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Abstract 

Simplified silica (Zeosil 1165 MP) – SBR (140k carrying silanol end-groups) nanocomposites 

have been formulated by mixing of a reduced number of ingredients with respect to industrial 

applications. The thermo-mechanical history of the samples during the mixing process was 

monitored and adjusted to identical final temperatures. The filler structure on large scales up 

to microns was studied by transmission electron microscopy (TEM) and very small angle X-

ray scattering (SAXS).  

A complete quantitative model extending from the primary silica nanoparticle (of radius 10 

nm), to nanoparticle aggregates, up to micron-sized branches with typical lateral dimension of 

150 nm is proposed. Image analysis of the TEM-pictures yields the fraction of zones of pure 

polymer, which extend between the branches of a large-scale filler network. This network is 

compatible with a fractal of average dimension 2.4 as measured by scattering. On smaller 

length scales, inside the branches, small silica aggregates are present. Their average radius has 

been deduced from a Kratky analysis, and it ranges between 35 and 40 nm for all silica 

fractions investigated here (si = 8 – 21%v). 

A central piece of our analysis is the description of the inter-aggregate interaction by a 

simulated structure factor for polydisperse spheres representing aggregates. A polydispersity 
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of 30% in aggregate size is assumed, and interactions between these aggregates are described 

with a hard core repulsive potential. The same distribution in size is used to evaluate the 

polydisperse form factor. Comparison with the experimental intensity leads to the 

determination of the average aggregate compacity (assumed identical for all aggregates in the 

distribution, between 31% and 38% depending on si), and thus aggregation number (ca. 45, 

with a large spread). Due to the effect of aggregate compacity and of pure polymer zones, the 

volume fraction of aggregates is higher in the branches than si. The repulsion between 

aggregates has a strong effect on the apparent isothermal compressibility: it leads to a 

characteristic low-q depression, which cannot be interpreted as aggregate mass decrease in 

our data. In addition, the reinforcement effect of these silica structures in the SBR-matrix is 

characterized with oscillatory shear. Finally, our results show that it is possible to analyze the 

complex structure of interacting aggregates in nanocomposites of industrial origin in a self-

consistent and quantitative manner. 
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1. Introduction  

 

The mechanical reinforcement of polymer matrices by nanoparticles is a fundamental problem 

with far reaching applications, e.g., for car tires 
1, 2

. From a conceptual point of view, it is 

generally recognized that the filler structure has a strong impact on the mechanical properties 

3-5
, accompanied by the effect of chain structure evolving in the hard filler environment 

6-9
, 

and the filler-chain interactions 
10-15

. All these contributions are related to the filler structure, 

and it is thus important to be able to characterize it in detail. Unfortunately, two typical 

situations are usually encountered: either the system is a model system of individually 

dispersed nanoparticles 
16

, which is easier to understand but is further away from applications, 

or the system is made by mixing of powders of aggregated nanoparticles, together with many 

additives, and analysis becomes difficult. In the literature, the list of typical ingredients of 

industrial systems comprises the filler and the polymer matrix (often styrene-butadiene rubber 

(SBR), or polybutadiene), silane coupling agents like TESPT, known also as Si69, or its 

successor Si363, coating or compatibilizing agents like octyl-triethoxysilane (octeo) with 

catalyzers (diphenyl guanidine (DPG)), cross-linking agents (sulfur), cure activators like ZnO 

nanoparticles, stearic acids, accelerator providing fast cure rate like sulfenamides (TBBS, 

CBS), antioxidants like various substituted paraphenylene diamines (PPD) and phenol-based 

antioxidants (AO2246).
17-21

 Note that ZnO nanoparticles, e.g., may contribute to the scattering 

signature even at low concentrations due to their high electron density 
22

, unless their 

contribution is suppressed using sophisticated anomalous scattering techniques 
23

. In contrast, 

apart from the antioxidants added after the polymer synthesis, we address here the issue of a 

simplified industrial system containing only the filler and its compatibilizer octeo with DPG. 

We have compiled typical industrial formulations in the appendix highlighting the reduction 

of parameters in our simplified system.  

Structural studies of the dispersion of precipitated silica filler of the type used here have been 

undertaken by several groups. Ramier et al have studied the silica structure in SBR by 

transmission electron microscopy (TEM) and small-angle x-ray scattering (SAXS), without 

further analysis of the SAXS-data as they focused on the rheology.
20

 Conzatti et al have 

investigated the morphology of the same silica in SBR by TEM with automated image 

analysis, and dynamic mechanical analysis (DMA), varying the surface modification.
18

 A 

similar approach was presented by Stöckelhuber et al on the flocculation of precipitated silica 

as a function of coupling.
21

 The reinforcement by fractal aggregates with again the same silica 
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in SBR was addressed by Mélé et al by SAXS and AFM.
19

 An in-depth analysis of the SAXS-

data was outside the scope of this article. Other groups have focused on the fractal dimensions 

extracted from the power-law decay of the scattered intensity.
24, 25

 Schneider et al have 

presented scattering data on precipitated silica in poly(dimethylsiloxane) and SBR, with a 

two-level description based on the Teixeira 
26

 or Beaucage 
27

 equations for fractals made of 

beads.
28, 29

 A qualitative analysis of SAXS-curves has been proposed by Shinohara et al.
30

 In 

the present paper, a quantitative view in the same spirit will be presented. Several theoretical 

studies on scattering in complex systems have been published. For example, Schweizer et al 

on interacting fractals propose apparent structure factors as a function of filler volume 

fraction.
31

  

Analysis of structural data is usually considerably less difficult and ambiguous in model 

systems. In such systems, the filler particles are available as individually dispersed beads in a 

solvent, and particular care is taken by the experimentalists in order to maintain or control 

colloidal stability throughout the nanocomposite formulation process, which is often solvent 

casting. Meth et al have studied silica nanoparticles in poly(methyl methacrylate) and 

polystyrene (PS) by SAXS.
32

 Some aggregation is often present and visible at small angles, 

but due to the high monodispersity bead-bead interaction peaks are found. Janes et al have 

investigated the influence of annealing history on the structure as seen by scattering.
33

 After 

strong annealing, no low-angle indication for aggregation is found and the curves strongly 

resemble perfect dispersions of spheres. In articles by Chevigny et al 
15, 34

 and  Jouault et al 
35, 

36
, the structure of silica nanoparticles in PS is analyzed, by TEM and scattering. There, a 

focus is made on the relationship between filler structure and mechanical reinforcement in 

systems with well-defined dispersion of small aggregates in the matrix. Reverse Monte Carlo 

(RMC) modeling has been applied to interacting aggregates measured in a silica–latex model 

system.
37

 Recently, we have also contributed with a structural model used to follow the film 

formation of silica-latex films.
8
 

The effect of fractal aggregates on the rheology has been investigated theoretically in a 

seminal paper by Witten et al 
38

. Several empirical equations usually based on extensions of 

the original Einstein hydrodynamic reinforcement 
39, 40

 exist and have been summarized in the 

literature 
41

. The standard analysis is commonly based on three methods: either DMA, where 

the sample is subject to oscillatory torsion at fixed amplitude and frequency, as a function of 

temperature, e.g. 
42, 43

. From such studies, carried further with NMR measurements, a strong 

interest in the so-called glassy layer of polymer on filler surface has arisen.
10, 44, 45

