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Abstract

A compressible, multiphase, one-fluid inviscid solver has been developed to

investigate the behaviour of various cavitation models. A new source term

for the mass transfer between phases is proposed. A range of models from

three to five equations is compared. Numerical simulations are performed on

rarefaction problems and compared with reference solutions.

Keywords: Two-phase flow, Cavitation, Homogeneous model, Mass

transfer, Euler simulation

1. Introduction

Cavitation is a significant engineering phenomenon that occurs in fluid

machinery, fuel injectors, marine propellers, nozzles, underwater bodies, etc.

In most cases, cavitation is an undesirable phenomenon, significantly degrad-

ing performance, resulting in reduced flow rates, lower pressure increases in

pumps, load asymmetry, vibrations, noise and erosion. Such flows are charac-

terized by important variations of the local Mach number (due to the drastic
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diminution of the speed of sound in the mixture), large density ratio be-

tween the liquid and the vapor phases, compressibility effects on turbulence

and thermodynamic phase transition.

Several physical and numerical models have been developed to investigate

cavitating flows within the class of averaged two-phase flow models. This

method makes no attempt to track the liquid and vapour interface. As most

two-phase flows have extremely complicated interfacial geometry and mo-

tions, it is not possible to solve for local instant motions of the fluid particles.

By proper averaging, the mean values of fluid motions and properties can be

obtained. In its implementation, there are different approaches according to

the assumptions made on the local thermodynamic equilibrium and the slip

condition between phases. A hierarchy of models exists, with the numbers of

equations ranging from seven to three only. The full non-equilibrium seven-

equation models are the most complete. For both fluids, it contains equations

for the mass, momentum and energy, and the seventh equation describes the

topology of the flow. Because the exchanges of mass, momentum and energy

are treated explicitly as transfer terms, these models can take into account

the physical details occurring in the cavitation phenomenon such as mass

exchange, thermal transfer and surface tension. However, the transfer terms

have to be known; such quantities are usually very difficult to obtain. Vari-

ous formulations have been investigated to deal with metastable states and

evaporation front dynamics, derived from the seven-equation model of Baer-

Nunziato [1]. Such models have been used for inviscid high-speed cavitating

applications and two-phase Riemann problems [2, 3, 4, 5]. For thermal-
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hydraulics applications with cavitation, nucleation and boiling flows, a six-

equation model has been developed [6, 7]. The interfacial mass transfer is

modeled as a function of the interfacial heat transfer terms and the interfacial

phase-averaged enthalpies. Since the general physics is not always necessary,

simpler and more compact models have been proposed and successfully ap-

plied for cavitating flows.

An important class of reduced models is formed by the five-equation models,

in which velocity equilibrium and pressure equilibrium are considered. The

archetype five-equation model is that of Kapila [8]. It is composed of four

conservation laws: two for masses, one for the mixture momentum and one

for the mixture energy. It is completed by an equation for a non-conservative

quantity describing the flow topology, usually the void ratio. Such a model

has been used for inviscid high speed cavitating applications and cavitation

pocket in fuel injector nozzles [9, 10, 11]. Other formulations have been pro-

posed [12, 13, 14] but have not found application in cavitation. For a clear

and compact overview over existing reduced two-fluid flow models, we refer

to [15].

By assuming the thermal equilibrium between phases, a four-equation model

can be expressed. A very popular formulation has been developed to simu-

late turbulent cavitating flows [16, 17, 18, 19, 20, 21, 22, 23, 24, 25]. It is

composed by three conservation laws for mixture quantities (mass, momen-

tum, energy) plus a mass equation for the vapour or liquid density including

a cavitation source term. The main difficulty is related to the formulation

of the source term and the tunable parameters involved for the vaporiza-

tion and condensation processes (different sets of parameters are presented
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in [23]). Another popular model devoted to ebullition problems uses a mass

fraction equation with a relaxation term (homogeneous relaxation model).

The source term involves a relaxation time that is the time for the system

to regain its thermodynamic equilibrium state. This time is very difficult to

determine and is estimated from experimental data [26, 27, 28]. An original

approach of the relaxation term was proposed in [29], based on a constrained

convex optimization problem on the mixture entropy.

With the assumption of complete thermodynamic equilibrium between phases

(local temperature, pressure and free Gibbs enthalpy equality between phases),

we obtain the 3-equation models or homogeneous equilibrium models (HEM).

