

age throughput of 24 000 Kinst/s for the ARM model and 28 000 Kinst/s for the

PowerPC. It compares favorably to other existing simulators. In (Ratsiambahotra

et al. (2009)), T. Ratsiambahotra and al. compared their automatically generated

simulator (using the gliss ADL, based on nML) to other existing ones, using the

same benchmark. Measures were done on a DualCore@3GHz. They get an average

throughput of 6500 Kinst/s for simplesim, the ARM functional simulator of sim-

61

plescalar 4.0 (which is largely used in the architecture research community), and

7800 Kinst/s for the gdb-armulator 6.7, another hand-written functional simulator.

With Gliss, the average throughput was 8500 Kinst/s.

We compared our simulator with a PowerPC ISS simulator generated using

ArchC, using only the "BasicMath" MiBench benchmark because others require

a filesystem access. The PowerPC ISS generated using ArchC runs at 38 800

Kinst/s (37 900 Kinst/s for BasicMath small) while our Harmless PowerPC ISS

runs at 27 900 Kinst/s for the same benchmarks, which makes ArchC 39% faster.

However, the ArchC description is limited to the decoding phase of instruction

and the rest of the simulator is hand coded, including instruction behavior and

simulation engine.

Two ARM simulators are provided with the MADL package. Like ArchC, we

ran only the "BasicMath" MiBench benchmark for same reasons. The ARM ISS

model generated by MADL run at 23 400 Kinst/s while the Harmless ISS model is

at 20 000 Kinst/s. MADL is 17% faster, but some parts of the ISS are also hand-

written (simulation engine). This makes this ISS in an intermediate stage between

an hand-written ISS and a fully generated one. The CAS is a StrongARM-1100

(in-order five-stage classic RISC pipeline) that run the same benchmark program

at 3900 KCycles/s. We modeled the same pipeline architecture on Harmless and

got a throughput of 4200 KCycles/s. Harmless is 8% faster but does not model

the memory hierarchy. Simulation times are in the same order of magnitude.

The Harmless CAS models are nearly 6.5 (e200z1) and 7.8 (e200z6) times slower

than the ISS PowerPC model. Figure 15 compares the throughput of the two CAS

in KCycles/s. Even if the e200z1 has an instruction throughput slightly higher than

the e200z6, the latter has an higher throughput in cycles. For a given number of

instructions, the model with the shortest pipeline (e200z1) is the fastest, but it

also requires less cycles for the same number of instructions. The computation

62

time required are in the same order of magnitude (about 5600 KCycles/s).

PPC (e200z1)

PPC (e200z6)

0 KCycles/s 1!750 KCycles/s 3!500 KCycles/s 5!250 KCycles/s 7!000 KCycles/s

throughput

qsort (small) qsort (large) basic math (small)
basic math (large) Susan (small) Susan (large)

Figure 15: Mibench Automotive benchmark. Throughput of CAS models in KCycles/s.

We can notice that the pipeline depth (from 4 stages to 7 stages) have a very low

influence on the simulation computation time. This is largely due to the internal

model of the pipeline that resolves an important part of dependencies (only 1

instruction per stage for instance) directly during the automaton generation.

7.3.1. Comparison with the real target

This section compares the e200z1 model to the real target, the PowerPC 5516.

The clock frequency of the processor used for the test is 16 MHz. The PowerPC

5516 is targeted to the automotive market and features a e200z1 processing core.

The core is connected to an internal SRAM and to an internal Flash memory by

using a crossbar switch. SRAM and Flash memories may be accessed in parallel

63

without timing penalty. The model has been written according to the e200z1

Reference Manual (Freescale (2008)).

The Mibench are not suitable in this context, as the real target does not have

any filesystem. We used a simple example based on Trampoline, a Real-Time

Operating System (RTOS)3. The example is composed of 3 tasks that activate

each others in a cyclic pattern. It produces numerous preemptions. Most of the

code is composed of system calls of the RTOS. The program is put in the flash

memory and the data in the SRAM memory.

Application execu-

tion time (in cycles)

CPI

Model 42014 1.57

Real target 44110 1.65

Error percentage 4.75%

Table 2: Comparison of the e200z1 PowerPC core model with the real target, in cycles. CPI

stands for Cycles Per Instruction.

The time taken for a cycle was measured on the real target and the same has

been computed using the Harmless simulator. Table 2 gives an overview of the

simulator accuracy compared to the real target. We can notice that the CAS

simulator accuracy, generated from the PowerPC 5516 processor description in

Harmless, is good and very close to reality: the obtained error is less than 5%

for both measurements, which is widely acceptable. The difference comes from

undocumented timings of the e200z1 core that are not modeled in Harmless. For

instance, two loads from memory using the same register as target incur a 1 cycle

stall in the pipeline, a case that is not documented. However, the model could

3Trampoline is a (RTOS) distributed as free software, compatible with the automotive stan-

dard AUTOSAR 3.1 SC 4 (http://trampoline.rts-software.org/).