 The second 
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standard method is oscillatory linear rheology in shear, which however is limited to low 

moduli 
35, 46

. The latter one is often applied to characterize the non linear Payne-effect at small 

strains, which is responsible for the decrease of the storage modulus with shear amplitude 
20, 

21, 47-49
. The third method is uniaxial strain, which is strongly non linear and leads to high 

deformations, up to rupture 
50, 51

. The latter method is often used to characterize the Mullins 

effect 
52

; it can also be combined with scattering 
53

, or with NMR as done in an outstanding 

paper by Klüppel et al in SBR nanocomposites 
54

. In many of the rheological studies of 

nanocomposite systems, the effect of e.g., silane coupling or compatibilization is studied and 

tentatively correlated with filler structure, if available.
20, 47

 For the sake of completeness, other 

techniques allowing a characterization of the dynamics of nanocomposite systems are 

dielectric spectroscopy 
55, 56

 and quasi-elastic neutron scattering 
57-60

.  

In this article, we investigate a ‘simplified industrial system’, i.e., ingredients have been 

limited to the strict minimum. For the structural analysis of nanocomposites of increasing 

filler fraction, we have chosen to combine direct imaging methods like TEM, which has the 

advantage of intuitive analysis but the drawback of limited representativity of local details, 

with a reciprocal space method, SAXS, which is highly representative but is difficult to 

interpret. The structure of the silica within the nanocomposites will be modelled in a step-by-

step, multi-scale manner, starting with the primary silica beads as basic building units (10 – 

20 nm range). These beads are found to be aggregated in small clusters, the typical radius of 

which (40 nm range) will be determined by Kratky plots. These aggregates are themselves 

concentrated in large-scale fractal branches (thickness ca. 150 nm, extending over microns). 

Inside these branches, the small aggregates repel each other. Within our model, this is 

described with a hard-sphere excluded volume interaction potential, which induces a 

characteristic depression of the scattered intensity at intermediate angles. This depression is 

directly related to the local concentration of aggregates, which is higher than the nominal 

silica volume fraction due to the confinement in the fractal branches, and the presence of 

polymer inside the aggregates. Therefore, a quantitative TEM analysis was used to estimate 

the volume fraction of fractal branches, fract. Secondly, we have set up an independent 

Monte Carlo (MC) simulation in order to calculate the low-q limit of the polydisperse inter-

aggregate structure factor, which quantifies the depression. Using a polydisperse aggregate 

form factor obeying the same polydispersity, the mass of the small aggregates (or, 

equivalently, their internal silica volume fraction, here called compacity) and their 

concentration inside the fractal branches can be extracted from the scattered intensity. In 
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parallel, mechanical measurements allowed us to extract an average aggregate compacity in 

good agreement with the former analysis. 

The outline of this article is as follows. After the materials and methods section, all results are 

discussed in section 3. The thermomechanical history of the mixing process characterized by 

the observed torque and temperature during mixing is discussed in section 3.1. It is followed 

by an analysis of the large-scale structure of the nanocomposites using TEM and the low-

angle scattering in section 3.2. The next section is devoted to an in-depth analysis of the 

complete scattering curve, which takes aggregation and interaction between aggregates into 

account. Finally, the rheological and mechanical properties are studied and discussed in 

section 3.4. 

 

2. Materials and methods 

Nanocomposite formulation: Silica-SBR nanocomposites are formulated by stepwise 

introduction and mixing of SBR chains with silica pellets in an internal mixer (Haake). Note 

that particular care was taken to avoid any trace of carbon black, catalysing nanoparticles 

(ZnO), crosslinking or coupling agents, which may impede interpretation of, e.g., scattering 

experiments. Compared to the complex samples usually studied in the literature, our system is 

thus designed to be a simplified industrial nanocomposite, conserving namely aggregated 

multi-scale silica as filler particles, SBR-chains, and a mixing process, all related to tire 

applications.   

The mixing chamber is preheated as a function of nanocomposite composition, in order to 

obtain the same final mixing temperature of 160±5°C, and thus a comparable thermo-

mechanical history. For the same reason, the rotor speed is adjusted during the process to 

between 95 and 105 rpm. The polymer is introduced first, in the form of centimetric lamellae. 

After about one minute, the mixture of silica pellets, DPG (Vulcacit from Bayer, 1%w with 

respect to polymer), and the liquid coating agent (octeo from Dynasylan, 8%w with respect to 

silica) is incorporated via the same piston. The process is finished after typically five minutes. 

The hot sample is then rapidly cooled and homogenized by lamination 10 times in the 1 mm 

gap between rotating cylinders (two roll mill). The silica volume fractions in the 

nanocomposites reported here have been measured by thermogravimetric analysis (Mettler 

Toledo) using a first ramp at 30 K/min from 25°C to 550°C under nitrogen, followed by a 

second ramp at 20 K/min from 550°C to 750°C under air. They are found to be systematically 
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by 15% lower than the weighted quantities, presumably due to losses in the mixer. Only the 

silica volume fractions above 8%v have been considered here. For lower silica contents, 

inhomogeneous composites were obtained due to a less effective mixing process.                            

 

System characterization: The silica pellets (Zeosil 1165 MP from Rhodia) have been 

dispersed by sonification in water under basic conditions, and have been studied by SAXS 

and small-angle neutron scattering (SANS). The resulting scattering pattern is rather 

unstructured, indicating high polydispersity. A characteristic size corresponding to a radius of 

10 nm is found. A complete analysis reveals a lognormal size distribution (R0 = 8.55 nm,  = 

27%, leading to <Rsi> = 8.9 nm and an average bead volume of Vsi = 3.6 10
3
 nm

3
,
 
the 

corresponding specific surface is 160 m
2
/g), in agreement with TEM studies. Vsi will be used 

to estimate aggregation numbers of silica nanoparticles (or beads) in aggregates.  

 

The polymer (with antioxidants 6PPD and AO2246) has been purpose-synthesized by 

Michelin, and the chain mass characterized by size exclusion chromatography. The polymer 

matrix is made of two types of chains of molecular mass 140 kg.mol
-1

 (PI = 1.07). Each chain 

is a statistical copolymer with styrene (26%w) and butadiene (74%w) units (41% of which are 

1-2 and 59% of 1-4). The glass-transition temperature as measured by differential scanning 

calorimetry (DSC, 200F3 Maia from Netzsch) with a heating rate of 20 K/min is -31°C. This 

is in agreement with Fox’s law predicting -38°C for a mixture of 1,2- and 1,4-butadiene and 

styrene (Tg(1,4-butadiene 59%) = -65°C 
61

; Tg(PS) = 100°C) and suggests that polymerization 

is thus indeed statistical. For the loaded samples, Tg shows no significant variation as 

compared to the pure SBR matrix: Tg = -32±0.5°C for all the silica contents investigated here.  

50% of the chains are linear unmodified SBR-chains, whereas the other 50% bear a single 

graftable silanol end-function. This functional group may graft the chain on the silica by 

silanol condensation with the surface silanol.  

