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Comparison of sliced inverse regression
approaches for underdetermined cases

Raphaël Coudret 1 , Benoit Liquet 2 and Jérôme Saracco 1

Abstract: Among methods to analyze high-dimensional data, the sliced inverse regression (SIR) is of particular interest
for non-linear relations between the dependent variable and some indices of the covariate. When the dimension of the
covariate is greater than the number of observations, classical versions of SIR cannot be applied. Various upgrades
were then proposed to tackle this issue such as RSIR and SR-SIR, to estimate the parameters of the underlying model
and to select variables of interest. In this paper, we introduce two new estimation methods respectively based on the
QZ algorithm and on the Moore-Penrose pseudo-inverse. We also describe a new selection procedure of the most
relevant components of the covariate that relies on a proximity criterion between submodels and the initial one. These
approaches are compared with RSIR and SR-SIR in a simulation study. Finally we applied SIR-QZ and the associated
selection procedure to a genetic dataset in order to find eQTL.

Résumé : Parmi les méthodes pour analyser des données de grande dimension, la régression inverse par tranches (sliced
inverse regression ou SIR en anglais) est particulièrement intéressante si des relations non-linéaires existent entre la
variable à expliquer et des combinaisons linéaires des prédicteurs (appelées indices). Lorsque la dimension de ces
prédicteurs est plus grande que le nombre d’observations, les versions classiques de SIR ne peuvent plus être utilisées.
Des améliorations diverses comme RSIR et SR-SIR (versions régularisées de SIR) ont été proposées dans la litérature
pour résoudre ce problème, estimer les paramètres du modèle sous-jacent et enfin réaliser une sélection des prédicteurs
les plus pertinents (en un certain sens). Dans cet article, nous introduisons deux nouvelles procédures d’estimation
basées respectivement sur l’algorithme QZ et sur l’inverse généralisé de Moore-Penrose. Nous décrivons également
une méthode qui repose sur un critère de proximité entre des sous-modèles et le modèle intial pour sélectionner les
prédicteurs les plus pertinents. Ces approches sont ensuite comparées avec RSIR et SR-SIR par le biais de simulations.
Enfin, nous illustrons, sur un jeu de données génetiques, l’intérêt de l’approche SIR-QZ proposée et de l’algorithme de
sélection de prédicteurs associé pour trouver des eQTL.

Keywords: dimension reduction, high-dimensional data, semiparametric regression, sparsity
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1. Introduction

For a univariate response variable y and a multivariate covariate x ∈ Rp, the semiparametric
regression model

y = f (x′β1, . . . ,x′βK ,ε) (1)

is an attractive dimension-reduction approach to model the effect of the p-dimensional covariates
x on y. Let µ = E(x) and Σ = V(x). The error term ε is assumed to be independent of x. Since
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2 Coudret, Liquet and Saracco

the link function f (·) is an unknown smooth function, the parameters βk ∈ Rp are not entirely
identifiable, only the linear subspace spanned by the βk’s can be identified without additional
assumptions. Duan and Li [15] and Li [22] called this subspace the effective dimension reduction
(EDR) subspace. Moreover any direction belonging to this subspace is called an EDR direction.
If the βk’s are assumed linearly independent, the EDR subspace is then a K-dimensional linear
subspace of Rp. Other authors refer to this subspace as the dimension reduction subspace (DRS)
or the central subspace (which is defined as the smallest DRS), see Cook [13] for more details.

When the dimension p of x is high and when we have little knowledge about the structure of
the relationship between the response and the covariates, this semiparametric regression model
is a nice alternative to parametric modeling (since it is really difficult to have knowledge about
the structure of the relationship between the response and the covariates) and non-parametric
modeling (which suffers from the well-known curse of dimensionality due to the data sparseness
in the domain of x). The idea of dimension reduction in model (1) is intuitive because it aims at
constructing a low dimensional projection of the covariate without losing information to predict
the response y. If the dimension K of the EDR subspace is sufficiently small, it facilitates data
visualization and explanation and it alleviates the curse of the dimensionality to non-parametrically
estimate f with usual approaches such as kernel or splines smoothing (when the error term is
additive).

In this semiparametric regression model (1), an important purpose is to estimate the EDR
subspace from a sample {(xi,yi), i = 1, . . . ,n}. Most of the existing approaches are usually based
on the eigendecomposition of a specific matrix of interest. The most popular one is the sliced
inverse regression (SIR) introduced by Duan and Li [15] and Li [22] , respectively for single
index models (K = 1) and multiple indices models (K ≥ 1). Among alternative methods there are
SIR-II, see [22, 32] for instance, and sliced average variance estimation (SAVE), see [34, 24] for
example. These approaches require the inverse of Σ. Then, from a practical point of view, it is
necessary to inverse an estimate Σ̂ of Σ.

Define x̃i = (xi− µ̂) ∈Rp for i = 1, . . . ,n, with µ̂ = 1
n ∑

n
i=1 xi. A usual (biased) estimate of Σ is

Σ̂ =
1
n

n

∑
i=1

(xi− µ̂)(xi− µ̂)′ =
1
n
(x̃1, . . . , x̃n)(x̃1, . . . , x̃n)

′. (2)

Clearly, the rank of the p× p matrix Σ̂ is at most equal to n−1 since ∑
n
i=1 x̃i = 0p where 0p stands

for the null vectors of Rp. From this remark on the rank of Σ̂, this matrix is singular when n < p.
Moreover, it is also often ill-conditioned when n≈ p.

Therefore, SIR, SIR-II or SAVE methods only work well when the sample size n is greater
than the dimension p of the covariate x, but naturally fail when n < p. In this underdetermined
case, the standard estimate of Σ is not invertible even if the components of x are independent.

In the following, we only focus on the SIR approach. We describe it in Section 2.1 when n > p.
The goal of this paper is then twofold. On one hand, we present methods to tackle the issue n < p.
On the other hand, we also provide procedures in order to select which components of x have an
effect on y.

In Sections 2.2–2.3, we consider two different regularizations added to the SIR method,
proposed by Zhong et al [33] and Li and Yin [23], to find EDR estimates when n < p. Moreover,
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Sliced inverse regression in underdetermined cases 3

the SIR method can be seen as a generalized eigenvalue problem and linear algebra algorithms
exist to solve this kind of problem without requiring any matrix inversion. The QZ algorithm (see
[26] for instance) is one of them and will be used in the SIR context in Section 2.4. In Section 2.5,
we also adapt an approach introduced in functional sliced inverse regression (i.e., when x is an
explanatory functional variable), based on the Moore-Penrose pseudo-inverse.

Concerning the selection of useful predictors in the indices, Zhong et al [33] use a chi-square
test to find which components of x affect y (Section 3.1), while the approach of Li and Yin [23]
relies on a Lasso penalization (Section 3.2). In Section 3.3, we propose another procedure. We
choose randomly some submodels (i.e., using a number p0 < p of components of x) and we
measure how close they are from the initial one with all the p components of x. The latter model
is thus taken as a benchmark. Components of x that appear the most in submodels that are the
closest to the benchmark are kept. We naturally consider that the other components of x do not
affect y.

In Section 4, we compare in a simulation study the numerical behavior of the described methods
to estimate EDR directions. We also evaluate the different procedures of selection of the useful
components of x. In Section 5, we apply the most efficient one on real data from a genetic
framework. Finally, some concluding remarks are given in Section 6.

2. SIR in determined and underdetermined cases

2.1. Brief review of usual SIR

Let β be a p×K matrix defined by β = (β1, . . . ,βK). The EDR subspace is thus spanned by β .