64

http://trampoline.rts-software.org/

be tuned to encompass the undocumented timings. By using special purpose pro-

grams to measure the execution time of sequences of instructions, the documented

timings can be checked and the undocumented ones can be brought out.

8. Conclusion

As the complexity and sophistication of real-time embedded systems increase,

validation tools at each step of the design cycle are more and more needed. This

is also true for the simulation of the actual code of embedded applications. De-

velopment of hardware simulators by hand is a lengthy, difficult and error-prone

task, especially for complex pipelined processors.

Providing a quick and efficient means to generate a simulator of the hardware

platform requires to use an ADL. The design of Harmless addresses this issue.

Harmless has been designed to describe a processor in a modular way. The descrip-

tion of the instruction set uses 3 decoupled views (format, behavior and syntax)

to allow to choose the best description for each view. This part of the description

is used to generate an ISS. A fourth view describes the microarchitecture: pipeline

and component access constraints. Having a separate view is more flexible as it

enables to describe several microarchitectures for the same instruction set.

The microarchitecture view and the behavior view are used to synthesize a

finite-state automaton where a state is the state of the pipeline at a given time.

Experiments on the CAS show that this pipeline model limits the impact of the

pipeline depth on the computation time.

Currently, a Harmless compiler exists and generates an instruction set simulator

or a cycle accurate simulator. The performances of the simulators are good and

compare favorably to existing simulators. A prototype of Harmless compiler can

be downloaded at http://harmless.rts-software.org.

Future work will focus on the minimization of the automaton, the use of mul-

65

tiple automata to model and simulate superscalar processors. How to model dy-

namic superscalar processors, including speculative execution is also planned. At

last, device modeling will be investigated to generate simulators of a complete

microcontroller.

References

Azevedo, R., Rigo, S., Bartholomeu, M., Araujo, G., de Araujo, C. C., Barros,

E., 2005. The archc architecture description language and tools. International

Journal of Parallel Programming 33 (5), 453–484.

Bashford, S., Bieker, U., Harking, B., Leupers, R., Marwedel, P., Neumann, A.,

Voggenauer, D., 1994. The mimola language version 4.1. Tech. rep., Lehrstuhl

Informatik XII University of Dortmund, Dortmund.

Béchennec, J.-L., Briday, M., Alibert, V., june 2011. Extending harmless architec-

ture description language for embedded real-time systems validation. In: 6th

IEEE International Symposium on Industrial Embedded Systems (SIES’11),

Västerås, Sweden.

Fauth, A., Knoll, A., 1993. Automated generation of dsp program development

tools using a machine description formalism. In: International Conference on

Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp. 457–460.

Fauth, A., Praet, J. V., Freericks, M., 1995. Describing instruction set processors

using nml. In: EDTC ’95: Proceedings of the 1995 European conference on

Design and Test. IEEE Computer Society, Washington, DC, USA, p. 503.

Freericks, M., 1991. The nml machine description formalism. Tech. Rep. 1991/15,

Computer science department, TU Berlin, Germany.

66

Freescale, 2004. e200z6 PowerPC Core Reference Manual. Freescale Semiconduc-

tor, Inc.

Freescale (Ed.), 2005. Programming Environments Manual for 32-Bit Implemen-

tations of the PowerPCTM Architecture. Freescale semiconductor.

Freescale, 2008. e200z1 Power Architecture Core Reference Manual. Freescale

Semiconductor, Inc.

Guthaus, M. R., Ringenberg, J. S., Ernst, D., Austin, T. M., Mudge, T., Brown,

R. B., 2001. Mibench: A free, commercially representative embedded benchmark

suite. In: Proceedings of the Workload Characterization, 2001. WWC-4. 2001

IEEE International Workshop. IEEE Computer Society, Washington, DC, USA,

pp. 3–14.

Hadjiyiannis, G., Hanono, S., Devadas, S., 1997. Isdl: an instruction set descrip-

tion language for retargetability. In: DAC ’97: Proceedings of the 34th annual

conference on Design automation. ACM, New York, NY, USA, pp. 299–302.

Hadjiyiannis, G., Hanono, S., Devadas, S., september 2000. Isdl: An instruction

set description language for retargetability and architecture exploration. Design

Automation for Embedded Systems, Springer 6 (1), 39–69.

Hadjiyiannis, G., Russo, P., Devadas, S., 1999. A methodology for accurate per-

formance evaluation in architecture exploration. In: DAC ’99: Proceedings of

the 36th annual ACM/IEEE Design Automation Conference. ACM, New York,

NY, USA, pp. 927–932.

Halambi, A., Grun, P., al., March 1999. Expression: A language for architecture

exploration through compiler/simulator retargetability. In: European Confer-

ence on Design, Automation and Test (DATE), Munich, Germany. pp. 485–490.

67

Hanono, S., Devadas, S., 1998. Instruction selection, resource allocation, and

scheduling in the aviv retargetable code generator. In: DAC ’98: Proceedings

of the 35th annual Design Automation Conference. ACM, New York, NY, USA,

pp. 510–515.