 

Structural analysis: The silica microstructure in the nanocomposites has been studied by 

transmission electron microscopy and SAXS. TEM pictures were obtained with samples 

prepared by ultracryomicrotomy at -80°C on a LEICA FC-7 (Diatome ultra 35°, desired 

thickness set to 50 to 70 nm). Electron microscopic observations in transmission were 

achieved with a Philips CM200 LaB6 (200 kV, bright field mode). A grey-scale analysis of 

the pictures using ImageJ was performed to determine the pure polymer fraction. The average 

and the standard deviation of this quantity were obtained via a statistical analysis over several 
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pictures (e.g., 12 for the sample with 8.4%v of silica). SAXS experiments (beamline ID2, 

ESRF, Grenoble) were performed at a wavelength of 1.1 Å (12.46 keV), using two sample-to-

detector distances (1 m and 10 m), yielding a total q-range from 0.001 to 0.5 Å
-1

. Even lower-

q data was measured on the Bonse-Hart set-up on ID2 (qmin = 10
-4

 Å
-1

). Samples were cut into 

pieces of approximate thickness 0.8 mm. The scattering cross section per unit sample volume 

d/d(in cm
-1

) which we term scattered intensity I(q)was obtained by using standard 

procedures including background subtraction and calibration given by ESRF. The contrast of 

silica in polymer in SAXS experiments was calculated from the scattering length densities 

(SBR = 8.85 10
10

 cm
-2

, si = 1.97 10
11

 cm
-2

,  = 1.09 10
11

 cm
-2

), which were themselves 

known from the chemical composition.  

 

Data analysis of small-angle scattering: The scattering patterns of industrial 

nanocomposites usually show a complex multi-scale behaviour. Starting at high q (q > 1/Rsi), 

the signature of the primary particles can be found, and in particular their specific surface, 

associated with a particular scattering power law. When going towards intermediate q, a break 

in slope (or peak) may be observed. Its position, qsi, is related to the typical interparticle 

distance, and for crowded nanoparticles in contact, it is located close to /Rsi. If a 

superstructure of nanoparticles exists, then another break in slope at low q-values may be 

found, located at the inverse of the typical size of such structures. For aggregates in contact, 

e.g., the position is qagg = /Ragg. To summarize this overview, different scaling regimes may 

be observed, the transition between them identifying characteristic sizes. It is possible to 

visualize these breaks in slope by counterbalancing the power-law decrease. In Kratky-plots, 

for instance, q
2
I(q) is plotted versus q. The breaks in slope then appear as easily recognizable 

maxima. 

 

The relationship between the cross-overs of the scaling laws, and the typical sizes 

characterizing the microstructure, can be clarified based on the general scattering law for 

spherically symmetric, monodisperse particles and aggregates, which is presented for 

didactical reasons first. A generalization to include polydispersity will be developed 

afterwards, cf. the Monte Carlo simulations below. Besides the difference in contrast , the 

scattered intensity I(q) of monodisperse and spherical silica beads in the polymer can be 

written in an identical manner for SAXS and SANS: 
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                            I(q) = si 
2
 Vsi S(q) P(q)        (1) 

 

where si is the volume fraction of silica,  the contrast between silica and the SBR matrix, 

S(q) the total bead-bead structure factor, and P(q) the normalized form factor of the beads, i.e. 

P(q→0) = 1.  

If the silica particles are organized in aggregates of approximately the same size, the total 

structure factor S(q) may be factorized in two terms 
62

: the inter-aggregate structure factor 

Sinter(q), which is the Fourier transform of the pair-correlation function of the center-of-mass 

of (average) aggregates. The second is the intra-aggregate structure factor, Sintra(q), which is 

the Fourier transform of the pair correlation of beads inside the aggregate. If a higher order 

organization of such aggregates exists, a third structure factor Sfract(q) describing this 

structural level may be introduced to describe the complete q-range: 

S(q) = Sfract(q) Sinter(q) Sintra(q)          (2) 

 

Even in absence of any detailed structural model, the fractal structure factor of non interacting 

fractals has the following properties: At low q, it decreases from the total mass of the fractal 

with a characteristic power law, ~ 1/q
d
, where d is the fractal dimension of the network. At 

higher q, which is where Sinter(q) begins to describe the intermediate scale structure, Sfract 

equals one. The location of cross-over from one regime to the other can be estimated, e.g., 

based on a fractal made of monodisperse spheres of radius a. The cross-over is then located at 

qbranch = √3/(e a), where e is the Euler constant, i.e., the lateral branch dimension is 2a ≈ 

1.3/qbranch. Another property of this structure factor is that it can be approximated by the sum 

of 1 (at intermediate and high q) and a low-q power law. This is the reason why low-q power 

laws can in general be subtracted from the total scattered intensity in spite of the product in 

eq.(2). The product of Sintra(q) and the form factor of the particles can then be merged into a 

single expression, the form factor of the average aggregate: 

 

Pagg(q) = Sintra(q) P(q)           (3) 

 

The limiting value of Pagg at low q is given by the aggregation number, Nagg. At high q, Sintra 

tends to one, and Pagg thus reproduces the local structure of the beads making up the 

aggregates. The transition of Sintra(q) from Nagg (and some power law) at low q to one at high 

q is achieved typically at qsi, where one may also find a structure factor peak in case of close 

contact. The internal structure described by Sintra(q) is thus the origin of the first break in slope 
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discussed above. The multiplication by the other factors in eq. (1) may slightly shift this 

feature. The same argument may then be repeated on a bigger scale with Sinter(q), which is 

responsible of (at least) one break in slope at lower angles. Finally, note that the low-q limit of 

the structure factor tends towards the (relative) isothermal compressibility. In systems with 

repulsive (e.g., hard core) interactions, this compressibility may be well below one, and 

therefore decrease the low-q scattering. This decrease is a concentration effect which cannot 

be interpreted as a reduction of the aggregate mass.  

 

Monte-Carlo simulation of the structure factor of polydisperse systems: We have 

discussed structure factors in monodisperse systems in the preceding section. In this article, a 

fully polydisperse description will be used. In this case, the relevant structure factor, Sinter, has 

to be replaced by an apparent one, app

interS , the calculation of which is outlined here. We have 

used a simulation box containing between 20 000 and 50 000 beads depending on the volume 

fraction in the range from 5%v to 30%v in order to have a roughly constant box size, Lbox = 

2.5 µm. The minimum accessible q value is obtained from 55/Lbox  2.8 10
-3

 Å
-1 

(the prefactor 

of 55 has been determined by comparison with the known monodisperse Percus-Yevick 

structure factor). Here we are interested in the effect of polydispersity in aggregate size on the 

low-q limit, which is why the exact radius of the bead representing the aggregate is not of 

importance. In our simulations, the bead radius is described by a lognormal size distribution 

for the polydispersity with R0 = 20 nm and  = 0, 15%, and 30%. This size distribution has 

been converted in a 15-population histogram. Standard Monte-Carlo steps verifying the 

excluded volume conditions have been performed. After equilibration, the partial structure 

factors Sij(q) between populations i and j have been calculated using the Debye formula 
63

. 

