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Abstract

We present a novel algorithm for surface realisation wittickelist grammars. In this algorithm,
the structure of the input is used both top-down to constianselection of applicable rules and
bottom-up to filter the initial search space associated lithl input trees. In addition, parallelism
is used to recursively pursue the realisation of each dauglatde in the input tree. We evaluate
the algorithm on the input data provided by the Generaticall€hge Surface Realisation Task anc
show that it drastically reduce processing time when coegbarith a simpler, top-down driven,
lexicalist approach.
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1 Introduction

Depending on the type of semantic representation encod#telgrammar, two main types of al-
gorithms have been proposed for generating sentences idihelstional, unification-based gram-
mars such as CCG (Combinatory Categorial Grammar, (Esaieioasl., 2010)), HPSG (Head-
Driven Phrase Structure Grammar, (Carroll etlal., 1999)) &8AG (Tree Adjoining Grammar,
(Gardent and Kow, 2005)).

For recursive semantic representations such as first-togierformulae, head-driven algorithms
(Shieber et all, 1990) have been argued to be best becaysestrct the combinatorics inherent
to bottom-up search; they avoid non termination by usingchbitems to guide the search ; and
they allow for semantically nonmonotonic grammars (i.eangmars where the semantics of a rule
at the left hand side need not be subsumed by the semanttus fle at the right hand side). One
main issue with this approach however is the so-called &darm equivalence problem (Shieber,
1993). A logic formula may have several logically equivalbat syntactically distinct formulae.
For instance A q is logically equivalent t@ A p. In general though, a grammar will associate witt
natural language expressions only one of these logicallivatgnt formula. Hence a generator will
be able to produce the natural language expressionly when given the formulg associated
by the grammar wittE. For all other formulae logically equivalent tp, it will fail. Since, the
problem of computing logical equivalence for first orderitoig undecidable, the problem is quite
deep.

For flat semantic representations such as MRSs (Minimal RezuSemantics, (Copestake et al.
2001)) on the other hand, lexicalist approaches (Espinioela €2010; Carroll and Oepen, 2005;
Gardent and Kow, 2005) have extensively been used becgubeyiimpose few constraints on
the grammar thereby making it easier to maintain bi-dicewl grammars that can be used bott
for parsing and for generation; and (ii) the approach esshke/logical form equivalence problem
— Since the semantic representations are unstructuree ih@o requirement on the generatol
to mirror a semantic structure. One known drawback of ldidgtapproaches however is that they
generally lack efficiency. Indeed, previous work has shdvai the high combinatorics of lexicalist
approaches stem from (i) strong lexical ambiguity (eachiipement is usually associated with a
large number of grammatical structures thereby inducingrg karge initial search space); (i) the
lack of order information in the input (as opposed to parswhgre the order of words in the input
string restricts the number of combinations to be explgradyl (iii) intersective modifiers (given

n modifiers applying to the same constituent, thererdn@ays to combine these together).

In this paper, we present an algorithm for surface reatigatiat combines techniques and idea
from the head-driven and the lexicalist approach. On thehamel, rule selection is guided, as in
the lexicalist approach, by the elementary units presettigninput rather than by its structure -
In this way, the logical form equivalence issue is avoided.te other hand, the structure of the
input is used to provide top-down guidance for the searchlageby restrict the combinatorics.

To further improve efficiency, the algorithm integratesethradditional optimisation techniques
From the lexicalist approach, it adapts two techniquesythesi to prune the search space, namely
so-called polarity filter on local input trees (Bonfante ket2004); and the use of a language mode
to prune competing intermediate substructures. In additiee algorithm is parallelised to explore
the possible completions of the top-down predictions siamdously rather than sequentially.

The algorithm was implemented using a Feature-Based LisécaTree Adjoining Grammar for
English and tested on the Generation Challenge SurfacésBtah task data (Belz etial., 2011).
We compare our algorithm with a baseline lexicalist apphoahich processes the input tree top



down. The results show that the algorithm we propose dedbticnproves on the baseline, reduc-
ing generation time for sentences longer than 6 words thig baseline.