Inverse regression step. The basic principle of the SIR method is to reverse the role of y and x,
that is, instead of regressing the univariate variable y on the multivariate variable x, the covariable
x is regressed on the response variable y. The price we have to pay to succeed in inverting the
role of x and y is an additional assumption on the distribution of x, named the linearity condition
(described hereafter).

Usual SIR estimate is based on the first moment E(x|y). It has been initially introduced by Duan
and Li [15] for single index model and by Li [22] for multiple indices model. SIR approaches
have been extensively studied, see for instance [11, 12, 36, 5, 3] among others.

Let us now recall the geometric property on which SIR is based. Let us introduce the linearity
condition:

(LC) : ∀b ∈ Rp,E(x′b|x′β1, . . . ,x′βK) is linear in x′β1, . . . ,x′βK . (3)

Note that this condition is satisfied when x is elliptically distributed (for instance normally
distributed). The reader can find an interesting discussion on this linearity condition in [12].

Assuming model (1) and (LC), Li [22] showed that the centered inverse regression curve
is contained in the linear subspace spanned by the K vectors Σβ1, . . . ,ΣβK . Let T denote a
monotonic transformation of y. He considered the eigendecomposition of the Σ-symmetric matrix
Σ−1M where M = V(E(x|T (y))). Straightforwardly the eigenvectors associated with the largest
K eigenvalues of Σ−1M are some EDR directions.
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4 Coudret, Liquet and Saracco

Slicing step. To easily estimate the matrix M, Li [22] proposed a transformation T , called a slicing,
which categorizes the response y into a new response with H > K levels (in order to avoid an
artificial reduction of dimension). The support of y is partitioned into H non-overlapping slices
s1, . . . ,sh, . . . ,sH . With such transformation T , the matrix of interest M can be now written as
M = ∑

H
h=1 ph(mh−µ)(mh−µ)′ where ph = P(y ∈ sh) and mh = E(x|y ∈ sh).

Estimation process. When a sample {(xi,yi), i = 1, . . . ,n} is available, matrices Σ and M are
estimated by substituting empirical versions of the moments for their theoretical counterparts. Let

M̂ =
H

∑
h=1

p̂h(m̂h− µ̂)(m̂h− µ̂)′, (4)

where p̂h =
1
n ∑

n
i=1 I[yi ∈ sh] and m̂h =

1
np̂h

∑
n
i=1 xiI[yi ∈ sh]. Therefore the estimated EDR direc-

tions are the eigenvectors associated with the K largest eigenvalues of Σ̂−1M̂. They span the
K-dimensional estimated EDR subspace The convergence at rate

√
n and the asymptotic normality

of estimated EDR directions have been obtained, see [22, 28] for instance.
The choice of the slicing T is discussed in [22, 20, 29] but, theoretically, there is no optimal

one. In practice, we fix the number of observations per slice to bn/Hc where bac stands for the
integer part of a. If the sample size n is not proportional to the number H of slices, some slices will
then contain [n/H]+1 observations. Note that, in order to avoid the choice of a slicing, alternative
SIR methods have been investigated. For instance, one can mention kernel-based methods of SIR
proposed by Zhu and Fang [35] or Aragon and Saracco [2]. However, these methods are hard to
implement and are computationally slow. Moreover, Bura [9] and Bura and Cook [10] proposed a
parametric version of SIR.

Concerning the determination of the dimension K of the EDR subspace (which is unknown in
practice), several works are available in the literature, see for example [22, 30, 17, 4, 25] among
others.

Standardized version for SIR. Another way to obtain a basis of the EDR subspace is to consider
the eigendecomposition of Σ−1/2MΣ−1/2, that is the eigendecomposition of M∗ = V(E(z|T (y))
where z = Σ−1/2(x−µ) is the standardized version of the covariate x. For the multiple indices
model (1), we then focus on the first K eigenvectors η1, . . . ,ηK associated with the largest K
eigenvalues of the Ip-symmetric matrix M∗. Transforming back to the original scale, the vectors
Σ−1/2ηk, k = 1, . . . ,K are in the EDR subspace. Their estimation procedure is a straightforward
replication of the previous estimation process using M̂∗ = Σ̂−1/2M̂Σ̂−1/2.

2.2. RSIR: A modified estimated variance matrix

As previously mentioned, the rank of Σ̂ implies that this matrix is singular when n < p and
ill-conditioned when n≈ p. To tackle these cases Zhong et al [33] introduce an upgrade of the
SIR method, called RSIR, that relies on a modification of Σ̂ such that the result can be inverted.
This leads to the following estimate of Σ:

Σ̃(s) = Σ̂+ sIp,
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where s is a positive real parameter and Ip is the p× p identity matrix. For a given matrix A, let
‖A‖2 = Trace(A′A). To find a suitable s, Zhong et al [33] propose to minimize the mean squared
error

L(s) =
K

∑
k=1

Trace(V(β̂k(s)))+
K

∑
k=1
‖E(β̂k(s))−βk‖2,

where β̂ (s) = (β̂1(s), . . . , β̂K(s)) is the matrix of the K first generalized eigenvector of M̂ and
Σ̃(s), which is built such that the constraint β̂k(s)′Σ̃(s)β̂k̃(s) = I[k = k̃] is verified for all (k, k̃) ∈
{1, . . . ,K}2. More details about generalized eigenvectors can be found in Section 2.4. Because
βk is unknown, the authors replaced it with E(β̂k(s0)) in the expression of L(s), to obtain an
approximation L̃(s). Note that the parameter s0 has to be sufficiently small in order for E(β̂k(s0))
to be close to βk. In practice, s0 is chosen equal to 0. Variances and expectations in L̃(s) are then

estimated with bootstrap samples, which leads to an estimate ̂̃L(s) of L̃(s). Remark that estimating
E(β̂k(s0)) for s0 = 0, implies using SIR with Σ̂. To do so, Zhong et al [33] apply the QZ algorithm
(see Section 2.4 for details). The optimal regularization parameter is then given by

sopt = argmin
s

̂̃L(s).
The corresponding matrix of estimated EDR directions is finally defined by β̂RSIR = β̂ (sopt).

2.3. SR-SIR: A ridge sliced inverse regression.

We describe here the SR-SIR method from Li and Yin [23]. When Σ̂ is invertible, let ẑi =
Σ̂−1/2(xi − µ̂) for i = 1, . . . ,n and let introduce the p× n matrix Ẑ = (ẑ1, . . . , ẑn). Let Ŵ =
diag(p̂1, . . . , p̂H) and let Ŝ be a n×H matrix made of elements Ŝi,h defined as

Ŝi,h =
1
n

(
I[yi ∈ sh]

p̂h

)
.