They were used to determine the total scattered intensity which is given as the sum of the 

products of Sij(q) weighted by the appropriate form factors Pi(q) and Pj(q). The apparent 

structure factor is then obtained by dividing by the average form factor: 

 

 
 

     
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
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i

i

2

ii

ji,

ijjijiji

0
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inter
qP V N 

qS qPqP VV NN

q)PI

qI
 = (q)S              (4) 

 

Rheology: The rheological response in the linear regime of the nanocomposites was obtained 

with a stress-controlled rheometer AR 2000, used in the strain-controlled mode in plate-plate 

geometry (20 mm diameter). Isothermal frequency sweeps at fixed low deformation level ( = 
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0.1%) were performed in the temperature range from 10°C to 80°C. Using the principle of 

time-temperature superposition, master curves of the storage modulus, G’(, and the loss 

modulus, G”(, corresponding to measurements at 50°C were established between f = 

 10
-3

 and  10
3
 rad/s. 

 

 

3. Results and discussion 

3.1 Thermo-mechanical characterization of the mixing process 

During the mixing process in the internal mixer, the torque as a measurement of the evolving 

material viscoelasticity, and the temperature are monitored as a function of time. These 

quantities are plotted in Figure 1a and 1b, respectively, for various silica volume fractions 

from 8.4%v to 21.1%v. The incorporation of silica and octeo leads to an important increase in 

torque after about 1min30. During the nanocomposite mixing, the silica pellets are crushed for 

several minutes. This leads to the desired temperature increase to about 160°C (Figure 1b), 

which is essential for the silanol end-function (50% of reactive chains) and octeo grafting 

chemistry. Towards the end of the mixing, the high temperature induces a decrease in 

nanocomposite viscosity, as is visible in Figure 1a. As expected, a higher silica volume 

fraction leads to a higher maximum torque. 
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Figure 1: (a) Torque observed during mixing of SBR nanocomposites for a series in silica 

volume fractions (8.4%v – 21.1%v). (b) Temperature in the mixing chamber of the same 

samples during the process. 
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3.2 Large-scale structural characterization by SAXS and TEM 

The microstructure of the silica in nanocomposites has been studied by x-ray scattering and 

transmission electron microscopy. The scattering data are shown in Figure 2a for the series in 

silica volume fractions in the SBR matrix. If one wishes to compare samples of different silica 

contents, it is obvious from eq.(1), that the reduced representation I(q)/si gives direct access 

to the variations in the structure factor S(q), P(q) being fixed. 
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Figure 2: Silica structure of nanocomposites studied by SAXS. (a) Reduced scattered intensity 

I(q)/si for a series of silica volume fractions in matrix (8.4%v - 21.1%v). Dotted line: form 

factor of the silica beads. Arrows indicate the breaks in slope discussed in the text. (b) 

Intermediate-q structures highlighted after subtraction of the low-q power law. 

 

In Figure 2a the complete scattering curves are shown. There is a strong low-q upturn at q-

values down to 10
-4

 Å
-1

. It cannot be described by any simple function, but can roughly be 

represented by a power law Aq
-d

, with fractal dimension d = 2.4 ± 0.3. It can also be noted 

that in the reduced representation I(q)/si, the value of the prefactor A decreases with 

increasing si. We will see below that this is related to the decrease in isothermal 

compressibility at intermediate q-values. 

The standard model of fractal structures made of blob-structures relates the radius of the 

fractal, Rfract, to the number of spherical subunits, Nb, and their radius, a: 

1/d

bfract N aR 
   

                (5) 



 13 

In Figure 2a, the transition from the large-scale network to internal branch structure, i.e., the 

breakdown of fractality, can be located at the intersection of the power-laws describing the 

low-q and the intermediate-q scattering, around qbranch = 1.10
-3

 – 2.10
-3

 Å
-1

. Using the fractal 

model of agglomerated spheres for the large-scale fractal structure factor, Sfract(q), as outlined 

in section 2, the lateral branch dimension can be estimated to 2a = 1.3/qbranch ≈ 100 nm, with 

large error bars due to the limited precision on the crossover and the rudimentary model. We 

will see below that electron microscopy gives 150 nm. On the other extreme of the geometry 

of the fractals, in the q-range under study, there is no appreciable cut-off of the power-law at 

low q. This means that their upper size Rfract extends up to the micron range. The mass-fractal 

model (eq.(5)) can be used to estimate the pure polymer fraction between branches, (1-fract), 

where fract denotes the volume fraction of fractal branches. For micron-size fractals, a rough 

estimate of the pure polymer fraction of   84% is found, which is certainly an overestimation 

due to the unrealistic space-filling properties of spheres as compared to branches. To 

summarize this analysis, the large-scale structure of the nanocomposite as seen by SAXS up 

to dimensions of microns can be interpreted as a network of branch size around 100 nm, and 

significant amounts of empty space between them.  

Figure 2b focuses on the intermediate and high-q features, after subtraction of the low-q 

upturn. A slowly varying scattering curve is found for all silica volume fractions in the 

intermediate q-range. A model for the structures observed in this range will be proposed in the 

next section.  

The large-scale structure of nanocomposites has been studied by TEM. In Figure 3, 

representative pictures for two samples (si = 8.4 and 21.1%v) are shown.  

 

  

Figure 3:  TEM-pictures of nanocomposite samples: (a) si = 8.4%v (b) si = 21.1%v. 

a) b) 
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The 8.4%v-sample shows nice structural features, which can be summarized as follows: (a) A 

dense branched structure of lateral dimension of around 2a ≈ 150 nm is seen, made of small 

silica beads aggregated together. (b) A grey-scale analysis of the pictures reveals that the pure 

polymer fraction is about 41 ± 4% in surface. Note that in the slice, most of the silica beads 

are visible individually, leading to a first level of grey, whereas a small number overlap giving 

a darker grey. From simple geometric considerations, it appears that in thin enough slices, of 

thickness smaller than the structural length under study in the sample (≈ 150 nm), the surface 

and volume fractions of matter (branches) coincide. It is thus concluded that approximately 

41% of the sample is not occupied by branches. Similarly, the higher volume fraction sample 

shown in Figure 3b is much denser, with a pure polymer fraction of about 20 ± 4% in surface 

(and thus also in volume).  

 

3.3 Modelling of the SAXS-data on intermediate and small scales 

In this section, the average aggregate size based on a Kratky analysis, the inter-aggregate 

structure factor, and the aggregate form factor will be discussed. Putting these separated 

descriptions together will allow us to extract the average aggregate compacity, and thus 

aggregation number. Note that our model is based on a full description of polydispersity: 

aggregates monodisperse in size would lead to unphysical characteristics (namely compacity), 

and would contradict the TEM pictures.  