This paper is structured as follows. Sectidn 2 situates ppraach with respect to related work.
SectiorB introduces the input data provided by the Gemer&hallenge Surface Realisation task
and used for the evaluation. Sectldn 4 introduces the trggnan grammar used by the algo-
rithm. Sectiol b presents the surface realisation algoritte developed. Sectidn 6 describes th
evaluation setup and the results obtained. SeLlion 7 cdeslwith pointers for further research.

2 Related Work

Most of the recent proposals on optimising surface readisawvith unification grammars focuses
on lexicalist approaches, they place minimal requirementhe grammar and eschew the logica
form equivalence problem. We now review the optimisatiahtéques used in these approache
We also briefly review recent work on statistical approa¢besirface realisation.

For HPSG,|(Carroll and Oepen, 2005) present a bottom-ufdkst, surface realiser which uses
a chart based strategy, subsumption-based local ambiguattyring and a procedure to selectively
unpack the generation forest according to a probabilityidigtion given by a conditional, discrim-
inative model. The algorithm is evaluated on tiike treebank, a collection of 330 sentences o
instructional text taken from Norwegian tourism brochuréth an average length of 12.8 words.
Practical generation times average below or around onenddoo outputs of 15 words.

For TAG, (Gardent and Kow, 2007) propose a three step suréadisation algorithm for FB-LTAG
(Feature-Based Lexicalised Tree-Adjoining Grammar) wliiest, a so-called polarity filter is used
to prune the initial search space second, substitutiongbeahto combine trees together and third
adjunction is applied.

In essence, polarity filtering filters out combinations of EBAG elementary trees which cover the
input semantics but cannot yield a valid parse tree eithealse a syntactic requirement canno
be satisfied or because a syntactic resource cannot be uséls Wway, the exponential impact

of lexical ambiguity can be reduced. Furthermore applymmgssitution before adjunction means
that first a skeleton sentence is built before modifiers ajeirsetl. This permits reducing the

combinatorics introduced by intersective modifiers as th#ipie intermediate structures they may
license do not propagate to the rest of the sentence treeadtige however, evaluation is restricted
to short input and the algorithm fails to scale up (GardedtRerez-Beltrachini, 2010).

(Koller and Striegnitz, 2002) present a surface realisagigorithm where (i) the XTAG FB-LTAG
grammar{(The XTAG Research Group, 2001) is converted to artigncy grammar capturing the
derivation trees of XTAG and (ii) a constraint-based deerg parser is used to construct deriva
tion trees from semantic representations. The parser uasdspecifically developed for the ef-
ficient parsing of free word order languages and is shown fioieftly handle both the lexical
ambiguity and the lack of order information in the input tha¢ characteristic of surface realisa
tion from a flat semantics. The evaluation however is resiito a few hand constructed example
inputs; and the grammar conversion ignores feature strigiformation.

To address these shortcomings, (Gardent and Perez-Betti;z2010) present an approach which
makes use of the procedure for converting an FB-LTAG to alfeaBased Regular Tree Grammar
(FB-RTG) described in (Schmitz and Roux, 2008). Like in (Kpknd Striegnitz, 2002), the initial

FB-LTAG is converted to a grammar of its derivation trees.widwer in this case, the grammar
conversion and the resulting feature-based RTGs accytaggislates the full range of unification



mechanisms employed in the initial FB-LTAG. An Earley, bottup algorithm is developed and
the approach is tested on a large benchmark of artificialysttacted examples illustrating dif-
ferent levels of linguistic complexity (different inputrigths, different numbers of clauses and o
modifiers). The approach is shown to outperform the algerigresented in_(Gardent and Kow,
2007) in terms of space. Speed is not evaluated however aralgbrithm is not evaluated on the
real life data.