Hoffmann, A., Meyr, H., Leupers, R., 2002. Architecture Exploration for Embed-

ded Processors with LISA. Kluwer Acaddemic Publishers.

Kassem, R., Briday, M., Béchennec, J.-L., Savaton, G., Trinquet, Y., Septem-

ber 2009a. Cycle accurate simulator generation using harmless. In: Eurosis

(Ed.), International Middle Eastern Multiconference on Simulation and Mod-

elling (MESM’09), Beirut, Lebanon.

Kassem, R., Briday, M., Béchennec, J.-L., Trinquet, Y., Savaton, G., March 2009b.

Instruction set simulator generation using harmless, a new hardware architecture

description language. In: 2nd International Conference on Simulation Tools and

Techniques Simutools’09.

Kranen, K., july 2006. SystemC 2.2.1 User’s Guide. Synopsys, Inc.

Lohr, F., Fauth, A., Freericks, M., 1993. Sigh/sim – an environment fo retargetable

instruction set simulation. Tech. Rep. 1993/43, Computer science department,

TU Berlin, Germany.

Mishra, P., Dutt, N. (Eds.), 2008. Processor description languages. Morgan Kauf-

mann Publishers.

Müller, T., 1993. Employing finite automata for resource scheduling. In: MICRO

26: Proceedings of the 26th annual international symposium on Microarchitec-

ture. IEEE Computer Society Press, Los Alamitos, CA, USA, pp. 12–20.

68

Paakki, J., 1995. Attribute grammar paradigms—a high-level methodology in lan-

guage implementation. ACM Comput. Surv. 27 (2), 196–255.

Panda, P. R., 2001. SystemC: A modeling platform supporting multiple design

abstractions. International Symposium on System Synthesis 0, 75–80.

Pees, S., Hoffmann, A., Zivojnovic, V., Meyr, H., 1999. Lisa - machine description

language for cycle-accurate models of programmable dsp architectures. In: DAC

’99: Proceedings of the 36th ACM/IEEE conference on Design automation.

ACM, New York, NY, USA, pp. 933–938.

Qin, W., 2004. Modeling and description of embedded processors for the develop-

ment of software tools. Ph.D. thesis, Princeton University, Princeton, NJ.

Qin, W., Rajagopalan, S., Malik, S., June 2004. A formal concurrency model based

architecture description language for synthesis of software development tools.

In: Conference on Languages, Compilers, and Tools for Embedded Systems

(LCTES’04). Washington, DC, USA.

Rajesh, V., Moona, R., 1999. Processor modeling for hardware software code-

sign. In: VLSID ’99: Proceedings of the 12th International Conference on VLSI

Design - ’VLSI for the Information Appliance’. IEEE Computer Society, Wash-

ington, DC, USA, p. 132.

Ratsiambahotra, T., Cassé, H., Sainrat, P., 2009. A versatile generator of instruc-

tion set simulators and disassemblers. In: SPECTS’09: Proceedings of the 12th

international conference on Symposium on Performance Evaluation of Computer

& Telecommunication Systems. IEEE Press, Piscataway, NJ, USA, pp. 65–72.

Reshadi, M., Mishra, P., Dutt, N., 2003. Instruction set compiled simulation: a

technique for fast and flexible instruction set simulation. In: DAC ’03: Proceed-

69

ings of the 40th annual Design Automation Conference. ACM, New York, NY,

USA, pp. 758–763.

Target, June 2003. Chess/checkers: a retargetable tool-suite for embedded proces-

sors. Technical white paper, retreived on http://www.retarget.com.

Zimmermann, G., 1979. The mimola design system a computer aided digital pro-

cessor design method. In: DAC ’79: Proceedings of the 16th Design Automation

Conference. IEEE Press, Piscataway, NJ, USA, pp. 53–58.

Zivojnovic, V., Pees, S., Meyr, H., 1996. LISA - machine description language

and generic machine model for hw/sw co-design. In: IEEE Workshop on VLSI

Signal Processing. pp. 127–136.

70

	Introduction
	Related work
	Classification
	Behavioral ADLs
	nML
	ISDL

	Structural ADLs
	Mixed ADLs
	LISA
	EXPRESSION
	MADL
	ArchC

	Harmless requirements
	A simulation oriented mixed ADL
	Incremental and flexible description of the ISA
	Independent description of the microarchitecture
	A concise description
	An easy to check description
	Good runtime simulation performances

	Description of the language
	The format view
	Variable-length instructions
	Sub-format reuse

	The syntax view
	The behavior view
	The microarchitecture view

	Pipeline model
	Resources
	Internal resources
	External resources

	Instruction classes
	Internal finite automaton

	Instruction Set Simulator generation
	Instruction Modeling
	The constructor
	The mnemonic function
	The execution function
	Classical interpretive execution approach

	Decoding phase
	Efficient decoding phase using a software-based instruction cache
	Results

	Cycle Accurate Simulator generation
	Generation of the intermediate pipeline representation
	Instruction class generation
	Internal automaton generation

	Results
	Generation process

	Benchmark
	Comparison with the real target

	Conclusion