We can thus write M̂∗ = ẐŜŴ Ŝ′Ẑ′. Let η̂1, . . . , η̂H be the first H eigenvectors of M̂∗. They also
appear in the following singular value decomposition:

ẐŜŴ 1/2 = (η̂1, . . . , η̂H)Λ
1/2V ′,

where Λ1/2 and V are respectively an r×r matrix and an H×r matrix, and r is the rank of ẐŜŴ 1/2.
If r > K, let Ṽ be the K first columns of Λ1/2V and write η̂ = (η̂1, . . . , η̂K). From Eckart-Young
theorem we have (

η̂ ,Ṽ ′
)
= argmin

u,v

∥∥∥ẐŜŴ 1/2−uv
∥∥∥2

, (5)

where the minimum is taken over the respective sets of p×K matrices and K×H matrices. If we
write v = (v1, . . . ,vH) and ẑŜ = (z̃1, . . . , z̃H), then we have

∥∥∥ẐŜŴ 1/2−uv
∥∥∥2

=
H

∑
h=1

∥∥∥z̃h p̂1/2
h −uvh

∥∥∥2
.
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6 Coudret, Liquet and Saracco

It is thus easy to check that (5) is equivalent to(
η̂ ,Ṽ ′Ŵ−1/2

)
= argmin

u,v

H

∑
h=1

p̂h ‖z̃h−uvh‖2 , (6)

as described in [14]. Li and Yin [23] showed that (6) is equivalent to(
β̂ ,Ṽ ′Ŵ−1/2

)
= argmin

u,v

H

∑
h=1

p̂h

∥∥∥(m̂h− µ̂)− Σ̂uvh

∥∥∥2
, (7)

where β̂ = Σ̂−1/2η̂ . Note that this equation is also defined when Σ̂ is not invertible. From (7), the
authors proposed thus a ridge version of the estimator β̂ for a given regularization parameter s:(

β̂ (s),Ṽ ′(s)Ŵ−1/2
)
= argmin

u,v
Gs(u,v). (8)

where

Gs(u,v) =
H

∑
h=1

p̂h

∥∥∥(m̂h− µ̂)− Σ̂uvh

∥∥∥2
+ s‖u‖2

In practice, β̂ (s) can be then obtained from (8) with an alternating least-squares algorithm even
when n < p. The SR-SIR method rely on a generalized crossvalidation criterion to find the optimal
regularization parameter sopt (see [23] for details). Finally the matrix of estimated EDR directions
is defined by β̂SR-SIR = β̂ (sopt).

Remark 1. The exisence of a solution for (7) is not proved as explained by Bernard-Michel et
al [6]. Indeed, assume that

(
β̂ (s),Ṽ ′(s)Ŵ−1/2

)
is such a solution and that β̂ (s) is not the null

vector, we then have

Gs

(
1
2

β̂ (s),2Ṽ ′(s)Ŵ−1/2
)
< Gs

(
β̂ (s),Ṽ ′(s)Ŵ−1/2

)
,

which contradicts the fact that
(

β̂ (s),Ṽ ′(s)Ŵ−1/2
)

verifies (7). This encourages Bernard-Michel
et al [6] to replace (7) with the following optimization problem:(

β̂ (s),Ṽ ′(s)Ŵ−1/2
)
= argmin

u,v

{
H

∑
h=1

p̂h

∥∥∥(m̂h− µ̂)− Σ̂uvh

∥∥∥2
+ s
∥∥∥uvŴ 1/2

∥∥∥2
}
.

The value of β̂ (s) in this problem is actually the estimate of the RSIR method, for a regularization
parameter s.

2.4. SIR-QZ: Solving the generalized eigenvalues problem in SIR

When Σ̂ is regular, usual SIR estimates of the EDR directions are eigenvectors of Σ̂−1M̂. This
eigendecomposition is actually a special case of a generalized eigenvalues problem which consists
in finding real numbers λ and non-null vectors v such that:

M̂v = λ Σ̂v. (9)
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Sliced inverse regression in underdetermined cases 7

When Σ̂ is singular the generalized eigenvalue problem can still be solved if the function λ 7→
M̂−λ Σ̂ behave properly. We call this function a matrix pencil. In this section, we present the QZ
algorithm which allows us to find couples (λ ,v) that verify (9) for a wide range of matrix pencils
including some with singular matrices Σ̂. The QZ algorithm can be viewed as an extension of the
QR algorithm and was proposed by Moler and Stewart [26]. The reader can refer to chapter 7 of
[19] for details. A brief description of this algorithm is provided in the following.

Notice that if we have two invertible matrices Q and Z, then finding λ and v in (9) is equivalent
to find λ and w in

QM̂Zw = λQΣ̂Zw, (10)

and to set v = Zw. Similarly to the QR algorithm that is designed to find the Schur decomposition
of a matrix in order to compute its eigenvalues, the QZ algorithm aims at finding unitary matrices
Q and Z such that QM̂Z and QΣ̂Z are upper triangular, for square matrices M̂ and Σ̂. Such
a transformation is called a generalized Schur decomposition. When working with complex
matrices, Q and Z always exist (see [19], Theorem 7.7-1). Possible values of λ that verify (9) are
such that det(M̂−λ Σ̂) = 0, and such that det(Q(M̂−λ Σ̂)Z) = 0. The latter determinant is the
product of the diagonal elements of Q(M̂−λ Σ̂)Z since it is an upper triangular matrix. Hence,
the generalized eigenvalues of (9) are the ratios of the diagonal elements of QM̂Z to the ones of
QΣ̂Z, provided that the diagonal elements of QΣ̂Z are not equal to zero. More specifically, this
can be seen with the following formula ([19], Theorem 7.7-1)

det(M̂−λ Σ̂) = det(Q′Z′)
p

∏
j=1

(t j−λu j), (11)

where t1, . . . , tp and u1, . . . ,up are the respective diagonal elements of QM̂Z and QΣ̂Z. Notice that
the generalized Schur decomposition only produces complex upper triangular matrices QM̂Z
and QΣ̂Z. However, there is a similar available decomposition for real matrices M̂ and Σ̂ (see
Appendix B.1).

Equation (11) implies that if it exists j ∈ {1, . . . , p} such that t j = u j = 0, then det(M̂−λ Σ̂) = 0
for all λ ∈ C, and trying to choose eigenvectors corresponding to the greatest eigenvalues to
estimate the EDR directions does not make sense. Numerically, for any j ∈ {1, . . . , p}, due to
rounding errors, t j and u j are almost always different from 0, but if both their absolute value are
too small, det(M̂−λ Σ̂) is sufficiently unstable to call its value in question. As a consequence,
every computed λ j can be wrong. For similar reasons, if |u j| is too small for a given j ∈ {1, . . . , p},
t j/u j should not be considered as an eigenvalue. These remarks and the regularization procedure
in [33] lead to the algorithm of Appendix B.2 to find estimate β̂QZ of the EDR directions.

Let X = (x1, . . . ,xn). When n is sufficiently smaller than p and H >K, a generalized eigenvector
v of (9) is such that the n indices X ′v only takes H distinct values, as explained in Appendix B.3.
In practice, the regularization parameter s of the algorithm of Appendix B.2 is small and we
can distinguish easily H clusters in the values of X ′β̂QZ in Figure 8 in Appendix B.3. This is a
drawback of this approach when n < p since the values of X ′β are a priori distinct. To circumvent
this shortcoming, we compute several β̂QZ with different number of slices H1, . . . ,HNH . Let denote
the corresponding estimates β̂QZ,1, . . . , β̂QZ,NH . Thus, we choose γ̂ as an estimate of X ′β with(

γ̂, δ̂
)
= argmin

γ,δ

∥∥∥X ′(β̂QZ,1, . . . , β̂QZ,NH )− γδ

∥∥∥2
(12)
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8 Coudret, Liquet and Saracco

where the minimum is taken over the respective sets of n×K matrices and K×KNH matrices.
The solution of (12) is then given by a principal component analysis. We call the whole approach
SIR-QZ.

Remark 2. When n is smaller enough than p, finding a satisfying estimate of β may not be
possible. For example, if K = 1, n < p and if the columns of X are not linearly dependent, there
are infinitely many solutions u of the system X ′u = X ′β̂ for a given estimate β̂ of β . Recalling the
underlying model (1), there is no reason why β̂ should be a better estimate of β than any of these
solutions. That is why, when n < p, we focus on estimates of X ′β rather than on β itself, in (12).

2.5. SIR-MP: a generalization of the inverse for singular matrices

We describe in this section a method which mimics the SIR approach developed for a functional
covariate.