Probabilistic techniques have also been proposed to inega@y, lexical selection, the handling of
intersective modifiers and the selection of the best outipot.instance [ (Bangalore and Rambow
2000) uses a tree model to produce a single most probabtmlesélection while in CCG based
White's system|(White, 2004), the best paraphrase is datedvon the basis of n-gram scores
To address the fact that there areways to combine any modifiers with a single constituent,
(White, [2004) proposes to use a language model to prune the ohidentical edges repre-
senting different modifier permutations, e.g., to choosveenfierce black catand black fierce cat
Similarly, (Bangalore and Rambow, 2000) assumes a singigatien tree that encodes a word
lattice (a {fierce black, black fierce} cit and uses statistical knowledge to select the best liseari
tion. Recently,|(Espinosa etlal., 2008) adapted the suygirtg techniques first proposed for pars
ing (Bangalore and Joshi, 1999) to surface realisationeG@ treebank in the appropriate format
this technique permits filtering the initial search spaceibiyng a model trained on that treebank
Supertagging was shown to improve the performance of syimpalsers and generators signif:-
icantly. However, it requires the existence of a treeban format appropriate to generate the
supertagging model.

In sum, various symbolic and statistical techniques hawntaeveloped to improve the effi-
ciency of grammar-based surface realisation. Howevetistital systems using supertagging
require the existence of a treebank in an appropriate formfale the purely symbolic sys-

tems described in_(Carroll and Oepen, 2005; Gardent and |R0@5; Koller and Striegnitz, 2002;

Gardent and Perez-Beltrachini, 2010) have not been eealuat large corpora of arbitrarily long

sentences such as provided by the surface realisation §SRfBelz et al|, 2011).

Recently,(Guo et al., 2011; Bohnet et al., 2011; Stent, Phavde developed statistical dependenc
realisers that do not make use of an explicit grammar but aseatled classifiers and n-grarn
models to map in SR input data to sentences. They obtain tterdsults in the SR task partly
because, for grammar based systems, converting the pdowviget into the format expected by the
grammar proved to be extremely difficult.

The algorithm we propose departs from these approachestiit il a grammar-based approach
it is optimised by combining parallel processing, top-dgwediction and local bottom-up polar-
ity filtering; and it was evaluated on a large scale using tipui data provided by Generation
Challenge SR Task.

3 Input Representations

Recently, the Generation Challenge has promoted a SurfeedisRtion (SR) task (Belz etlal.,
2011) where the input provided to test and compare surfadsees are (deep or shallow) depen
dency structures. Here we assume as input to surface tealighe shallow dependency structures
provided by this task namely, unordered trees whose edgelslaelled with syntactic functions
and whose nodes are labelled with lemmas, part of speechpgagi®l morphosyntactic informa-
tion such as tense and number and, in some cases, a sensenté#fgeid All words of the original
sentence are represented by a node in the tree. An examfle sfillow dependency trees usec



for the SR task is given in Figufé 1.

Figure 1: Input shallow dependency tree from the Gener&iwailenge Surface Realisation Task
for the sentencethe most troublesome report may be the August merchandise dreficit due out tomorrow .

Note that contrary to the flat semantic representationsefsed by surface realisers, the SR dat
has a clear tree structure. Thus the combinatorics indugdteblack of order in flat semantic

representations is less in this task. Indeed, the algoritarpresent exploits this structure to
minimize the combinatorics. Similarly, (White, 2006) ajpglchunking constraints to the graph
structure of flat semantic representation to constrain #regation of coordinate structures anc
address the issue of semantically incomplete phrases.

4 Grammar

Following (Gardent and Perez-Beltrachini, 2010), we penfeurface realisation using a Feature
Based Regular Tree Grammar (FB-RTG) describing the désivatees of a Feature-Based Lexi-
calised Tree Adjoining Grammar (FB-LTAG, (Joshi and Sclsali896)) rather than the FB-LTAG

itself. In what follows, we briefly introduce FB-LTAG and tderived FB-RTG used for generation.

4.1 FB-LTAG

The grammar underlying the surface realisation algorithres@nted in the next section is
an FB-LTAG for English consisting of roughly 1000 trees antlose coverage is similar to
XTAG (The XTAG Research Group, 2001).

