Locally identifying coloring in bounded expansion classes of graphs
Daniel Gonçalves, Aline Parreau, Alexandre Pinlou

To cite this version:
Locally identifying coloring in bounded expansion classes of graphs

Daniel Gonçalves† Aline Parreau‡ Alexandre Pinlou†§

July 10, 2013

Abstract
A proper vertex coloring of a graph is said to be locally identifying if (i) the vertex-coloring is proper (i.e. no adjacent vertices receive the same color), and (ii) for any adjacent vertices u, v, the set of colors assigned to the closed neighborhood of u differs from the set of colors assigned to the closed neighborhood of v whenever these neighborhoods are distinct. The locally identifying chromatic number of a graph G (or lid-chromatic number, for short), denoted by $\chi_{lid}(G)$, is the smallest number of colors required in any locally identifying coloring of G.

1 Introduction
A vertex-coloring is said to be locally identifying if (i) the vertex-coloring is proper (i.e. no adjacent vertices receive the same color), and (ii) for any adjacent vertices u, v, the set of colors assigned to the closed neighborhood of u differs from the set of colors assigned to the closed neighborhood of v whenever these neighborhoods are distinct. The locally identifying chromatic number of the graph G (or lid-chromatic number, for short), denoted by $\chi_{lid}(G)$, is the smallest number of colors required in any locally identifying coloring of G.

Locally identifying colorings of graphs have been recently introduced by Esperet et al. [6] and later studied by Foucaud et al. [7]. They are related to identifying codes [8, 9], distinguishing colorings [1, 3, 5] and locating-colorings [4]. For
example, upper bounds on lid-chromatic number have been obtained for bipartite graphs, k-trees, outerplanar graphs and bounded degree graphs. An open question asked by Esperet et al. [6] was to know whether χ_{lid} is bounded for the class of planar graphs. In this paper, we answer positively to this question proving more generally that χ_{lid} is bounded for any class of bounded expansion.

In Section 3, we first give a tight bound of χ_{lid} in term of the tree-depth.

Then we use the fact that any class of bounded expansion admits a low tree-depth coloring (that is a k-coloring such that each triplet of colors induces a graph of tree-depth 3, for some constant k) to prove that it has bounded lid-chromatic number.

In Section 4, we focus on minor closed classes of graphs which have bounded expansion and give an alternative bound on the lid-chromatic number, which gives an explicit bound for planar graphs.

The next section is devoted to introduce notation and preliminary results.

2 Notation and preliminary results

Let $G = (V, E)$ be a graph. For any vertex u, we denote by $NC(u)$ its neighborhood in G and by $NC[u]$ its closed neighborhood in G (u together with its adjacent vertices). The notion of neighborhood can be extended to sets as follows: for $X \subseteq V$, $NC[X] = \{w \in V(G) \mid \exists v \in X, w \in N[v]\}$ and $NC(X) = NC[X] \setminus X$. When the considered graph is clearly identified, the subscript is dropped.

The degree of vertex u is the size of its neighborhood. The distance between two vertices u and v is the number of edges in a shortest path between u and v. For $X \subseteq V$, we denote by $G[X]$ the subgraph of G induced by X.

We say that two vertices u and v are twins if $N[u] = N[v]$ (although they are often called true twins in the literature, we call them twins for convenience). In particular, u and v are adjacent vertices. Note that if u and v are adjacent but not twins, there exists a vertex w which is adjacent to exactly one vertex among $\{u, v\}$, i.e. $w \in N[u] \Delta N[v]$ (where Δ is the symmetric difference between sets). We say that w distinguishes u and v, or simply w distinguishes the edge uv. For a subset $X \subseteq V$, we say that a subset $Y \subseteq V$ distinguishes X if for every pair u, v of non-twin vertices of X, there exists a vertex $w \in Y$ that distinguishes the edge uv.