 

Average aggregate size. We start with the discussion of the highest curve (si = 8.4%v) in 

Figure 2. The two high-q arrows indicate the cross-overs between three power laws, at qsi = 

0.022 Å
-1

 and qagg = 0.0065 Å
-1

. The ratio qsi/qagg suggests that this first superstructure has a 

typical linear dimension of only some four bead-sizes, which is why it is identified with small 

aggregates. Following our interpretation outlined in section 2, /qsi gives a typical bead 

radius. 14.1 nm is found, bigger than but of the same magnitude as the silica beads (<Rsi> = 

8.9 nm). From the second break in slope, an aggregate radius which we associate with the 

average <Ragg> = /qagg = 48.4 nm is deduced. Introducing the compacity , or internal 

aggregate volume fraction, the aggregation number Nagg can be related to <Ragg>. Allowing 

for a generalization to polydispersity, the definitions for an aggregate of radius Ragg read: 
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agg

aggin  si

V

V
κ                                 (6) 

si

3

aggagg
V

κ
R π

3

4
N                                                           (7)  

Vagg = 4/3 Ragg
3
 is the total volume of such an aggregate, and Vsi in agg the volume effectively 

occupied by silica in this aggregate, i.e., NaggVsi, with Vsi the average bead volume. The 

aggregates (with <Ragg> = 48.4 nm) are rather small, as even if one assumes random close 

packing ( = 0.64) 
64

, only Nagg  83 beads would be part of one aggregate. The use of more 

realistic values for  (i.e., below 64%) would give lower aggregation numbers. A model for 

the determination of will be developed below including a polydisperse description of both 

the aggregate form factor and the inter-aggregate structure factor.  

In Figure 2b, the low-q upturn discussed in section 3.2 has been subtracted. The scattering 

curves at different si in the reduced representation I(q)/si differ at low q, and are seen to 

overlap perfectly above a critical wave vector ≈ 0.01 Å
-1

, corresponding to primary silica 

nanoparticles in close contact. Due to the high-q overlap, the break in slope associated with 

the nanoparticle size is seen to stay constant: indeed, its value is 13.7 nm for the higher silica 

concentrations (12.7, 16.8, and 21.1%v), and we will use an average value of 13.85 nm in the 

Kratky analysis below. On the other hand, the break in slope associated with aggregate size 

moves to higher q-values with increasing si. The associated aggregate radius <Ragg> 

decreases to 39.2 nm (resp. 36.1 and 34.4 nm) for 12.7%v (resp. 16.8%v and 21.1%v). 

In order to determine the position of qagg(si) more precisely, a Kratky presentation of the 

data has been chosen. In Figure 4a, the breaks in slope are seen to be transformed in well-

identified maxima. A multi-parameter fit of the two overlapping maxima has been achieved 

using the following sum of two functions G1 and G2: 
65
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Each of these functions describes a lognormal function of amplitude Ai, position qi, and width 

i (i = si, agg). Note that the parameter qi is slightly shifted to higher values as compared to 

the peak position, but is preferred due to its vicinity with the corresponding break in slope 

(see in Figure 4b). Again, we associate qagg with <Ragg>. The width and position of the high-q 

lognormal describing the silica bead qsi = (/13.85 nm) was kept fixed, thereby reducing the 

number of free parameters. An example of the underlying lognormals is shown in the inset of 

Figure 4a for the 8.4%v-sample.  
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Figure 4: (a) Same data as Fig. 2 in Kratky representation of the reduced scattered intensity 

q
2
I(q)/si for si = 8.4 – 21.1%v. Inset: Zoom on 8.4%v-data with fit by sum of two lognormal 

functions. (b) si-dependence of the lognormal position parameters qsi (dotted line) and qagg 

associated with the inter-aggregate structure factor. qsi and qagg values obtained from the breaks 

in slope are also included. 

 

The lognormal position parameters related to the aggregates are found to evolve less than the 

breaks in slope discussed before. All values are plotted in Figure 4b, together with the silica 

bead peak position fixed in the Kratky analysis. The corresponding average aggregate radii 

are <Ragg> = 40.2 nm (resp. 35.9, 36.1, and 35.2 nm) for 8.4%v (resp. 12.7, 16.4, and 

21.1%v). To summarize, both methods of analysis – breaks in slope and Kratky plots – give 

similar aggregate radii, in the range between 34 and 48 nm. The maxima in the Kratky plots 

are better defined, and the radii grouped together, between 35 and 40 nm, values which we 

will use in the following analysis as the average values of the size distributions. 
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Polydisperse inter-aggregate structure factor. As already indicated above, the aggregate 

compacity  is a key quantity, as it relates the size of the aggregates to the amount of silica 

they carry, i.e., it characterizes the internal aggregate structure. It has also a strong impact on 

the overall structure of the sample: by silica volume conservation, the higher the compacity, 

the less aggregates are located in a given volume to satisfy the nominal volume fraction, si. 

As a consequence, the number density of aggregates depends on  and affects the (inter-

aggregate) structure factor, app

interS . Increasing the number of mutually repelling aggregates 

leads to a decrease in the isothermal compressibility, a feature which is clearly visible in 

Figure 2b: the intermediate and low-q reduced intensity decreases with increasing si. In this 

picture, the Kratky-peak is due to the excluded volume interactions between aggregates, and 

thus located close to qagg = /<Ragg>. The observation of this peak together with the low-q 

decrease suggests two points. First, it is not possible to conclude on aggregate mass and size 

from a pure form factor analysis of the intensity decrease in such interacting systems. This 

decrease is caused by the structure factor dependence on the filler concentration. Secondly, 

one may quantitatively account for the decrease using a model for the structure factor of 

polydisperse hard spheres representing aggregates, which is what is proposed now.  

In order to obtain the polydisperse structure factor, we have performed Monte Carlo 

simulations. In case of polydispersity in size, no general formula exists, and the 

thermodynamic properties of the system are not described by a single structure factor any 

more
66

. The partial structure factors Sij(q) between two size populations i and j, weighted by 

the form factors of these populations, have to be added up to obtain the total intensity. Often, 

an apparent structure factor  qSapp

inter  obtained by dividing the intensity by the average form 

factor is used, as defined in eq.(4). It is not a thermodynamic quantity because of its 

dependence on the shape and contrast of the objects, but can be looked at as a useful 

representation of the correlations. Our approach is the following: the  qSapp

inter  have been 

calculated by MC simulations assuming excluded volume interactions as described in section 

2. They are shown in Figure 5a for different volume fractions agg of polydisperse spheres 

representing aggregates. The low-q limiting values,  0qSapp

inter  , are needed to determine the 

aggregate compacity in the next section. They have been determined by extrapolation, as 

presented in Figure 5a. In our model, the aggregate polydispersity is the only unknown 

parameter. From the absence of a strong peak at close contact – only a break in slope is 

observed in Figure 2b – it is concluded that polydispersity of aggregates in size is at least 
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30%. Then the structure factor peak of, e.g., the simulation with agg = 20%v is close to one, 

in agreement with the experimental data. In addition, taking a too low polydispersity would 

lead to unphysical aggregate compacities. Polydispersity of aggregates has thus been fixed to 

30% in our model, i.e., of the same order as the primary bead polydispersity. Such a value 

also accounts for the fact that one cannot distinguish aggregates of finite size in the TEM 

pictures (Figure 3). 
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Figure 5: MC simulations of polydisperse systems. (a) Apparent structure factor obtained by 

the division of simulated I(q) by the average P(q) as defined in eq.(4). I(q) is calculated for 

polydisperse hard spheres representing the aggregates using a lognormal distribution with R0 = 

20 nm (arbitrarily fixed) and  = 30%. Lines are fit of the low-q part with an arbitrary function: 

 qSapp

inter  =  0Sapp

inter
 + (Aq)

B
  in order to extract  0Sapp

inter
. (b) Evolution of  0Sapp

inter
 versus the 

aggregate volume fraction for  = 0, 15% and 30%. Lines are fits using eq.(9).  