Figure[2 shows an example FB-LTAG. Briefly, an FB-LTAG cotsisf a set of elementary trees
which can be either initial or auxiliary. Initial trees ared¢s whose leaves are labeled with subst
tution nodes (marked with a down-arrow) or terminal categgrAuxiliary trees are distinguished
by a foot node (marked with a star) whose category must beaime ss that of the root node. In
addition, in an FB-LTAG, each elementary tree is anchored bsxical item (lexicalisation) and
the nodes in the elementary trees are decorated with tworéeatructures calletbp andbottom
which are unified during derivation. Two tree-compositiggerations are used to combine trees
substitution and adjunction. Substitution inserts a tme® @ substitution node of some other tree
while adjunction inserts an auxiliary tree into a tree. Ration in an FB-LTAG yields two trees: a
derived treaewhich is, like for context free grammars, the tree produgeddmbining the grammar
rules (here, the elementary trees) licensed by the inpdtaalerivation treewhich indicates how



the derived tree was built i.e., which elementary trees weeel and how they were combined. Fig
ure[3 show the derived and derivation trees associated tyrémemar shown in Figuid 2 with the
sentence Which fruit has John eatefi? For a detailed presentation of the FB-LTAG formalism
the reader is referred to_(Vijay-Shanker and Joshi, 1988).

4.2 FB-RTG

As shown in [(Koller and Striegnitz, 2002; Gardent and Pé&eltrachini,| 2010), processing the
derivation trees of a given FB-LTAG rather than its derivezes is more efficient. Following
(Gardent and Perez-Beltrachini, 2010), we therefore us¢heanitial FB-LTAG described in the
previous section, but the FB-RTG grammar of derivationgrat can be derived from it. That
is, the surface realisation algorithm first builds a defowatree. The generated sentence is the
extracted from the derived tigevhich can be reconstructed from this derivation tree usimg t
original FB-LTAG.

Figure[2 shows an example FB-LTAG and the corresponding FB-R'he conversion from FB-
LTAG to FB-RTG is described in detail in_(Schmitz and Roux0&) Intuitively, the FB-RTG
representation of an FB-LTAG elementary tteés a rule whose left hand side (LHS) describes th
syntactic requirement satisfied bye.qg.,Sg for an initial tree rooted it$ andV P, for an auxiliary
tree rooted inVP) and whose right hand side (RHS) describes its requiremefd§unction is
handled as an optional requirement which can be satisfieldeogdjunction of an empty string and
subscripts indicates the nature of the requiremgribf a substitution and for adjunction). For
instance, the rule8 in Figure2 repeated below for convenience, describes thiibation of the
elementary tred8 lexicalised with the lemmaatto a derivation tree as follows8 can satisfy a
requirement for a substitution on a node labelled with that®gory (LHS with the categois)
and requires one substitution on a node labelled with the &€ory VP; on the RHS) and two
optional adjunctions of category S and VP respectively{ P, on the RHS).

:T,b:B :T,b:B [wh:—
SLETPBL L, eqr(sitPF npletvi -y p,)

The derivation process in FB-RTG produces trees that aresdliientical to the FB-LTAG deriva-
tion trees. Figurél3 shows the FB-LTAG derived, FB-LTAG dation and FB-RTG derived tree
for the sentenceWhich fruit has John eateti”When abstracting away from the categorial node:
the FB-RTG derivation tree mirrors the derivation tree @& timiginal FB-LTAG. TheA andS sub-
scripts indicate which operation was used for combiningt i@ nodes at which each FB-LTAG
elementary tree adjoins or substitutes is encoded by fesiarthese trees: for instance, the suk
ject node oft9 will have the featursubjectwhile its object node will have the featuobject By
comparing the dependency relations present in the inpaewtith the feature values given by the
grammar, it is thus possible to determine on which nodesefribther tree in the derivation tree,
its daughter trees should combine.

Note that the FB-RTG tree is unordered. During generatios appropriate linearisation of the
lexical items is obtained by constructing the FB-LTAG dedwuree from the FB-RTG derivation

tree. Morphological realisation is carried out in a posigassing step from the list of lemmas anc
feature structures decorating the yield of the FB-LTAG detitree.

lin FB-LTAG, the mapping from derivation tree to derived tis@ne-to-one.
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r7 Sgt:T,b:B] N haVQS/Et:T’b:B] NPS[t:[Wh:—]] VP, NPS)
r8 Sgt:T,b:B] - eaJ(SAFt:T,b:B] NPS[t:[wh:—]] VPA)
r9 Sgt:T,b:B] - eaJ(SAFt:T,b:B] NPS[t;[wh;—]] VPA NPS)
r10 Sgt:T,b:B] N eaJ(SAFt:T,b:B] NPS[t:[wh:+]] S, NP VPA)
ri1 X/[‘t:T,b:T] = e