Let $c : V \rightarrow \mathbb{N}$ be a vertex-coloring of G. The coloring c is proper if adjacent vertices have distinct colors. We denote by $\chi(G)$ the chromatic number of G, i.e. the minimum number of colors in a proper coloring of G. For any $X \subseteq V$, let $c(X)$ be the set of colors that appear on the vertices of X. A locally identifying coloring (lid-coloring for short) of G is a proper vertex-coloring c of G such that for any two adjacent vertices u and v that are not twins (i.e. $N[u] \neq N[v]$), we have $c(N[u]) \neq c(N[v])$. A graph G is k-lid-colorable if it admits a locally identifying coloring using at most k colors and the minimum number of colors needed for any locally identifying coloring of G is the locally identifying chromatic number (lid-chromatic number for short) denoted by $\chi_{lid}(G)$. For a vertex u, we say that u sees color a if $a \in c(N[u])$. For two adjacent vertices
of non-twin vertices of C

Bounded expansion classes of graphs

The edge $v \rightarrow x$ where x is a vertex such that for any distinct elements $N \mid A$ there exists $w \in \mathcal{S}(G)$ of size at most $n − 1$ such that the sets $A_i \cap X'$ are all distinct.

Theorem 1 (Bondy’s theorem [2]). Let $A = \{A_1, . . . , A_n\}$ be a collection of n distinct subsets of a finite set X. There exists a subset X' of X of size at most $n − 1$ such that the sets $A_i \cap X'$ are all distinct.

Corollary 2. Let C be a n-clique subgraph of G. There exists a vertex subset $S(C) \subseteq V(G)$ of size at most $n − 1$ that distinguishes all the pair of non-twin vertices of C.

Proof. Let C be a n-clique subgraph of G induced by the vertex set $V(C) = \{v_1, v_2, . . . , v_n\}$. Let $A = \{N[v_i] \mid v_i \in V(C)\}$ be a collection of distinct subsets of the finite set $X = \bigcup_{1 \leq i \leq n} N[v_i]$. Note that some v_i's might be twins in G (i.e., $N[v_i] = N[v_j]$ for some $v_i, v_j \in V(C)$) and therefore $|A|$ could be smaller than n. By Bondy Theorem, there exists $S(C) \subseteq X$ of size at most $|A| − 1 \leq n − 1$ such that for any distinct elements A_1, A_2 of A, we have $A_1 \cap S(C) \neq A_2 \cap S(C)$.

Let us prove that $S(C)$ is a set of vertices that distinguish all the pairs of non-twin vertices of C. For a pair of non-twin vertices v_i, v_j of C, we have $N[v_i] \neq N[v_j]$. By definition of $S(C)$, we have $N[v_i] \cap S(C) \neq N[v_j] \cap S(C)$, then there exists $w \in S(C)$ that belongs to $N[v_i] \Delta N[v_j]$. Therefore, w distinguishes the edge $v_i v_j$.

3 Bounded expansion classes of graphs

A rooted tree is a tree with a special vertex, called the root. The height of a vertex x in a rooted tree is the number of vertices on a path from the root to x (hence, the height of the root is 1). The height of a rooted tree T is the maximum height of the vertices of T. If x and y are two vertices of T, x is an ancestor of y in T if x belongs to the path between y and the root. The closure $\text{clos}(T)$ of a rooted tree T is the graph with vertex set $V(T)$ and edge set $\{xy \mid x$ is an ancestor of y in $T, x \neq y\}$. The tree-depth $\text{td}(G)$ of a connected graph G is the minimum height of a rooted tree T such that G is a subgraph of $\text{clos}(T)$. If G is not connected, the tree-depth of G is the maximum tree-depth of its connected components.

Let p be a fixed integer. A low tree-depth coloring of a graph G (relatively to p) is a coloring of the vertices of G such that the union of any $i \leq p$ color classes induces a graph of tree-depth at most i. Let $\chi_{td}^i(G)$ be the minimum number of colors required in such a coloring. Note that as tree-depth one graphs and tree-depth two graphs are respectively the stables and star forests, χ_{td}^1 and χ_{td}^2 respectively correspond to the usual chromatic number and the star chromatic number.
In the following of this section, we first give a tight bound on the lid-chromatic number in terms of tree-depth.

Proposition 3. For any graph G, $\chi_{lid}(G) \leq 2td(G) - 1$ and this is tight.