In the functional SIR context, x is an explanatory functional variable (assumed square integrable
in order to have its covariance operator well-defined) while y is still a real response variable. In
this context, while the covariance operator of x is invertible, it has unbounded inverse so that
its estimator is ill-conditioned. Then several methods have been proposed when the covariance
operator does not need to be inverted.

One of them consists in using the eigendecomposition of M+Σ instead of Σ−1M, where M+

is the Moore-Penrose generalized inverse of M, also called Moore-Penrose pseudoinverse of M.
In the particular context of functional sliced inverse regression, the reader can find a discussion
on the fact that the eigenvectors of Σ−1M are eigenvectors of M+Σ, in Ferré and Yao [18] and
references cited therein.

Let us now focus on an alternative approach introduced by Amato et al. [1]. They used the
fact that Σ−1/2MΣ−1/2 is a finite rank operator, where Σ (resp. M) stands here for the covariance
operator of x (resp. E(x|T (y))) in this functional context. The eigenvectors of this operator are
eigenvectors of Σ1/2M+Σ1/2. The authors claimed that the reason of their approach is that a
smooth estimate of M produces more stable estimates of the eigenvalue decomposition of M
than that of the empirical estimate of Σ. Thus the eigenfunctions η1, . . . ,ηK associated with the
smallest K eigenvalues α1, . . . ,αK of Σ1/2M+Σ1/2 are also the eigenfunctions associated with the
largest eigenvalues of Σ−1/2MΣ−1/2 equal to 1/αk for k = 1, . . . ,K. In order to transform back to
the original scale, we can not use the transformation Σ−1/2ηk. A basis of the (functional) EDR
space is instead given by

bk = M+
Σ

1/2
ηk for k = 1, . . . ,K. (13)

We provide in Appendix A a brief proof of this result.

In the context of our paper (that is, n < p < ∞), we will evaluate how the functional SIR
procedure behaves in the multivariate framework. To do this, we simply substitute the operators
of covariance M and Σ by the estimates M̂ and Σ̂ previously defined in (2) and (4). The resulting
estimated directions are:

b̂k = M̂+
Σ̂

1/2
η̂k for k = 1, . . . ,K, (14)
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Sliced inverse regression in underdetermined cases 9

where the η̂k’s are the eigenvectors of Σ̂1/2M̂+Σ̂1/2 associated with the smallest eigenvalues
(among those not structurally equal to zero, see Remark 3 for details).

Remark 3. For a p-dimensional covariate, the p× p matrix Σ̂1/2M̂+Σ̂1/2 is symmetric positive
semidefinite and its rank r is at most equal to H−1 when H < n < p. Therefore, the eigenvalues
of Σ̂1/2M̂+Σ̂1/2 are such that α̂1 ≥ ·· · ≥ α̂r > 0, and the geometric multiplicity of the eigenvalue
zero is equal to p− r by construction. Thus we are interested in the eigenvectors η̂k associated
with the K eigenvalues α̂r, . . . , α̂r−K+1.

3. Selecting relevant components of x which are linked with y

Let β j,k denote the jth element of the EDR direction βk, for k = 1, . . . ,K and j = 1, . . . , p. If
β j,. = (β j,1, . . . ,β j,K) is the null vector then the jth component of x does not have any effect on
y. Finding such components is an important concern when n < p because it allows x ∈ Rp to
be reduced to x? ∈ Rp? , where p? < p, without any loss of information. If in addition p? is less
enough than n, the EDR directions can then be accurately estimated with a classical SIR procedure
applied on y and x?. In Section 3.1, we describe the method from [33] to determine which β j,. are
null. In Section 3.2, we explain the Lasso procedure detailed in [23] to obtain such conclusions.
In Section 3.3, we introduce another method to solve this problem based on proximity measures
between models with only a few components of x and the initial model (in which every component
of x is taken into account).

3.1. RSIR: Bootstrap estimates and a chi-squared test

Let β̂RSIR, j,k be the elements of the matrix β̂RSIR. Zhong et al [33] claim that for j = 1, . . . , p,
the vector β̂RSIR, j,. = (β̂RSIR, j,1, . . . , β̂RSIR, j,K) follows asymptotically a multivariate normal dis-
tribution with mean β j,.(sopt) and covariance matrix Γ j. Provided that Γ j can be inverted, if
β j,.(sopt) is the null vector then β̂ ′RSIR, j,.Γ

−1
j β̂RSIR, j,. follows asymptotically a chi-squared distri-

bution with K degrees of freedom. This encouraged Zhong et al [33] to use a chi-squared test on
β̂ ′RSIR, j,.Γ̂

−1
j β̂RSIR, j,. to select which components of x have effect on y, where Γ̂ j is an estimate of

Γ j computed from bootstrap estimates of β j,.(sopt).
Difficulties using this procedure could arise when n < p because the distribution under the null

hypothesis of this test is asymptotic. In addition, it leads to inferences about the vectors β j,.(sopt)
for j = 1, . . . , p which are not necessary the same than for β j,..

3.2. SR-SIR: A Lasso method

From β̂ (sopt) and (ṽ1, . . . , ṽH) = Ṽ ′(sopt)P̂−1/2, given in equation (8), Li and Yin [23] propose to
minimize the following expression under a constraint on the L1-norm of the vector φ :

G(φ) =
H

∑
h=1

(
p̂h

∥∥∥(m̂h− µ̂)− Σ̂diag(φ)β̂ (sopt)ṽh

∥∥∥2
)
.
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10 Coudret, Liquet and Saracco

This leads to the following optimization problem for a parameter τ > 0:

φ̂τ = argmin
φ
{G(φ)} , s.t. |φ | ≤ τ

where the minimum is taken over the set of vectors φ of length p. The Lasso procedure [31] can
be used to find φ̂τ . For most positive values of τ1 and τ2 such that τ1 > τ2, the number of zeros in
φ̂τ1 is less than the number of zeros in φ̂τ2 . An example for which it is not true can be found in
[16], Section 3.1.

Li and Yin [23] consider that a component of x that corresponds to a zero in φ̂τ does not
have any effect on y. Let pτ be the number of non-null elements of φ̂τ . In practice, choosing τ

implies choosing the amount of selection provided by φ̂τ . To do so, Li and Yin [23] propose to use
classical model selection criteria. More specifically, this involves minimizing one of the following
expression over a set of tested values of τ:

AIC = pH log
(

G(φ̂τ)

pH

)
+2pτ ,

BIC = pH log
(

G(φ̂τ)

pH

)
+ log(pH)pτ ,

RIC = (pH− pτ) log
(

G(φ̂τ)

pH− pτ

)
+ pτ(log(pH)−1)+

4
pH− pτ −2

.

3.3. CSS based on SIR: Closest submodel selection for SIR methods

The idea of the procedure described here is to select submodels of (1) with only a given number
p0 of components of x which are the closest to the initial one. The components of x that appear
the most in these submodels are asserted to have an effect on y.

Let Y = (y1, . . . ,yn)
′. To do this, we propose the following algorithm.

Initialize p0 ∈]1, p[, N0 ∈ N∗ and ζ ∈]0,1[ or ρ ∈]0,1[.
Step 1. Compute the estimated indices γ̂ ∈ Rn on Y and the whole covariate matrix X using

SIR-QZ.
Let a = 1.

Step 2. Select randomly p0 components of x and build the corresponding matrix X (a).
Step 3. Compute the SIR-QZ indices γ̂(a) ∈ Rn based on Y and X (a).
Step 4. Calculate the linear correlation between the indices γ̂ and γ̂(a). Let us denote by ĉ(a)

the square of this correlation.
Let a = a+1.
Repeat N0 times steps 2-4.