 

After extrapolation, the obtained  0qSapp

inter   values are plotted in Figure 5b, for various 

polydispersities ( = 0, 15%, 30%), as a function of agg. The description of these values can 

be achieved using a Percus-Yevick (PY) structure factor 
67, 68

. Its limiting value for q→0 can 

be easily determined from the full expression:  

 
 2agg

4

agg

PY

αΦ 21 

αΦ-1 
 = 0)(qS


                                                 (9) 
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Here we have introduced a prefactor  for the volume fraction.  equals one for the standard 

monodisperse PY-formula, and will be used here as a free parameter for polydisperse spheres. 

Indeed, it is observed in Figure 5b that a higher polydispersity leads to higher low-q limiting 

values, as if the higher polydispersity had a similar effect at low-q than decreasing the volume 

fraction. A surprisingly good fit is found with the PY-expression given in eq.(9), with  = 

0.72 and 0.60 for = 15% and 30%, respectively. This enables us to use the PY-equation with 

 = 0.6, representing a typical polydispersity of = 30%, for  0qSapp

inter   and thus the 

determination of the aggregate compacity .  

To finish this discussion on the silica microstructure as probed by SAXS, app

interS  has a low-q 

contribution below one due to aggregate repulsion. app

interS
 
corresponds to the structure factor of 

an infinite homogeneous sample of aggregates at aggregate volume fraction si/(fract), 

whereas here aggregates are only in the branches. The point is that this apparent isothermal 

compressibility is lower for more concentrated samples, and by continuity this intensity 

depression is passed on to the structure factor describing the fractal: the complete scattering 

curve is thus lowered in the  intermediate- and low-q range. 

 

Polydisperse aggregate form factor. Our analysis is based on Figure 2b. Combining eqs.(1-

3) and subtracting the low-q upturn treated in the preceding paragraph, the scattering at 

intermediate q reads for a polydisperse system: 

 
   qP qS VΔρ

Φ

qI
agg

app

intersi

2

si

                                             (10) 

For I(q→0), we focus on the region around q* = 0.003 Å
-1

. Such a value provides a good 

estimate (compared to /<Ragg>) for the determination of the low-q limit  0qSapp

inter  , which 

has been calculated in the preceding section. We now focus on the average form factor of 

aggregates. The calculation is based on the polydispersity in radius of the aggregates. We 

have seen that the absence of the structure factor peak suggests a polydispersity of  = 0.3. 

From the Kratky plots, the average aggregate radius was determined. For the example of si = 

8.4%v, aggregates are chosen to be described (as in the simulation) by a lognormal 

distribution of radii, with parameters R0 = 38.4 nm and  = 0.3, giving the average of <Ragg> 

= 40.2 nm. The conversion into aggregate mass is based on the main assumption of the 
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polydisperse description: It is assumed that the compacity  is the same for all aggregates of 

different size. One can thus use eq. (7) to transform the size distribution in the distribution of 

Nagg, an example of which is shown in Figure 6, for  = 31%.  
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Figure 6:  Aggregation number distribution function deduced from the lognormal distribution of 

radii (parameters R0 = 38.4 nm,  = 0.3) and eq.(7) supposing  = 31%.  

 

Concerning the aggregate form factor, recall that in the monodisperse case, Pagg(q→0) = Nagg. 

For polydisperse systems, Pagg(q→0) = <Nagg
2
>/<Nagg>. The moments of Nagg are easily 

calculated from the distribution function (Figure 6). At non zero q (we focus on q* = 0.003  

Å
-1

), the decrease of the form factor of the aggregates has to be included. In this limit, the 

polydisperse form factor becomes: 
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where Nagg depends on compacity via eq.(7) and the radius distribution function, and           

RG
2
 = <Ragg

8
>/<Ragg

6
> is the correctly averaged Guinier radius

69
.  

 

Determination of compacity. The description of the scattered intensity (eq.(10)) includes 

both previously defined quantities, the structure factor app

interS  and the average form factor 
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<Pagg> (eq.(11)). The apparent isothermal compressibility  0qSapp

inter 
 

depends on the 

aggregate volume fraction in the branches, which is given by  

κΦ

Φ
Φ

fract

si
agg                                                            (12) 

The volume fraction of fractal fract appears because it accounts for the concentration effect in 

the fractal branches, due to the existence of pure polymer zones surrounding the branches. 

The latter quantity has been determined by TEM in section 3.2 for the highest and lowest si 

values, and interpolated in between.  

The procedure to determine the compacity (assumed to be identical for all aggregates in the 

distribution) is thus to (a) assume an initial value for , (b) calculate the structure factor with 

eqs.(9) and (12), (c) determine the distribution of Nagg, (d) calculate <Pagg> using eq.(11), and 

(e) assess the intensity level (eq.(10)).  is then changed until eq.(10) for q = q* is fulfilled. 

The values of  for all silica volume fractions are reported in Table 1, together with aggregate 

radii, average aggregation numbers, width of dispersion, and radius of an aggregate of 

average aggregation number.  

 

si <Ragg> (nm) 

± 

fract 

±



±

agg 

± 

<Nagg> 

±

Nagg Ragg
eq

 (nm) 

± 

8.4%v 40.2 0.59 0.31 0.47 51 53 52.3 

12.7%v 35.9 0.66 0.33 0.57 40 43 46.9 

16.8%v 36.1 0.73 0.36 0.64 44 47 47.1 

21.1%v 35.2 0.80 0.38 0.69 44 47 46.0 

 

Table 1: Results of the analysis of SAXS data of nanocomposites containing polydisperse 

aggregates ( = 0.3 in radius). Average aggregate radius <Ragg> (from Kratky analysis), volume 

fraction of fractal branches fract, compacityaggregate volume fraction agg, average 

aggregation number <Nagg>, standard deviation of the distribution in Nagg, and equivalent radius 

of an aggregate of average mass. 
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Following this procedure, the compacity found for, e.g., si = 8.4%v is 31%. The resulting 

distribution function of Nagg was already shown in Figure 6. One immediately sees in this 

figure that the Ragg
3
-dependence strongly increases the polydispersity and asymmetry of the 

distribution, which has a pronounced tail. The resulting average of Nagg is 51, and the standard 

deviation Nagg = √(<Nagg
2
>-<Nagg>

2
) = 53, i.e., of the same order of magnitude, which 

illustrates the width of the distribution. For comparison, the radius of the average aggregate 

(<Nagg> = 51) is also given in the table (Ragg
eq

 = 52.3 nm). On the other hand, most of the 

aggregates are considerably smaller, as the peak of the distribution is located close to Nagg
max

 

 15 (corresponding to Ragg  35 nm). Again, such a wide distribution is in line with the TEM 

observations, where actually no aggregates are clearly identified, presumably due to the large 

size distribution.  