Figure 2. Atoy FB-LTAG and the corresponding FB-RTG. Forshke of clarity, feature structures
are abbreviatedrll (not present in the original FB-LTAG) implements optiondjumction for
arbitrary categories witli, a variable ranging over all syntactic categories.



eat-t10
S, Npgvht] S, NP, VP,
\ \ \ \ \
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\
€
S eat-t10
N plt:iwh+]] S fruiF-tS John-t4 have-t5
/\ |
Det NP 1% S which-t1
] I N
which fruit has NP VP

John V NP

eat €

Figure 3: The FB-RTG derivation folWhich fruit has John eatérand the corresponding FB-
LTAG derived and derivation trees. In the derivation trée, hodes are labelled with a lemma/FB
LTAG tree name pair; dashed lines indicate adjunction afid Boes substitution. Adjunction and
substitution sites have been omitted.



5 The Surface Realisation Algorithm

Surface realisation starts from the root node of the inpeg &ind processes all children nodes il
parallel by spreading the lexical selection constraintsdown and completing the FB-RTG rules
bottom-up. Figurél4 shows the architecture of the surfaaéser. The controller provides the
interface to our surface realization system. It takes d@haependency tree as input and produce
a ranked list of sentences as output. More specifically, tmgroller defines a process pool such
that each process present in this pool represents a nodarfzalein the input dependency tree anc
the communication scheme among processes reflects theddgmsrrelations among nodes in the
input dependency tree. In this way, generation is guidedbystructure of the input dependency
tree.

FB-RTG

B e P2 Process Pool P3 <€&—> POlarity Filter

@% ’ Language Model

Resources

Controller

P4

Figure 4: A Parallel Architecture for Surface Realisation

The algorithm proceeds in five major steps as follows.

Top-Down Rule selection and Filtering. Starting from the root node, the input dependency tre
is traversed top-down to associate each node in the inpunite a set of grammar rules (from the
FB-RTG). This step corresponds to the lexical lookup phésexaalist approaches whereby each
literal in the input selects the grammar rules whose semsatibsumes this literal. Our approact
differs from existing lexicalist approaches however intthases the top-down information given
by the structure of the input to filter out some possibilitibat cannot possibly lead to a valid
output. More precisely, for each input nodevith lemmaw, only those rules are selected which
are associated withr in the lexicon. In addition, the left-hand side (LHS) catggaf each selected

rule must occur at least once in the right-hand side (RHS)@ftles selected by the parent node

For instance, given the input dependency tree shown in Eifdior the sentencétfhich fruit has
John eaten? and the grammar given in Figufé 2, all rule&, r9 andrl0 associated with the
lemma eat will be selected because all of them corresponds tosthmoted initial tredd

2The controller triggers the root process “eat” with theiaitexical selection constrainsg, S rooted initial trees) to
generate complete sentences.

3The grammar is lexicalised with lemmas rather than forms &jppropriate forms are generated at the end of the ge
eration process based on the lemmas and on the featuraistsidiecorating the yield of the trees output by the generato



Figure 5: Dependency Tree fowwhich fruit has John eatén

\/ r8 Sgt:T,b:B] N eat(SfEt:T,b:B] Nps[t:[wh:—]] VPA)
\/ r9 Sgt:T,b:B] N eat(SfEt:T,b:B] Nps[t:[wh:—]] VPA NPS)
\/ r10 Sgt:T,b:B] N eat(S/[f:T’b:B] Nps[t:[wh:—o—]] S, NP VPA)

The parent process creates a new lexical selection camsirgissage consisting of its RHS re-
quirements in selected RTG rules and passes it to its chilgirecesses. In Figuke 5, the proces:
associated with the nodeat will send a message consisting 8f, NPy andVP, (RHS require-
ments of rules8, r9 andrl0) to its children processes associated withit’, * Johri and ‘have.