Using this bound, we then bound the lid-chromatic number in terms of χ^{td}_{3}.

Theorem 4. For any graph G,
\[\chi_{lid}(G) \leq 6^{\left(\frac{\chi^{td}_{3}}{3(G)}\right)}\]

Classes of graphs of bounded expansion have been introduced by Nešetřil and Ossona de Mendez [10]. These classes contain minor closed classes of graphs and any class of graphs defined by an excluded topological minor. Actually, these classes of graphs are closely related to low tree-depth colorings:

Theorem 5 (Theorem 7.1 [10]). A class of graphs \mathcal{C} has bounded expansion if and only if $\chi^{td}_{p}(\mathcal{C})$ is bounded for any p.

We therefore deduce the following corollary from Theorems 4 and 5:

Corollary 6. For any class \mathcal{C} of bounded expansion, $\chi_{lid}(\mathcal{C})$ is bounded.

It is in particular true for a class of bounded tree-width. A consequence is that χ_{lid} is bounded for chordal graphs by a function of the clique number (which is equals to the tree-width plus 1 for a chordal graph). It is conjectured by Esperet et al. [6] that $\chi_{lid}(G) \leq 2\omega(G)$ if G is chordal.

We now prove Proposition 3.

Proof of Proposition 3. Let us first prove that the bound is tight. Consider the graph H_n obtained from a complete graph, with vertex set $\{a_1, \ldots, a_n\}$, by adding a pendant vertex b_i to every a_i but one, say for $1 \leq i < n$. The tree-depth of this graph is at least n as it contains a n-clique. Indeed, given a rooted tree T, two vertices at the same height are non-adjacent in clos(T), we thus need at least n levels. Actually the tree-depth of this graph is at most n since the tree T rooted at a_1, and such that a_i has two sons a_{i+1} and b_i, for $1 \leq i < n$, has height n and is such that clos(T) contains H_n as a subgraph.

Let us show that in any lid-coloring of H_n all the vertices must have distinct colors, and thus use $2n - 1 = 2td(H_n) - 1$ colors. Indeed, two vertices a_i must have different colors as the coloring is proper. A vertex b_j cannot use the same color as a vertex a_i, as otherwise the vertex a_j would only see the n colors used in the clique, just as a_n. Similarly if two vertices b_i and b_j would use the same color, the vertices a_i and a_j would see the same set of colors.

Let us now focus on the upper bound. We prove the result for a connected graph and by induction on the tree-depth of G, denoted by k. The result is clear for $k = 1$ (the graph is a single vertex).

Let G be a graph of tree-depth $k > 1$ and let T be a rooted tree of height k such that G is a subgraph of clos(T). If T is a path, the result is clear since there are only k vertices. So assume that T is not a path, and let r be the root
of T. Let s be the smallest height such that there are at least two vertices of height $s + 1$. We name r_i, for $i \in \{1, \ldots, s\}$, the unique vertex of height i. Let $R = \{r_1, \ldots, r_s\}$. Note that each of the vertices of R is adjacent to all the vertices of $\text{clos}(T)$, Therefore, we can choose the way we label the s vertices in R (i.e. we can choose the height of each of them in T) without changing $\text{clos}(T)$.

Necessarily, $G \setminus R$ has at least two connected components. Let G_1, \ldots, G_ℓ be its connected components and thus $\ell \geq 2$. We choose T such that s is minimal. It implies that for each $i \in \{1, \ldots, s\}$, r_i has neighbors in all the components G_1, \ldots, G_ℓ. Indeed, if it is not the case, by permuting the elements of R (this is possible by the above remark), we can assume without loss of generality that r_s does not have a neighbor in G_ℓ. Therefore, the set of edges $e(r_s, G_\ell) = \{r_s x : x \in V(G_\ell)\}$ of $\text{clos}(T)$ are not used by G. Then let T' be the tree obtained from T by moving the whole component G_ℓ one level up in such a way that the root of the subtree corresponding to G_ℓ is now the son of r_{s-1} (instead of r_s previously). Note that $\text{clos}(T')$ is isomorphic to $\text{clos}(T) \setminus e(r_s, G_\ell)$ and thus G is a subgraph of $\text{clos}(T')$. This new tree T' has two vertices at height s, contradicting the minimality of s.