As the silica concentration is increased, only minor changes are observed in Table 1: clusters 

conserve their average mass (in the range between <Nagg> = 40 and 51), but contract slightly, 

leading to an increase of their compacity from 31 to 38%. Note that such compacities are 

compatible with the choice of hard sphere interactions for the inter-aggregate structure factor. 

Concentrating aggregates in the fractal branches induces a considerable depression of the 

scattering (via the isothermal compressibility) at intermediate q-values, as observed in Figure 

2. Again, in the light of the discussion including both  qSapp

inter
 and <Pagg(q)> in eq. (10), 

interpreting the intensity decrease at intermediate-q as a decrease of <Pagg> only could lead to 

the erroneous interpretation of decreasing aggregate mass. On the contrary, our analysis 

confirms that the average aggregate mass remains approximately constant in our system. 

Finally, one may note that the error bar on fract has only a minor effect (±5%) on <Nagg>, 

whereas the 5% error on <Ragg> causes most of the uncertainty on <Nagg> (±15%).  

 

In Figure 7, the real-space and reciprocal space models in terms of the three structure factors 

are shown. In real space, the multi-scale structure is represented by the large scale fractal 

network of dimension 2.4, the branches of which are made of dense assemblies of aggregates 

of typical aggregate radius, Ragg, and volume fraction agg. Finally, these aggregates are 

themselves made up of on average some forty-five primary particles of radius Rsi, and possess 

a compacity , which is typically 35%.  
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a)                                                         
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Figure 7: (a) Model decomposition of the scattered intensity into the three contributions to the 

reciprocal-space structure: Sfract(q),  qSapp

inter
 (red line), and Sintra(q) (green line, Sintra(q0) = 

<Nagg
2
>/<Nagg>). (b) Real-space representation of the multi-scale structure of the silica 

nanocomposites associated with (a).      

 

3.4 Rheology and reinforcement  

The motivation for the determination of the structure of simplified industrial nanocomposites 

relies in its link with the remarkable rheological and mechanical properties of such materials. 

Therefore, we focus now on the characterization of the rheology of these nanocomposites. In 

absence of curing agents in our simplified formulation, nanocomposites are not crosslinked. 

Silica-free samples are thus polymer melts, i.e. viscoelastic liquids; adding silica may change 

their rheological character. The series of samples of increasing silica volume fraction (0 – 
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21.1%v) has been studied by small amplitude (linear regime) oscillatory shear experiments. 

Moduli at various temperatures have been measured and used for the construction of master 

curves for G’() and G”() applying the time-temperature superposition at a reference 

temperature of 50°C. At low enough si (≤ 12.7%v), the superposition of curves at different 

temperatures (horizontal shift factors are discussed below) yields unambiguous master curves. 

The resulting moduli of the matrix and the two lower silica volume fractions are plotted in 

Figure 8a. Note that no vertical shift factors were required to achieve superposition as 

occasionally necessary for composites
46, 70

. 

In the viscoelastic response of the matrix, the flow regime at low frequency (G”~ 

close 

to the expected exponent of one), a characteristic time given by the maximum of G” 

(1/max = 2 s), and a high frequency modulus (G0 = 0.79 MPa) can be identified. In 

addition, the G’’ curve displays a high-frequency upturn towards the glass transition regime. 

With 8.4%v and 12.7%v of silica, respectively, the curves are mainly shifted to higher 

moduli: this increase will be analyzed in terms of the reinforcement factor. In parallel, small 

changes in the shape of the curve can be observed: the characteristic G” maximum shifts to 

slightly lower frequencies with respect to the matrix, and G’ and G” overlap and finally do not 

cross any more at low . A common criterion for liquid-like samples is that G” is greater than 

G’ in a given frequency range. The impact of filler is to increase the elastic component above 

the viscous one over the whole range, and thus “gel” the samples. In this case, there is no hint 

of a terminal relaxation for the polymer, but a solid-like behavior. This is probably related to 

the existence of a percolated network microstructure which is not able to relax completely and 

becomes more pronounced with increasing si.  
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Figure 8: Master curves for G’ and G” (Pa) as a function of angular frequency  (rad/s) at the 

reference temperature of 50°C for nanocomposites with (a) si = 0, 8.4%v, 12.7%v, and         

(b) si = 21.1%v.  

 

As the volume fraction is increased to 16.8%v and 21.1%v, the quality of the master curves 

suffers. This is exemplified in Figure 8b, where in particular the G” cannot be superimposed 

neatly any more by applying only horizontal shift factors. The storage moduli G’ stay within 

an envelope, but it is unclear if these values are entirely trustworthy. The reasons for this 

discrepancy may lie either in slip on the plate due to the too high moduli, or in the failure of 

time-temperature superposition for dynamically heterogeneous samples
10

. With our data, we 

are unable to judge. It can be concluded that the moduli of these samples increase 

considerably, and that G’ is always at least a factor of two higher than G”. We observe a 

broadening of the G’’ peak in its high frequency range corresponding to a larger and more 

asymmetric distribution of relaxation times. It may be envisaged as a slower contribution 

(possible glassy layers) from the glass transition process located at higher frequency (out of 

our experimental window). 

The horizontal shift factors, aT, obtained from the master curve construction are found to 

change slightly from the matrix to the two lower silica contents. Their evolution with the 

inverse of temperature can be well described with an Arrhenius equation. The flow activation 

energy thus obtained is estimated to be 53, 58 and 60 kJ.mol
-1

 for silica loadings of 0, 8.4 and 

12.7%v, respectively. Alternatively, the classical Williams–Landel–Ferry (WLF) equation 
71

 

could also be used leading to the system constants  C1 = 6.9 and C2 = 265 K for the pure 



 26 

polymer matrix at the reference temperature of 50°C. For the nanocomposites, the values are 

C1 = 8.1 and C2 = 280 K (C1 = 6.1, C2 = 210 K) for 8.4%v and 12.7%v of silica, respectively. 

The fact that the characteristics of the time-temperature superposition (aT, Ea or C1, C2) are 

not significantly modified by the introduction of filler in spite of strong variation of the G’ 

and G’’ shapes was already observed in the literature for nanocomposite systems.
36, 46, 70, 72

 

Such results suggest that the temperature-dependent relaxation process probed here is similar 

in the composites and the unfilled polymer.  

From the high-frequency storage modulus (estimated here at 150 Hz), the relative 

reinforcement of the nanocomposites G/G0 with respect to the pure matrix can be calculated 

as a function of silica volume fraction. For the highly loaded samples, the modulus at 150 Hz 

is estimated from the average of the data point dispersion (see in Figure 8b). All resulting 

reinforcement factors are plotted in Figure 9. The reinforcement factor has the advantage of 

highlighting the influence of the filler, as it cancels the matrix contribution. It can also be 

compared directly to the Einstein equation for hydrodynamic reinforcement 
39

, and its 

application by Smallwood 
40

 or Mooney 
73

 to reinforcement of polymer matrices (see, e.g., ref 

41
 for different reinforcement factor descriptions). Here, a specific model based of percolation 

of aggregates inside the branches, which themselves extend across the whole sample, is 

proposed. Indeed, Figure 8a suggests a cross-over from liquid-like to solid-like behavior at 

low frequency with increasing si, and thus with the volume fraction in the branches, agg. 