Starting from the trigger initiated by th@ontroller, the process of message spreading happens
recursive and parallel manner throughout the process péletting the input dependency tree in
a top-down fashion. It eliminates all RTG rules which canmagsibly lead to a valid output well
before carrying out any substitution and adjoining operatin the RTG rules.

For instance, the rul& for ‘have will not be selected because its left-hand sid§davhich does
not satisfy the lexical selection constraingg,(N P; andV P,) sent by its paren&at.

v 5 ST have(sttTh
v 16 VPl have(vplT)
% 7 Sgt:T,b:B] N have(S/Et:T’b:B] NPS[t:[Wh:—]] VP, NPS)

Leaf closure. When reaching the leaf nodes of the input tree, the top arnidindeature structures
of the rules selected by these leaf nodes are unified. Theletedprules of a leaf node are sent
back to its parent.

Local Polarity filtering.  As mentioned in Sectidnl 2, polarity filtering (Gardent andw@005%)
eliminates from the search space those sets of rules whigr twe input but cannot possibly lead
to a valid derivation either because a substitution nodeatde filled or because a root node fails
to have a matching substitution Bwhile (Gardent and Kow, 2005) applies polarity filteringhe t
initial search space (the set of rules selected by all lggrathe input), we apply polarity filtering
to each local tree while going up the input tree. Thus, thierfitg will weed out all combinations

4Since it only eliminates combinations that cannot posdidyl to a valid parse, polarity filtering does not affect com:
pleteness. Nor does it place any particular constraintengiammar. All that is required is that the grammar encodes
notion of resources and requirements i.e., of items thatedagach other out. Typically, grammar rules support this- co
straint in that e.g., the left-hand side of a rule and onegeagein the right-hand side of another rule can be viewed a:
canceling each other out if they match.



of mother rules and completed immediate daughter ruleshwténnot possibly yield a complete
tree either because some daughter rule cannot be used oisbeszane requirement of the mothel
rule cannot be satisfied. For instance, after processindabghters of thegat node in the input
dependency tree shown in Figlide 5, all combinationeBofintransitive eat) with the daughter
trees will be excluded. This is because at this stage of peing, the trees built bottom up for
‘which fruit, * Johri and 'haveé includes two NPs with LHS categoty Ps (Figure[6) while the8
rule only requires one such NP. That is, for this rule, the pleted daughter rule fawhich fruit
will show up as a superfluous syntactic resource.

% r8 Sgt:T’b:BJ - €Clt(S/[f:T’b:BJ Nps[t:[wh:—]] VPA)
\/ r9 Sgt:T’b:BJ - €Clt(S/[f:T’b:BJ Nps[t:[wh:—]] VPA NPS)
\/ r10 Sgt:T’b:BJ N €Clt(S/[f:T’b:BJ Nps[t:[wh:-&-]] S, NP VPA)

% Npst:[wh:+],b:[wh:+] S‘A N‘Ps V‘PA
\
Ss fruit-t3 hav‘e—tS Jo‘hn—t4 hf‘:\ve—tG
| ket ] bl
eat-t8 NpLbviAlbbeht] g NP, VP,
e | | | |
Sy NP VP, which-t1 € € €

t:[wh:+],b:[wh:+]
NP!

€

Figure 6: Polarity Filtering will filter out the8 rule for ‘eat since one of treeswhich fruit or
‘Johri would then appear as a superfluous syntactic resourcaugtrdted by the above derivation.

By restricting polarity filtering to local input trees, weas the computation of the very large
automaton required when filtering the global initial seasglace as done in_(Gardent and Kow
2005).

As noted by one of our reviewers, supertagging models cabbgbiy approximate local polarity
filtering. For instance, a supertagger model might leartghantransitive category is very unlikely
whenever the input dependency tree contains one or moreoguenents.

The combined effect of top-down filtering and local polariiyering avoids considering most
of RTG rules which can never lead to valid output well befoegrging out any substitution

and adjoining operation on the RTG rules to try to completarth The Earley, bottom-up al-
gorithm {Gardent and Perez-Beltrachini, 2010) also agseaome amount of top-down filtering
during its prediction stage but the lexical selection caist is limited to the top of the RHS re-
quirements of the RTG rule being processed, hence it mayatmypteting the RTG rules which

cannot possibly lead to a valid output whereas in our proppagproach all RHS requirements
of the selected RTG rules are available as the lexical sefecbnstraint information during both

top-down filtering and local polarity filtering steps.