Any connected component G_j has tree-depth at most $k' = k - s < k$. By induction, for each $j \in \{1, \ldots, \ell\}$, there exists a lid-coloring c_j of G_j using colors in $\{1, \ldots, 2k' - 1\}$. For each c_j, there is a minimum value s_j such that every vertex r_i sees a color in $\{1, \ldots, s_j\}$ in G_j. We choose a $(2k' - 1)$-lid-coloring c_j of G_j such that s_j is minimized. Note that for each color $a \leq s_j$, there exists $r_i \in R$ such that r_i sees color a in G_j but no other color of $\{1, \ldots, s_j\}$. Otherwise, after permuting colors a and s_j, every vertex $r_i \in R$ would see a color in $\{1, \ldots, s_j - 1\}$, contradicting the minimality of s_j. Assume without loss of generality that $s_1 \geq s_2 \geq \ldots \geq s_\ell$.

We replace in c_j the colors $1, 2, \ldots, s_1$ by $1', 2', \ldots, s'_1$. Note that now each vertex r_i sees a color in $\{1', \ldots, s'_1\}$ (in G_1) and a color in $\{1, \ldots, s_2\}$ (in G_2). Furthermore, the other vertices of G (that is the vertices in G_1, \ldots, G_ℓ) do not have this property since $s_1 \geq s_2$. Thus at this step every edge xr_i with x in some G_j is separated.

Now we color each vertex r_i with color i^*. Let $c : V(G) \rightarrow \{1^*, \ldots, s^*\} \cup \{1', \ldots, s'_1\} \cup \{1, \ldots, 2k' - 1\}$ be the current coloring of G.

Note that now every distinguishable edge xy in some G_j is separated. Indeed, either xy was distinguished in G_j and it has been separated by c_j, or xy is distinguished by some r_i and it is separated by the color i^*. Note also that c is a proper coloring.

It remains to deal with the edges r_ir_j. For that purpose we will refine some color classes. In the following lemma we show that such refinements do not damage what we have done so far.

Claim. Consider a graph G and a coloring $\varphi : V(G) \rightarrow \{1, \ldots, k\}$. Consider any refinement φ' of φ, obtained from φ by recoloring with color $k + 1$ some vertices colored i, for some i. Any edge xy of G properly colored (resp. separated) by φ is properly colored (resp. separated) by φ'.

Indeed if $\varphi(x) \neq \varphi(y)$ then $\varphi'(x) \neq \varphi'(y)$, and if $i \in \varphi(N[x]) \Delta \varphi(N[y])$ then
The class C is proper minor closed if and only if $c(N[r_i]) = c(N[r_j])$. Let R_1, \ldots, R_n be the equivalence classes of the relation R (note that each R_i forms a clique since every r_i has distinct colors). We have $s \geq s_1$. Indeed, by definition of s_1 and the coloring c_1, for each color $a \in \{1', \ldots, s'_1\}$, there exists $r_i \in R$ that sees a in G_1 but no other color of $\{1', \ldots, s'_1\}$. This vertex r_i belongs to some equivalence class R_j and thus all the vertices of R_j sees color a in G_1 but no other color of $\{1', \ldots, s'_1\}$.

By Corollary 2, there is a vertex set $S(R_i)$ of size at most $|R_i| - 1$ which distinguishes all pairs of non-twin vertices in R_i. We give to the vertices of $S(R_i)$ new distinct colors. By the previous claim, this last operation does not damage the coloring, and now all the distinguishable edges are separated.