Step 5. Consider the submodels corresponding to the N1 largest correlations ĉ(a).
Either the user set ζ ∈]0,1[ and then gets N1 = ζ N0, or the user chose a value for ρ and then
N1 is the number of submodels such that ĉ(a) > ρ .

Step 6. Count the number of occurrences of each component of x in these N1 submodels. The
components that affect y are the ones that have the greater number of occurrences.
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Sliced inverse regression in underdetermined cases 11

For example, in our simulation study, we set N0 = 104 and ζ = 10% to determine the closest
N1 = ζ N0 submodels. In our real data application, we use N0 = 9×105 and ρ = 0.9 to select the
top N1 submodels.

Note that choosing p0 < n allows us to use classical SIR instead of SIR-QZ in Step 3 which
significantly improves the computational time. In addition, any SIR approach that provides
estimates of the indices (when n≤ p and n > p) could be used in the whole algorithm instead of
SIR-QZ.

4. A simulation study

In Sections 2-3, we presented 4 methods to estimate EDR directions (or indices) and 3 procedures
to select which components of x have effects on y. In Section 4.1, we illustrate them on a single
simulated data set. To compare their numerical performances, we then study them on several
replications in Section 4.2.

4.1. Analysis of a single data set

4.1.1. Simulated model

We consider the following single index model

y = (x′β )3 + ε (15)

where x and β are a p-dimensional vectors defined hereafter and ε ∼N (0,σ2) with σ = 10−3.
Let p = 200 and p? = 20. We choose β = 1

10(I(1≤ p?), . . . ,I(p≤ p?))′, so that p? is the number
of non-null components of β , that is the number of components of x that affect y. We construct
x = (x1, . . . ,xp)

′ as follows: for j = 1, . . . , p?, generate σ2
j from the law U ([0.05,0.1]) and x j

from the law N (0,σ2
j ). For j = p?+1, . . . , p, set

σ
2
j =

(
12−b( j−1)/p?c
b( j−1)/p?c

)2

σ
2
( j−1) mod p?+1,

when mod denotes the modulo operation. Generate then x̌ j from the law N (0,σ2
j ) and set

x j = x( j−1) mod p?+1 + x̌ j. This ensures that cor(x j,x( j−1) mod p?+1) = b( j−1)/p?c/12.

4.1.2. Estimation of EDR indices

We simulate an independent and identically distributed sample (X ,Y ) of size n = 100 from
model (15). We plot Y versus the true indices X ′β in Figure 1. We analyze X and Y with the
various methods presented in Section 2.2-2.5.

– For the RSIR method we evaluate ̂̃L(s) for s ∈ {0,10−10,10−9, . . . ,105} with 50 bootstrap
samples and H = 10. In Figure 2(a) we plot the values of Y against the indices provided
by the RSIR method. The structure of Figure 1 can not be discerned in Figure 2(a). The
regularization parameter that RSIR provides is equal to 105 and thus the RSIR procedure is
equivalent to an eigendecomposition of M̂.
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12 Coudret, Liquet and Saracco

FIGURE 1. Plot of Y versus X ′β generated from model (15), with n = 100 and p = 200. The horizontal scale was
standardized.

– Concerning the SR-SIR method, the chosen regularization parameter sopt is chosen in
{10−10,10−9, . . . ,105}. The number of iterations of the alternating least square algorithm of
SR-SIR is set to 50 and we take H = 10. For this example, we find sopt = 103. In Figure 2(b),
we draw the values of Y against the estimated indices X ′β̂SR-SIR. The points of this graphic
do not form the same shape as the points in Figure 1.

– We run SIR-QZ for {H1, . . . ,HNH} = {5, . . . ,15}. In Figure 2(c), we plot y against the
corresponding estimated indices. This graphic exhibits a structure which is similar to the
one in Figure 1.

– We finally apply SIR-MP with H = 10. We observe in Figure 2(d), which shows how Y
and the indices produced by the SIR-MP method are related, that this method also fails to
recover the shape of Figure 1.

Thus, Figure 2 shows that for this data set, SIR-QZ provides better estimations of the indices than
RSIR, SR-SIR and SIR-MP.

To quantify such conclusions, we can use a criterion that measures how X ′β and X ′β̂ are close
form each other, for a given estimate β̂ . Let X̃ = (x̃1, . . . , x̃n) and let P be the projector on the
subspace of Rn spanned by X̃ ′β . More precisely, we have

P = X̃ ′β (β ′X̃ X̃ ′β )−1
β
′X̃ . (16)

Similarly, define PRSIR, PSR-SIR, and PSIR-MP by respectively replacing β by β̂RSIR, β̂SR-SIR, and
β̂SIR-MP in (16). Let us also define PSIR-QZ by replacing X̃ ′β̂ by Īnγ̂ in (16), where Īn is a matrix
that centers γ̂ (see Appendix B.3). For a given method m, we use the squared trace correlation
between the subspaces spanned by X̃ ′β and by X̃ ′β̂m as a measure of the closeness between these
subspaces. It is defined by

R(m) =
1
K

Trace(PPm). (17)

Notice that if R(m) is the squared cosine of the angle between the vectors X ′β and X ′β̂m. This
quality measure belongs to [0,1] and the higher its value is, the better the indices are estimated.
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Sliced inverse regression in underdetermined cases 13

(a) (b)

(c) (d)

FIGURE 2. Plot of Y versus estimates indices obtained with (a) the RSIR method, (b) the SR-SIR method, (c) the
SIR-QZ method and (d) the SIR-MP method. The horizontal scale was standardized.
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14 Coudret, Liquet and Saracco

m RSIR SR-SIR SIR-QZ SIR-MP
R(m) 0.051 0.088 0.741 0.000

Computational time (s) 101.88 1,234.70 7.85 0.25

TABLE 1. Quality measure and computational time of various estimates of the indices X ′β for the simulated sample of
size n = 100, with p = 200.

In Table 1, we present values of R(m) for the four considered methods. For SIR-QZ, R(m) is
clearly higher than for RSIR, SR-SIR and SIR-MP (0.74 versus less than 0.1). Notice also that the
computational time is a lot greater for RSIR and SR-SIR than for SIR-MP and SIR-QZ.

4.1.3. Selection of components of x

We rely on the true positive rate (TPR) and on the false positive rate (FPR) to evaluate procedures
that find which elements of β are equal to 0. The TPR is the number of selected components of
x that actually affect y divided by the total number of components of x that affect y. The FPR
is the number of selected components of x that do not affect y divided by the total number of
components of x that do not affect y.

For the RSIR selection method the returned p-values are ordered and the components that
correspond to the first p-values are selected. For the CSS procedure, the components related to the
greatest number of occurrence are selected. We evaluate the results of both methods by selecting
the best 10 (resp. 20, 50, 100, 150) components. For the SR-SIR method, we use the different
criteria (AIC, BIC and RIC) proposed in [23] to determine the appropriate Lasso parameter.

The number of bootstrap sample generated for the RSIR method is set to 103. It is great
enough so that increasing it does not improve significantly the quality criteria. This method relies
on a regularization parameter which can also be provided by the Algorithm 1 to find β̂QZ (see
Appendix B.2). The estimate β̂QZ can thus be plugged in the RSIR selection method. For the
CSS method, we choose N0 = 104, ζ = 10% and p0 = 50. While increasing N0 could lead to
better quality criteria, the computational time is sufficiently large not to choose it greater. The
tested values of the Lasso parameter are the SR-SIR method are in {1,2, . . . ,100}. This algorithm
needs an estimate of β in input. We use β̂SR-SIR but, because of the poor results of Table 1 for this
estimate, we also take β̂QZ with H = 10, and the true EDR direction β .