Bottom-Up generation. For each local tree in the input, the rule sets passing tred fomarity
filter are tried out for combination. The completed daugREG rules are combined to the local



initialized RTG rule using substitution and adjoining agtons. The local initialized RTG rule
fails to complete if any feature conflicts are found.

Note that for each rule set let through by polarity filteritigg category and the number of daughte
trees exactly match the requirement of the associated mtlee For instance, as explained above
the ruler8 representing an intransitive use of the veght is ruled out by polarity filtering since
it does not permit “consuming” th&¥ P; resource provided by one of NP&hich fruit or * John.
Conversely, given an input tree of the fowat (j ohn, has), the rules9 andrl0 representing a
transitive use of the verlkeat would be filtered out by polarity filtering. As a result, th&érme-
diate structure shown below will not be computed. That isjevine global polarity filtering used
in (Gardent and Kow, 2005) permits weeding out global coratiim of trees that are invalid, local
polarity filtering additionally permits reducing the numloé intermediate structures built first, be-
cause there is no need for prediction i.e., for active chiams$ and second, because intermedia
structures that cannot possibly lead to a valid derivatremat built.

Ss
|

eat

S, NP/l g NP VP,

€ X John h‘ave
NP, VP,
| |
€ €

Figure 7. Giventhe inputtresat (j ohn, has), local polarity filtering filters out this intermediate
structure because it cannot be completed given the input

N-gram filtering using a Language Model. To further prune the search space and to approp
ately handle word order, the SR algorithm also integrataaguage model and can be parametrize
for the number of best scoring n-grams let through after dattom-up generation step. In this
way, not all possible orderings of intersective modifiers produced, only those that are mos
probable according to the language model.

6 Empirical Evaluation

We now report on the results obtained when running the dlgorand the grammar described
above on the shallow input data provided by the Generatiadl€ige Surface Realisation Task
Because we are presenting an algorithm for surface raalisedther than a surface realiser, the
main focus of the evaluation is on speed (not coverage orracgl Nevertheless, we also re-
port coverage and BLEU score as an indication of the capiakilof the surface realiser i.e., the
algorithm combined with the grammar and the lexicon.

6.1 Runtimes

The SR data on which we evaluate our surface realisationriliigpare the shallow dependency
trees described in Sectibh 3.



We use as a baseline the FB-RTG based lexicalist appr@&BELINE) described inl(Narayan,
2011). In this approach, FB-RTG rules are selected top-dollowing the structure of the input

dependency tree and all FB-RTG rules selected for a giveal loput tree are tried out for combi-
nation using a chart-based approach. This baseline thostgerbserving the impact of the various
optimisations described below. In future work, it would beeresting to obtain time information
from the systems participating in the SR challenge and topasenthem with those of our system.

TDBU-PAR (top-down, bottom-up and parallelised) is the aillpon presented here running on
a 4 core system. To evaluate the impact of parallelism orima®, we also computed runtimes
for a sequential version of the same algoriththbBU-SEQ). INTDBU-SEQ, daughter subtrees
(processes) of the input dependency tree are processeeisiadjy.

Table[1 shows the runtimes for the three surface realisafigorithmsBASELINE, TDBU-SEQ
andTDBU-PAR with varying sizes of sentences. For the TDBU altjonis, the n-gram filtering is
set to 10 that is, for each local input tree, the 10 best n-gram passed on. We split the data intc
4 sets according to the input length where the input lengtidsiumber of nodes (or words) in the
input dependency tree. The average number of words in arssnie the first se§(0 — 5) is 4, in
the second sef(6 — 10), 7, in the third se5(11 — 20), 15, and in the final sef(All) (all lengths),
17. The maximum length of a sentence in the final¥gt ! ) is 74. To make comparisons between
BASELINE, TDBU-SEQ andTDBU-PAR possible, the maximum arity of words present in th
input dependency trees is set to 3 (because BASELINE maslyy/dn input containing nodes with
higher arity).