Since for this last operation we need $s - s'$ new colors, since we used $2k' - 1$ colors $\{1, \ldots, 2k' - 1\}$, s_1 colors $\{1', \ldots, s'_1\}$ and s colors $\{1^*, \ldots, s^*\}$, the total number of colors is $(s - s') + (2k' - 1) + s_1 + s = 2k - 1 + s_1 - s \leq 2k - 1$. This concludes the proof of the theorem. □

We are now ready to prove Theorem 4:

Proof of Theorem 4. Let α be a low tree-depth coloring of G with parameter $p = 3$ and using $x^\text{td}(G)$ colors. Let $A = \{\alpha_1, \alpha_2, \alpha_3\}$ be a triplet of three distinct colors and let H_A be the subgraph of G induced by the vertices colored by a color of A. Since H_A has tree-depth at most 3, by Proposition 3, H_A admits a lid-coloring c_A with five colors (says colors 1 to 5). We extend c_A to the whole graph by giving color 0 to the vertices in $V(G) \setminus V(H_A)$.

Let A_1, A_2, \ldots, A_k be the $k = \{x^\text{td}(G)\}$ distinct triplets of colors. We now construct a coloring c of G giving to each vertex x of G the k-uplet

$$(c_{A_1}(x), c_{A_2}(x), \ldots, c_{A_k}(x)).$$

The coloring c is using 6^k colors. Clearly it is a proper coloring: each pair of adjacent vertices will be in some common graph H_A and will receive distinct colors in this graph. Let x and y be two adjacent vertices with $N[x] \neq N[y]$. Let w be a vertex adjacent to only one vertex among x and y. Let $A = \{\alpha(x), \alpha(y), \alpha(w)\}$. Vertices x and y are not twins in the graph H_A. Hence $c_A(N[x]) \neq c_A(N[y])$ and therefore, $c(N[x]) \neq c(N[y])$. □

4 Minor closed classes of graphs

Let G and H be two graphs. H is a minor of G if H can be obtained from G with successive edge deletions, vertex deletions and edge contractions. A class \mathcal{C} is minor closed if for any graph G of \mathcal{C}, for any minor H of G, we have $H \in \mathcal{C}$. The class \mathcal{C} is proper if it is not the class of all graphs. Let H be a graph. A H-minor free graph is a graph that does not have H as a minor. We denote by \mathcal{K}_n the K_n-minor-free class of graphs. It is clear that any proper minor closed class of graphs is included in the class \mathcal{K}_n for some n. It is folklore that any proper minor closed class of graphs \mathcal{C} has a bounded chromatic number $\chi(\mathcal{C})$. 6
The class of graphs of bounded expansion includes all the proper minor closed classes of graphs. Thus, by Corollary 6, proper minor closed classes have bounded lid-chromatic number. In this section, we focus on these latter classes and give an alternative upper bound on the lid-chromatic number. This gives us an explicit upper bound for the lid-chromatic number of planar graphs.

Consider any proper minor closed class of graphs \(\mathcal{C} \). Since \(\mathcal{C} \) is proper, there exists \(n \) such that \(\mathcal{C} \) does not contain \(K_n \), that is \(\mathcal{C} \subseteq \mathcal{K}_n \). Let \(\mathcal{C}^N \) be the class of graphs defined by \(H \in \mathcal{C}^N \) if and only if there exists \(G \in \mathcal{C} \) and \(v \in G \) such that \(H = G[N(v)] \). Note that \(\mathcal{C}^N \) is a minor-closed class of graphs. Indeed, given any \(H \in \mathcal{C}^N \), let \(G \in \mathcal{C} \) and \(v \in V(G) \) such that \(H = G[N(v)] \). Let \(H' \) be any minor of \(H \). Since \(\mathcal{C} \) is minor-closed and \(H \) is a subgraph of \(G \), there exists a minor \(G' \) of \(G \) such that \(H' = G'[N(v)] \). Therefore, \(H' \) belongs to \(\mathcal{C}^N \).

We prove the following result on minor-closed classes of graphs:

Theorem 7. Let \(\mathcal{C} \) be a proper minor closed class of graphs and let \(n \geq 3 \) be such that \(\mathcal{C} \subseteq \mathcal{K}_n \). Then

\[
\chi_{\text{lid}}(\mathcal{C}) \leq 4 \cdot \chi_{\text{lid}}(\mathcal{C}^N) \cdot \chi(\mathcal{C})^{n-3}
\]

The class of trees is exactly the class \(\mathcal{K}_3 \). Esperet et al. [6] proved the following result.