Results of the corresponding TPR and FPR are displayed in Table 2. The SR-SIR method
performs very well if an accurate estimate of β is provided, while the results are really bad
otherwise because no selected component of x has any effect of y. Concerning RSIR and the CSS
method, their FPR are similar, but the TPR are greater for the latter. The results for RSIR with
βQZ are slightly better than with the full RSIR procedure. The CSS method also seems to need
good estimates of the indices since working with the true ones produces better TPR than using γ̂ .

To get more insights about the numerical performances of the various procedures tested in this
example, we run them in several replications in the following section.
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Sliced inverse regression in underdetermined cases 15

m RSIR SIR-CSS
Estimates β̂RSIR β̂QZ γ̂ x′β

Quality criteria TPR FPR TPR FPR TPR FPR TPR FPR
N

um
be

r
of

se
le

ct
ed

co
m

po
ne

nt
s 10 0.05 0.05 0.10 0.04 0.10 0.04 0.20 0.03

20 0.15 0.09 0.25 0.08 0.35 0.07 0.40 0.07
50 0.30 0.24 0.45 0.23 0.60 0.21 0.70 0.20

100 0.40 0.51 0.70 0.48 0.75 0.47 0.90 0.46
150 0.85 0.74 0.85 0.74 0.80 0.74 0.95 0.73

Computational time (s) 120.61 120.64 328.73 321.04
m SR-SIR

Estimates β̂SR-SIR β̂QZ β

Quality criterion TPR FPR TPR FPR TPR FPR
Selection with AIC 0.00 0.13 0.00 0.16 0.90 0.00
Selection with BIC 0.00 0.03 0.00 0.07 0.65 0.00
Selection with RIC 0.00 0.03 0.00 0.04 0.65 0.00

Computational time (s) 35.53 40.88 33.29

TABLE 2. True positive rate (TPR), false positive rate (FPR) and computational time of various methods run on the
simulated sample of size n = 100, with p = 200, to determine which components of β of model (15) are not null.

4.2. General behaviors of the estimates over several replications

We generate 100 samples of size n = 100 from the model (15). For each of them, we launch the
RSIR, SR-SIR, SIR-QZ and SIR-MP procedures with the same parameters as in Section 4.1.2,
and compute the quality criterion given in (17). We display the values of the criterion in Figure 3.
The trend that is exhibited in Table 1 is confirmed in this graphic since the values of R(SIR-QZ)
are clearly greater than the others.

Various methods to select important components of x are then run in the 100 samples drawn
from model (15):

– RSIR with β̂RSIR, 1000 bootstrap samples and the following significance levels of the
corresponding test: 0.05,0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,

– SR-SIR with β̂SR-SIR and τ ∈ {1,2, . . . ,100},
– The CSS procedure with γ̂ from SIR-QZ and parameters N0 = 104, ζ = 10% and p0 = 50

for various number of selected components: 10,20,30,40,60,80,100,120,140,160.
The mean ROC curves over the 100 replications are displayed in Figure 4. The CSS method

outperforms RSIR while SR-SIR provides poor results. Notice that for RSIR, the values of the
FPR are close to the chosen levels of test, in spite of the fact that this test is asymptotic.

5. Real data application

5.1. Description of the Dataset

We illustrate our developed approach on a genetic dataset which contains transcriptomic data
and genomic data. In this study, we aim at finding genetic causes of variation in the expression
of genes, that is eQTL (expression Quantitative Trait Loci). In this context, the gene expression
data are treated as a quantitative phenotype and the genotype data (SNPs) are considered as
predictors. In this illustration, we study the Hopx gene analyzed in [27]. We investigate the ability
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16 Coudret, Liquet and Saracco

FIGURE 3. Boxplots of 100 values of R(m) for various estimation procedures m and samples of size n = 100 generated
from model (15) with p = 200.

FIGURE 4. Mean ROC curves for various procedures to select components of x that affect y in the model of Section 4.1,
over 100 replications, with n = 100 and p = 200. Solid circles: RSIR, crosses: SR-SIR, empty circles: SIR-CSS.
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Sliced inverse regression in underdetermined cases 17

of SIR-QZ combined with the CSS selection procedure to find a parsimonious index that explains
the variability of Hopx gene expression in the heart tissue using p = 770 SNPs from n = 29 inbred
line rats.

5.2. SIR-QZ and CSS results

We first run SIR-QZ for {H1, . . . ,HNH}= {2, . . . ,6}. In Figure 5(a), we plot the dependent variable
Hopx versus the index based on the whole set of SNPs (p = 770). This graphic clearly exhibits a
link between the phenotype and the index estimated by a smooth kernel method. In this illustration,
this link is almost linear. In contrast, the plot (not given here) of Hopx gene versus the second
EDR index does not show any structure. From this graphical diagnostic, it appears that only one
EDR direction provides relevant information to explain the variability of the gene expression.

Then, in order to find a parsimonious index, we run our CSS selection procedure with N0 =
900.000. The examined values of p0 are in {10,20}while ρ takes value in {0.75,0.80,0.85,0.90}.
In Table 3, we present the number of selected SNPs for each combination of this two parameters.
The threshold used for the selection will be detailed below. We can observe that, not surprisingly,
the numbers of selected SNPs increases with p0 and decreases with ρ . Moreover for a given value
of p0, we specify, in this table, the number of selected SNPs in common with those selected with
ρ = 0.9 (corresponding to the parsimonious model). We also indicate, for a given ρ , the number
of SNPs in common with those selected when p0 = 10 and when p0 = 20. This table highlights
an overlap of 10 SNPs among all the sets of the selected SNPs for the various couple (p0,ρ). Note
that, the smallest set contains 11 SNPs when p0 = 10 and ρ = 0.9 which comforts us about the
stability of the CSS procedure.

In eQTL study, it is known that only a few number of SNPs can explain the variation of the gene
expression. Thus, from the expertise of the biologists, we decide to select the sparsest model, that
is with (p0,ρ) = (10,0.9). Figure 6 exhibits the selected 11 SNPs for this choice of p0 and ρ . The

threshold (horizontal red line in the figure) is defined as follows: N1
p0

p +u1− α/2
p

√
N1

p0

p (1−
p0

p )

where u1− α/2
p

is the quantile of order (1− α/2
p ) of the standard normal distribution. It corresponds

to the upper bound of the prediction interval of the occurrence of a SNP in the selected model
under the hypothesis that none of the SNPs are associated with the gene expression. The level of
this interval is fixed at 1−α = 0.95 and is corrected by a Bonferroni approach.

On Figure 5(b), we plot the dependent variable Hopx versus the index based on the 10 SNPs
selected according to our previous comments on Table 3. The linear correlation between this index
and the one estimated on all the SNPs which is equal to 0.956, highlights the good behaviour of
our CCS strategy to select the relevant SNPs. Thus, not surprisingly, we observe the same relation
between Hopx gene expression and the estimated indices.