Sentences (Length L)

S(0-5) 5(6—10) S(11 —20) S(ALD)
Total Succ Total Succ Total Succ Total Succ
1084 985 2232 1477 5705 520 13661 2744
BASELINE | 0.85 0.87 10.90 10.76 110.07 97.52 — —
TDBU-SEQ| 1.49 163 284 3.64 4.36 6.03 4,52 3.118
TDBU-PAR | 153 166 256 3.28 2.66 4.14 2.57 2.8

Algorithm

Table 1: Comparison between generation times (seconds)

BASELINE turns out to be faster tharDBU-PAR andT DBU-SEQ for sentences of smaller length
(£5). Itcan be explained because of the parallelism and thépnatiessing overhead. BUDBU-
PAR andTDBU-SEQ leaves behinBASELINE for longer sentences. For inputlonger than 10, th
simpleBASELINE algorithm times out whered®DBU-PAR remains stable. Fai(All), TDBU-
PAR achieves a reasonable average of 2.57 seconds for tdhses (Total) and 2.78 seconds fol
successful sentences (Succ).

Table[1 does not show a big difference in performance betWd2BU-PAR andTDBU-SEQ
because the maximum arity of the input dependency treeptddwe (maximum 3). In Tablgl2, we
split the data by arity whereby the dataSét) consists of input dependency trees with maximun
arity i. As can be seen, the difference between the two algoritheaslgy increases with the arity
of the input thereby demonstrating the impact of paralelis

6.2 Coverage and Accuracy

The grammar and lexicon used to test the surface realisaligmmithm presented in this paper are
under development so that coverage and accuracy are stillTable[3 shows the coverage and



Sentences (Arity)

S(1) S(2) S(3) 5(4) 5(5) 5(6)
Total Succ Total Succ Total Succ Total Succ Total Succ Totakc$
190 178 1218 964 3619 1039 5320 605 2910 137 1093 1
TDBU-SEQ| 0.89 0.94 252 263 3.65 3.39 5.07 454 524 462 820 [7/.2
TDBU-PAR| 0.97 1.03 235 250 263 3.10 291 3.77 286 3.88 3.09 4.7

Algorithm

Table 2;: Comparison between generation times (seconds yaiying arities.

accuracy (on the covered sentences) results obtainedrftersmes of size 6 (S-6), 8 (S-8) and all
(S-All). The dataset S-All differs from the datas#tAll) discussed in previous section. S-All
considers all sentences without any restriction over thgimmam arity in the input dependency
trees. S-All consists di6725 sentences with the average lengtt2dfand the maximum length of

134. The maximum arity in these sentences varies fioim 18 with an average of.

Coverage (#)
Covered Uncovered

17

Data Type| Total Coverage (%) BLEU Scor¢

S-6 3877 3506 371 90.43 0.835
S-8 3583 3038 545 84.79 0.800
S-All 26725 10351 16374 38.73 0.675

Table 3: Coverage and Bleu Scores for covered sentences.

As can be seen coverage markedly decreases for longer sestderror mining on this data indi-
cates that failure to generate is due mostly to complex seateoordinations (e.g., verb coordi-
nation, gapping phenomenon) (Sarkar and Joshi, 1996) vaaichl be very common in sentences
of average lengtB2 in S-All. Other failure causes are inadequate treatmemnsulfiword expres-
sions and foreign words.

7 Conclusion

We presented a novel algorithm for surface realisation Veixicalised grammar which takes ad-
vantage of the input structure (a tree) to filter the initiedusch space both top-down and botton
up; and to parallelise processes. We evaluated this dhigowin large scale data and showed the
it drastically reduces runtimes on this data when comparedgimple lexicalist approach which
explores the whole search space.

As mentioned in sectionl 3, the input data provided by the SR differs from the flat semantic

representations assumed by most existing surface reslistirat it displays a clear tree structure
The algorithm presented here makes use of that structuigitoiae performance. In future work,

we plan to investigate whether the hybrid top-down, botigmapproach we developed to guide
the SR search can be generalised to the graph structure ahtiemepresentations.
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