Proposition 8 ([6]). \(\chi_{\text{lid}}(\mathcal{K}_3) \leq 4 \).

It is clear that \(\mathcal{K}_3^N \) is the class of stable graphs and therefore, \(\chi_{\text{lid}}(\mathcal{K}_3^N) = 1 \). Note that Theorem 7 implies Proposition 8.

Assume that \(\chi_{\text{lid}}(\mathcal{K}_{n-1}) \) is bounded for some \(n \geq 4 \). It is clear that \(\mathcal{K}_n^N = \mathcal{K}_{n-1} \). Then, by Theorem 7, we have \(\chi_{\text{lid}}(\mathcal{K}_n) \leq 4 \cdot \chi_{\text{lid}}(\mathcal{K}_{n-1}) \cdot \chi(\mathcal{K}_n)^{n-3} \).

Since \(\chi_{\text{lid}}(\mathcal{K}_{n-1}) \) and \(\chi(\mathcal{K}_n) \) are bounded, \(\chi_{\text{lid}}(\mathcal{K}_n) \) is bounded.

Esperet et al. [6] also proved the following result.

Proposition 9 ([6]). If \(G \) is an outerplanar graph, \(\chi_{\text{lid}}(G) \leq 20 \).

We can then deduce from Theorem 7 and Proposition 9 the following corollary:

Corollary 10. Let \(\mathcal{P} \) be the class of planar graphs. Then \(\chi_{\text{lid}}(\mathcal{P}) \leq 1280 \).

Proof. Any graph \(G \in \mathcal{P} \) is \(\{K_{3,3}, K_5\} \)-minor free and thus \(\mathcal{P} \) is a proper minor closed class of graphs. Moreover, the neighborhood of any vertex of \(G \in \mathcal{P} \) is an outerplanar graph. By Proposition 9, we have \(\chi_{\text{lid}}(\mathcal{P}^N) \leq 20 \). Furthermore, the Four-Color-Theorem gives \(\chi(\mathcal{P}) = 4 \). By Theorem 7, \(\chi_{\text{lid}}(\mathcal{P}) \leq 4 \times 20 \times 4^2 = 1280 \). \(\square \)

We finally give the proof of Theorem 7.

Proof of Theorem 7. Let \(G \in \mathcal{C} \) and let \(u \) be a vertex of minimum degree. For any \(i \), define \(V_{u,i} \) as the set of vertices of \(G \) at distance exactly \(i \) from \(u \) and let \(G_{u,i} = G[V_{u,i}] \). Let \(s \) be the largest distance from a vertex of \(V \) to \(u \). In other words, there are \(s + 1 \) nonempty sets \(V_{u,i} \) (note that \(V_{u,0} = \{u\} \)).
For any i, contracting in G the subgraph $G[V_{1,0} \cup V_{1,1} \cup \ldots \cup V_{n,1-1}]$ in a single vertex x gives a graph $G' \in \mathcal{C}$ such that x is exactly adjacent to every vertex of $G_{u,i}$. Therefore, for any i, $G_{u,i} \in \mathcal{C}_N$. Hence, $\chi_{lid}(G_{u,i}) \leq \chi_{lid}(\mathcal{C}_N)$ for any i. Moreover, $\mathcal{C}_N \subseteq \mathcal{K}_{n-1}$. Indeed, suppose that there exists $H \in \mathcal{C}_N$ that admits K_{n-1} as a minor. Therefore there exists $G \in \mathcal{C}$ such that $H \cong G[N(v)]$ for some $v \in G$. Taking v together with its neighborhood would give K_n as a minor, that contradicts the fact that $\mathcal{C} \subseteq \mathcal{K}_n$. Hence, any $G_{u,i} \in \mathcal{K}_{n-1}$.