5.3. Comparison methods

We compare our approach with three popular multivariate methods for analyzing high-dimensionnal
datasets: A Lasso approach, the sparse Partial Least Squares (sPLS) and a Bayesian variable
selection regression (ESS++). The Lasso method [31], which is a penalized regression method
proposed to improve OLS (ordinary Least square), often performs poorly in both prediction
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18 Coudret, Liquet and Saracco

(a) (b)

FIGURE 5. Plots of the dependent variable Hopx versus the index based (a) on the whole SNPs, (b) on the 10 selected
SNPs. The linear correlation between these two indices (evaluated on n = 29 rats) is 0.956. The dotted (red) line is
the estimated linear model, the solid (blue) line is the kernel estimate of the link function with a bandwidth chosen by
cross-validation.
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FIGURE 6. Plot of the occurrence of the SNPs by the CSS procedure (p0 = 10, ρ = 0.9). The horizontal solid red line
represent the threshold to select the most relevant SNPs.
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Sliced inverse regression in underdetermined cases 19

ρ 0.75 0.8 0.85 0.9

p0 = 10 Number of selected SNPs 53 43 29 11
Number of SNPs in common
with those selected when ρ = 0.9 9 11 11 11

p0 = 20 Number of selected SNPs 136 125 106 69
Number of SNPs in common
with those selected when ρ = 0.9 64 67 68 69

Number of SNPs in common with those selected
when p0 = 10 and when p0 = 20 50 36 19 10

TABLE 3. Results on selected SNPs for various values of p0 and ρ

and interpretation especially when n is small and p is large. This technique tends to shrink the
regression coefficients towards zero in order to select a sparse subset of covariates and provide a
better prediction performance. sPLS [21] seeks for the best linear combination of SNPs to predict
the outcome. To ensure sparsity, sPLS includes a penalty function on some loading coefficients
which is equivalent to a restriction on the number of loading vectors and on the number of SNPs,
in each vector, that have a non-null coefficient. Both Lasso and sPLS approaches require a prelim-
inary calibration of the tuning parameters which directly affects the number of selected variables,
the estimate of the model parameters and therefore the statistical performances of the models.
Calibration procedures usually involve the minimization of the mean square error of prediction
through V-fold cross validation. In this illustration, we used the leave-one-out crossvalidation
method to choose the tuning parameter for both methods. We finally compare our results with
ESS++ a Bayesian variable selection approach for linear regression that can analyze single and
multiple responses ([8, 7]). ESS++ exploits recent developments in MCMC search algorithms
to explore the 2p-dimensional model space. The performances of this method have been, among
others, illustrated on eQTL studies ([27]).

Figure 7 presents the Venn diagram of the sets of SNPs selected by the different approaches. Two
SNPs (D14Mit3 and D2Cebr204s17) are selected by the four methods. D14Mit3 (chromosome
14) is clearly the first SNP in the list of the SNPs selected by the CSS procedure (see Figure 6) and
D2Cebr204s17 (chromosome 2) is at the third position. Moreover, our proposed approach reveals
4 SNPs (D18Ucsf1, Fgg, D2Utr9, D16Rat75) not selected by the other methods. Although three
of them are very close to our proposed threshold (red line in Figure 6), while the SNP D18Ucsf1
(chromosome 18) is clearly selected by our procedure.

The main advantage of our approach is the opportunity to reveal a non-linear link between the
gene expression and a parsimonious index while the other compared approaches are based on
a linear model. However, theses methods could treat multiple correlated phenotypes (multiple
continuous responses). For example, ESS++ has been used to study the joint variability of gene
expression in seven tissues (adrenal, gland, aorta, fat, heart, kidney, liver, skeletal) from inbred
line rats [7]. An extension of SIR-QZ for multivariate response is under investigation.

6. Concluding remarks

Although regularizing the estimated covariance matrix or constraining the optimization problem
are natural ways to extend SIR to underdetermined cases (n < p), it may not be clear which one
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FIGURE 7. Venn diagram of the sets of SNPs selected by Lasso, sPLS, ESS++ and SIR-QZ (combined with CSS)
approaches

should be chosen and how to set the related parameter for each procedure. For the RSIR method,
we illustrated that in such a context, the corresponding parameter should rather be determined
with respect to the stability of the linear algebra algorithm (as in SIR-QZ) than with a statistical
criterion. Moreover, the SIR-QZ approach introduced in this paper produces better results in
simulation than the SR-SIR method that constraint the underlying optimization problem. In
addition, the poor performances of SIR-MP suggest that adapting properties of the pseudo-inverse
from the functional SIR to our high dimensional context is not well-adapted. We assumed that the
dimension K of the EDR subspace was known in our simulation study. While, in the application,
an empirical argument was given to determine this dimension, its estimation remains to be done
with care.

We also proposed the CSS method that searches which submodels are the most informative
to select relevant components of x. This procedure relies on a quality measure of the estimated
indices, and it outperforms, in simulation, RSIR and SR-SIR selection procedures which are both
based on estimates of β . We thus explain these results by pointing out that, when n < p, only the
indices can be properly estimated, in general cases. Note that the space of the submodels may
not be browsed optimally by our proposed CSS algorithm. Improvements should be made using
optimization techniques such as genetic algorithms.

All the developed methods have been implemented in R language and are available upon
request from the corresponding author. An R package is currently under development.

The illustration of genetic data highlights the opportunity of SIR-QZ combined by the CSS
procedure to reveal a few number of SNPs which can explain the variability of the expression of
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the Hopx gene. Then, a non linear link between the gene expression and the parsimonious index
could be estimated. The choice of the number of SNPs to keep is still a topic of concern since
alternatives to our threshold could be considered.

In genetic datasets, the response variable is often multivariate. For instance, it could represent
several phenotypes as in eQTL studies. Some approaches already handle such datasets. Since
univariate results for SIR-QZ and the CSS selection procedure are consistent with the other
methods presented in our application, it thus appears interesting to extend them to the multivariate
case.
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Appendix A: Proof of (14)

We have, for k = 1, . . . ,K, Σ1/2M+Σ1/2ηk = αkηk. By pre-multiplying by the matrix (M+Σ1/2),
we obtain:

M+
Σ

1/2
Σ

1/2M+
Σ

1/2
ηk = αkM+

Σ
1/2

ηk, thus M+
ΣM+

Σ
1/2

ηk = αkM+
Σ

1/2
ηk.

Using the definition of bk given in (14), we get: M+Σbk = αkbk. From the comments on the
functional SIR context, provided in Section 2.5, the proof is complete.

Appendix B: Details about SIR-QZ

B.1. Generalized real Schur decomposition

We work here with real matrices M̂ and Σ̂. Similarly to the generalized Schur decomposition
introduced in Section 2.4, that produces complex matrices Q and Z, the generalized real Schur
decomposition (see Theoresm 7.7-2 of [19]) ensures that we can find Q and Z such that QM̂Z is
an upper quasi-triangular real matrix and QΣ̂Z is an upper triangular real one. An upper quasi-
triangular matrix can be defined as the sum of an upper triangular matrix and of a block diagonal
matrix where the sizes of the block are 1×1 or 2×2. For a 1×1 diagonal block of the matrix
QM̂Z, its unique element is called t̃ j if it is located at the jth row and at the jth column of QM̂Z.
We write t̃ j1, j2 the element of a 2×2 diagonal block, in the j1th row and in the j2th column of
QM̂Z. An example of such an upper quasi-triangular matrix is given below:

QM̂Z =


t̃1 ∗ ∗ ∗ ∗
0 t̃2,2 t̃2,3 ∗ ∗
0 t̃3,2 t̃3,3 ∗ ∗
0 0 0 t̃4 ∗
0 0 0 0 t̃5

 ,

where ∗ denotes some real values. Let J be made of the elements j ∈ {1, . . . , p} such that t̃ j exists
and Jc be the set made of j ∈ {1, . . . , p−1} such that t̃ j, j and t̃ j+1, j+1 exist. For each j ∈ J, let ũ j
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be the element of QΣ̂Z at the same location than t̃ j in QM̂Z and define similarly ũ j1, j2 for each
t̃ j1, j2 . Thus, we have

det(M̂−λ Σ̂) = det(Q′Z′)∏
j∈J

(t̃ j−λ ũ j) ∏
j∈Jc

det
(

t̃ j, j−λ ũ j, j t̃ j, j+1−λ ũ j, j+1
t̃ j+1, j t̃ j+1, j+1−λ ũ j+1, j+1

)
.