We have therefore adapted a simple percolation model to the reinforcement data in Figure 9. 

Our model is based on a hydrodynamic description below a critical percolation volume 

fraction agg
c
, and on a percolation expression above 

74, 75
  

 agg

0 0

G
1 2.5 Φ  +   

G G 1

b
c

f agg aggc

agg agg c

agg

G   
        

                        
(13) 

where (agg-agg
c
)  denotes the Heaviside step function (zero for negative arguments, one 

for positive ones), and Gf is the modulus of the fractal network. Note that eq.(13) relies on eq. 

(12), which relates the aggregate volume fraction in the branches to the silica volume fraction 

in a non linear manner. For agg, we have used linear interpolations of the aggregate 

compacity  and the volume fraction of fractal branches fract as determined by TEM and 

SAXS (Table 1). The exponent of the percolation term, b, was set to 1.8 in agreement with the 

literature 
74

. We are thus left with two virtually independent parameters, agg
c
 and Gf/G0, 
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which have been varied to optimize the fit. The critical percolation volume fraction of 

aggregates in the branches is found to be agg
c
 = 56%v, which corresponds to a silica volume 

fraction ofsi
c
 = 12%v. The rather high value of agg

c
 is consistent with our picture of 

aggregates percolating within the fractal branches, i.e., in a space of reduced dimension. In 

one dimension, the exact result is a percolation only at full coverage.
76

 The remaining 

parameter is the ratio of the moduli. A value of Gf/G0 = 50 is found to correctly reproduce the 

increase of the reinforcement factor with silica volume fraction. 

Given the simplicity of the rheological model, the compatibility with our previous analysis by 

SAXS (see in Table 1, = 31% - 38%) is encouraging. This underlines the consistency of the 

methods. In particular, we have checked that fixing the compacity to other values (30% or 

40%) reduces the quality of the fit strongly. The ratio of the moduli seems a bit low, as one 

might expect much higher moduli for pure silica, at least 10
3
 times higher than the one of the 

matrix. The branches, however, are made of non compact aggregates, with coating agents on 

the silica nanoparticle surface. These may be the reasons for a lower modulus of the branches. 

The resulting percolation upturn observed in Figure 9 is thus weaker than in cases of uncoated 

silica
35

, as also observed by Chevigny et al 
15

, but with a similar filler connectivity threshold. 

To finish this discussion, one may note that the data could also be described with other 

models (however with a much lower quality of the fit), like an exponential increase with the 

filler volume fraction which was found to describe reinforcement data in carbon black 

reinforced rubbers.
77
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Figure 9: Reinforcement factor G/G0 of nanocomposites with si = 8.4%v - 21.1%v, where G is 

the storage modulus at 150 Hz, and G0 the corresponding one of the matrix (squares). Line is a 

fit with eq. (13) using the compacity and fract of the structural analysis as input. The fit 

parameters are fract
c 

= 0.56 (corresponding to si
c 

= 0.12) and Gf/G0 = 50. The purely 

hydrodynamic reinforcement is also indicated (dotted line).   

 

4. Conclusion  

The structure of nanocomposites designed to reproduce key features of industrial samples, but 

of simplified composition, has been studied on length scales extending from the nanometric 

primary particles to microns. We have developed an original method for scattering data 

analysis of such multi-scale systems. The combination of TEM, SAXS, and computer 

simulations allowed for a quantitative analysis, evidencing the formation of small aggregates 

of average radius in the 35 – 40 nm range, with a large polydispersity in aggregate size 

(estimated to be about 30%) and thus in aggregation number: most of the aggregates contain 

some fifteen primary particles, but the average amounts to about forty-five. Compacity of 

aggregates was assumed to be identical for all sizes, and it was found to increase from 31% to 

38% with si. Here one may add that these numbers are necessarily model dependent, which 

may impact the evolution of the compacity, which in any event stays in the 35%-range. 

Within our model, we have considered that these aggregates possess excluded volume 

interactions, which generate a visible shoulder in the scattering curves. It is important to 

recognize that this shoulder cannot be interpreted as a Guinier-signature of objects. The 
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polydisperse aggregates fill up branches with a volume fraction of aggregates agg increasing 

from about 45 to 70%, as si goes up from 8.4 to 21.1%v. The approximate lateral dimension 

of the branches is 150 nm, i.e., it is only a few aggregates wide. The large-scale spatial 

arrangement of the branches can be described by a fractal of average dimension of 2.4. The 

structure contains pure polymer zones. Their volume fraction (1-fract) decreases from 41 to 

20% for 8.4%v and 21.1%v of silica, respectively. To summarize, it is demonstrated that the 

complex structure of interacting aggregates in nanocomposites of industrial origin can be 

quantitatively modeled by including self-consistent polydisperse form and structure factors of 

aggregates. 

The rheology of the simplified industrial nanocomposites has been studied as a function of 

filler volume fraction, in small amplitude oscillatory shear experiments. Master curves for the 

storage and loss moduli could be constructed up to si = 12.7%v. These curves display a 

crossover from a flow regime to solid-like behaviour with increasing filler fraction at low 

frequency, as well as an increase of the high-frequency moduli. The resulting reinforcement 

curve of the high-frequency storage modulus can be described using a combination of 

hydrodynamic reinforcement for si below a critical percolation volume fraction (si
c
 = 

12%v), and a percolation law above. It is interesting to note that the aggregate compacity 

obtained from the structural analysis (SAXS and TEM) is fully compatible with the 

reinforcement data. 

To finish the conclusions of this article, one may note that the polymer matrix was a mixture 

of reactive and inert chains. The influence of the ratio of reactive chains on the structure will 

be studied in a forthcoming article 
78

. Up to here, following our idea of simplification of the 

system, we have also deliberately avoided another key ingredient, the coupling agent. Its 

influence on microstructure in these systems is currently under investigation 
79

. Finally, for 

future work, it may be important to be able to compare the results obtained here to model 

systems where the filler is a well-defined nanoparticle.  
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Appendix 1: Typical formulations of industrial nanocomposite systems 

 

Function Name Abbreviation Simplified 

system 

Coupling agent bis (3-triethoxysilylpropyl) tetrasulfide TESPT (Si69)  

Coupling agent 3-mercaptopropyltriethoxysilane reacted with 

ethoxylated C13-alcohol 

Si363  

Coating agent octyl-triethoxysilane  octeo  

Catalyzer diphenyl guanidine DPG  

Cross-linking agent sulphur   

Cure activator ZnO particles   

Cure activator stearic acids   

Cure accelerator N-butyl-2-benzothiazole sulfonamide TBBS  

Cure accelerator N-cyclohexyl-2-benzothiazole sulfonamide CBS  

Antioxidant N-isopropyl-N’-phenyl-para-phenylenediamine IPPD  

Antioxidant N-(1,3-dimethylbutyl)-N’-phenyl-para-

phenylenediamine 

6PPD  

Antioxidant 2,2’-methylenebis-(4-methyl-6-tertiary-

butylphenol) 

AO2246  

 

Table A1: Typical industrial formulations in SBR-silica nanocomposites. The last column 

indicates the components used in the simplified system studied in this article. 
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