We construct a lid-coloring of G using $4 \cdot \chi_{lid}(\mathcal{C}_N) \cdot \chi(\mathcal{C})^{n-3}$ colors. This coloring is constructed with three different colorings of the vertices of G: c_1 which uses 4 colors, c_2 which uses $\chi_{lid}(\mathcal{C}_N)$ colors and c_3 which is itself composed of $n-3$ colorings with $\chi(\mathcal{C})$ colors. The final color $c(v)$ of a vertex v will be the triplet $(c_1(v), c_2(v), c_3(v))$. Hence the coloring c uses at most $4 \chi_{lid}(\mathcal{C}_N) \chi(\mathcal{C})^{n-3}$ colors. The coloring c_1 is used to separate the pairs of vertices that lie in distinct sets $V_{u,i}$. The coloring c_2 separates the pairs of vertices that lie in the same set $V_{u,i}$ and are not twins in $G_{u,i}$. Finally, the coloring c_3 separates the pairs of vertices that lie in the same set $V_{u,i}$, that are twins in $G_{u,i}$ but that are not twins in G.

The coloring c_1 is simply defined by $c_1(v) \equiv i \mod 4$ if $v \in V_{u,i}$.

To define c_2, we define for each i, $0 \leq i \leq s$, a lid-coloring c_2^i of $G_{u,i}$ using colors 1 to $\chi_{lid}(\mathcal{C}_N)$. Then c_2 is defined by $c_2(v) = c_2^i(v)$ if $v \in V_{u,i}$.

We now define the coloring c_3. Let $V_{u,i}^{lid}$ be the set of vertices of $V_{u,i}$ that have a twin in $G_{u,i}$:

$$V_{u,i}^{lid} = \{ v \in V_{u,i} \mid \exists w \in V_{u,i}, N_{G_{u,i}}[v] = N_{G_{u,i}}[w] \}.$$

Let $G_{u,i}^{lid} = G_{u,i}[V_{u,i}^{lid}]$. Since the relation “be twin” is transitive (i.e. if u and v are twins, and v and w are twins, then u and w are twins), then $G_{u,i}^{lid}$ is clearly a union of cliques. In addition, since $G_{u,i} \in \mathcal{K}_{n-1}$, the connected components of $G_{u,i}^{lid}$ are cliques of size at most $n-2$.

Let C be a clique of $G_{u,i}^{lid}$. By Corollary 2, there exists a subset $S(C) \subseteq V(G)$ of at most $n-3$ vertices that distinguishes all the pairs of non-twin vertices of C. Note that by definition of C, $S(C) \cap V_{u,i} = \emptyset$, and thus $S(C) \subseteq V_{u,i} \cup V_{u,i+1}$.

Let $S = \{(v, C) \mid v \in S(C) \text{ and } C \text{ is a clique in a graph } G_{u,i}\}$. We partition S in $s \times (n-3)$ sets S_i^k, $1 \leq i \leq s$, $1 \leq k \leq n-3$, such that:

- if $(v, C) \in S_i^k$ for some k, then $v \in V_{u,i}$;
- if (v, C) and (w, C') are two elements of S_i^k, then $C \neq C'$.

This partition can be done because each set $S(C)$ has size at most $n-3$.

For each $S_i^k = \{(x_1, C_1), (x_2, C_2), \ldots, (x_t, C_t)\}$, we define a graph H_i^k as follows. We start from the graph induced by $V_{u,i} \cup V(C_1) \cup V(C_2) \cup \ldots \cup V(C_t)$. Then, for each (x_j, C_j) in S^k_i, we contract C_j in a single vertex y_j and finally, we contract the edge x_jy_j on the vertex x_j. Note that $V_{u,i}$ is the vertex set of H_i^k. Note also that $H_i^k \in \mathcal{C}$ since it is obtained from a subgraph of G by successive edge-contractions. Therefore, $\chi(H_i^k) \leq \chi(\mathcal{C})$.

8
Indeed, two adjacent vertices that are not in the same set \(V\), have any neighbor that has the same color as \(c\). Thus, \(x\) and \(y\) are in different sets, implying that \(x\) and \(y\) are twins in \(V\), which is a contradiction. Therefore, the vertex \(y\) does not have any neighbor that has the same color as \(v\). Hence, \(c(v) \notin c(N[y])\), and \(c(N[x]) \neq c(N[y])\).

\[\Box\]
References