Hence, for j ∈ J, if ũ j 6= 0, then λ j = t̃ j/ũ j is a real generalized eigenvalue. In addition, for j ∈ Jc,
Moler and Stewart [26] succeeded in finding (t̃ j, t̃ j+1) ∈ C2, and (ũ j, ũ j+1) ∈ R\{0} such that
λ j = t̃ j/ũ j and λ j+1 = t̃ j+1/ũ j+1 are generalized eigenvalues of M̂ and Σ̂. This leads to vectors
t̃ = (t̃1, . . . , t̃p)

′ and ũ = (ũ1, . . . , ũp)
′ that are sent back by the QZ algorithm in order to provide

generalized eigenvalues.

B.2. Algorithm

As explained in Section 2.4, the QZ algorithm has to be controlled when dealing with singular
pencils. The following pseudocode in Scilab language allows the user to do so in the context of
sliced inverse regression, for underdetermined cases. Because it is based on generalized real Schur
decompositions, the notations involved are related to Appendix B.1 rather than Section 2.4.

/ / I n i t i a l i z e smin , c and ε .
s = smin ;
keepGoing = %T;
whi le keepGoing

/ / Use t h e QZ a l g o r i t h m on M̂ and Σ̃(s) t o f i n d
/ / v e c t o r s ũ and t̃ .
i f ( sum ( abs ( ũ ) < ε ) + sum ( abs ( t̃ ) < ε ) == 0) &

( l e n g t h ( ũ ) − sum ( abs ( ũ ) < ε ) >= K ) then
keepGoing = %F;

e l s e
s = s * c ;

end
end
/ / The e s t i m a t e d EDR d i r e c t i o n s are t h e e i g e n v e c t o r s s e n t by t h e
/ / l a s t run o f t h e QZ a l g o r i t h m t h a t c o r r e s p o n d s t o t h e K
/ / g r e a t e s t v a l u e s o f t̃/ũ .

ALGORITHM 1. A procedure to estimate EDR directions with the QZ algorithm

Typical values for smin, c and ε chosen in the simulation study of Section 4 are respectively
10−16, 10 and 10−10. The QZ algorithm is implemented in Matlab through the eig function. With
Scilab, one should use spec, which is based on the LAPACK library. The R software is able to call
functions from this library. Thus the QZ algorithm can be easily tested with this software. Notice
that Algorithm 1 is designed to handle real values of ũ j and t̃ j but, as mentioned in Appendix B.1,
they can be complex. In that case, knowing if the blocks made of t̃ j, j, t̃ j+1, j, t̃ j, j+1 and t̃ j+1, j+1 and
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of ũ j, j, ũ j+1, j, ũ j, j+1 and ũ j+1, j+1 produce unstable eigenvalues is more difficult. As explained
in Section 5 of [26], the QZ algorithm aims at finding stable λ j and λ j+1 corresponding to these
2×2 blocks. Because we do not control this procedure, we simply report if the QZ algorithm
send back complex values in t̃. We never encounter this case in the simulation study of Section 4.

B.3. The sliced indices issue

Hereafter, we describe why the Algorithm 1 produces clustered indices as in Figure 8. Recall
that Σ̂ = 1

n X̃ X̃ ′. Define Īn = In− 1
n 1n,n, where every element of the n×n matrix 1n,n is equal to 1.

Notice that X̃ = XĪn and then Σ̂ = 1
n XĪnX ′. We can also write M̂ = XĪnŜŴ Ŝ′ĪnX ′, where Ŝ and

Ŵ are defined in Section 2.3. Because of the structure of Ŝ, for any H×α matrix A, ŜA has at
most H distinct rows, so has ĪnŜA. Let w be the first generalized eigenvector of ĪnŜŴ Ŝ′Īn and Īn

associated with the eigenvalue λ . This means that ĪnŜŴ Ŝ′Īnw = λ Īnw which implies that w̄ = Īnw
has at most H distinct values and then that w has also at most H distinct values.

Assume that X has full column rank, which is likely to happen when p > n. Then, X+′w is a
generalized eigenvector of M̂ and Σ̂ and X ′X+′w = w has at most H distinct values. The eigenvalue
that is related to X+′w is equal to nλ .

If it exists β̂1 6=X+′w, a generalized eigenvector of M̂ and Σ̂ such that the generalized eigenvalue
which is related to β̂1 is greater than the one corresponding to X+′w, then we should have

β̂ ′1XĪnŜŴ Ŝ′ĪnX ′β̂1

β̂ ′1XĪnX ′β̂1
>

w′ĪnŜŴ Ŝ′Īnw
w′Īnw

.

But, because w is the first generalized eigenvector of ĪnŜŴ Ŝ′Īn and Īn, it maximizes u′ ĪnŜŴ Ŝ′ Īnu
u′ Īnu

over the vectors u of length n, which contradicts the latter equation. Hence, such a β̂1 does not
exist, and the first generalized eigenvector of M̂ and Σ̂ is X+′w.

In this paragraph, we show that it exists H−1 orthogonal vectors w1, . . . ,wH−1 such that, for
k = 1, . . . ,H−1,

w′k ĪnŜŴ Ŝ′Īnwk

w′k Īnwk
=

w′ĪnŜŴ Ŝ′Īnw
w′Īnw

,

which means that the first K generalized eigenvectors of M̂ and Σ̂ are the vectors X+′wk for
k = 1, . . . ,K ≤ H − 1. We assume n > H. Let sort Y increasingly and reorder the columns of
X such that each column corresponds to the appropriate element of Y . This transformation
implies that ŜŴ Ŝ′ is block diagonal with H blocks. For h = 1, . . . ,H, the size of the block h
is equal to np̂h and each element it contains is equal to 1

n2 p̂h
. Hence, the rank of each block is

equal to 1 and each block provides a positive eigenvalue for ŜŴ Ŝ′, which is equal to np̂h
n2 p̂h

= 1
n .

The corresponding eigenvector is made of elements I[yi∈sh]√
np̂h

for i = 1, . . . ,n. We have now H

orthonormal eigenvectors of ŜŴ Ŝ′ for the eigenvalue 1
n , and then we can find H−1 orthonormal

centered eigenvectors w̄1, . . . , w̄H−1 of ŜŴ Ŝ′ for this eigenvalue. In addition, for k = 1, . . . ,H−1,
w̄k is also a generalized eigenvector of ĪnŜŴ Ŝ′Īn and Īn because Īnw̄k = w̄k, and w̄k maximizes
u′ ĪnŜŴ Ŝ′ Īnu

u′ Īnu , over the vectors u of length n. Finally, we have that the first K generalized eigenvectors

Soumis au Journal de la Société Française de Statistique
File: "SIRn<p-2012 _v2".tex, compiled with jsfds, version : 2009/12/09
date: November 30, 2012



24 Coudret, Liquet and Saracco

FIGURE 8. Plot of Y versus X ′β̂QZ with H = 10. The horizontal scale was standardized.

of M̂ and Σ̂ are X+′(w̄1, . . . , w̄K), which means that the indices X ′X+′(w̄1, . . . , w̄K) only have H
distinct rows.

This feature is illustrated on the simulated sample of size n = 100, with p = 200 from Sec-
tion 4.1. In Figure 8, we plot Y versus the estimated indices obtained with β̂QZ for H = 10.
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