Vaporization or condensation processes are assumed to be instantaneous. An

equation of state (EOS) is necessary to close the system. Different closure

relations (tabulated EOS or combination of pure phase EOSs) that link the

pressure to the thermodynamic variables have been proposed [30, 31, 32,

33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. Other EOS have been

investigated using an entropy maximization procedure [46, 47]. Small non-

equilibrium effects can be introduced in the EOS compared to an isothermal

thermodynamic path. When non-equilibrium effect becomes important, ad-

ditional equations are needed for an accurate prediction.

A critical aspect for cavitating simulations concerns the numerical methods

and accuracy problems. Characteristics of cavitating flows make the simu-

lation very stiff and challenging. Among them, large variations of the speed

of sound in the mixture is a difficult problem. Indeed, the speed of sound

can be several orders of magnitude higher in the liquid phase than in the
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two-phase mixture. The non-monotonic behavior of the sound speed in the

mixture causes inaccuracies in wave’s transmission across interfaces. More-

over, volume fraction variation across acoustic waves results in difficulties for

the Riemann problem resolution, and in particular for the derivation of ap-

proximate solvers [11]. Volume fraction positivity in the presence of shocks or

strong expansion waves is another issue resulting in lack of robustness. The

presence of large discontinuities of thermodynamic variables and equations

of state at material interfaces result in numerical instabilities and spurious

oscillations [48]. The reason lies in the numerical dissipation of the schemes

which mimic a thermodynamic path that is not correct. Finally, the large

decrease of the pressure up to vacuum apparition leads to computational

failure for Godunov methods. To circumvent these difficulties, equilibrium

assumptions are relaxed, especially the pressure equilibrium condition, which

results in the non-conservative equation for the volume fraction [11, 49].

On the other hand, for turbulent cavitating applications computed with

three- or four-equation models, various shock-capturing schemes developed

for aerodynamic problems have been extended to cavitating flows: AUSM

family [34, 50, 42], Jameson [51, 43, 44], Roe [22, 41, 52, 53], Rusanov [54]

and flux difference splitting procedure [17].

In fact, the more sophisticated models with relaxation procedures have been

tested on inviscid high-speed applications, whereas the simplest models asso-

ciated with shock-capturing schemes have been massively used for industrial

cavitating flows. The present work is part of a research aimed at developing

a numerical tool devoted to turbulent cavitating flows for which both the
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computation cost and the quality of results are acceptable. The simplicity

of the model and the numerical integration is privileged. In previous works,

the dependence of solutions on the turbulence modelling and the wall model

(in the framework of RANS compressible 1-fluid equations) has been illus-

trated in computing cavitation pockets on Venturi geometries [55, 56]. The

interplay between turbulence and cavitation regarding the unsteadiness and

structure of the flow is complex and not well understood. As a consequence,

only inviscid simulations are proposed in the present study to isolate the

cavitation model effect and to evaluate its capacity to reproduce a phase

transition with non equilibrium effects.

A new source term for the mass transfer between phases is proposed and in-

troduced on both a four-equation and a five-equation model. We compared

these new models with two popular models largely used in cavitation simu-

lations: the sinusoidal barotropic three-equation model and the Hosangadi

four-equation model. Our goals in respect to the cavitation modelling are:

• To validate the new source term formulation.

• To compare the new model with other popular cavitation models. A

focus on the mixture speed of sound is proposed.

• To investigate the influence of constants of models, especially for the

Hosangadi model which involves two empirical parameters.

Moreover, with respect to the numerical flux computation, various schemes

are tested (Jameson, Rusanov, AUSM-type, VF Roe and HLLC) to evaluate

their capability to integrate this very stiff system. Different test cases are

6



considered: rarefaction problems with a large depression leading to evapora-

tion, and a shock-cavitation interaction with condensation. Numerical results

are validated with reference solutions computed with two-fluid solvers.

This paper is organized as follows. We first review the theoretical formu-

lation without phase transition. We introduce the mass transfer between

phases. Various test cases are presented with comparisons between models

and validations against 7-equation solutions. Finally, conclusions and future

investigations are discussed.

2. Formulation without phase transition

The homogeneous mixture approach is used to model two-phase flows. The

phases are assumed to be sufficiently well mixed and the disperse particle size

are sufficiently small thereby eliminating any significant relative motion. The

phases are strongly coupled and moving at the same velocity. In addition,

the phases are assumed to be in thermal and mechanical equilibrium: they

share the same temperature T and the same pressure P . The evolution of the

two-phase flow can be described by the conservation laws that employ the

representative flow properties as unknowns just as in a single-phase problem.

We introduce αk the void fraction or the averaged fraction of presence of

phase k. The density ρ, the center of mass velocity u and the internal energy

e for the mixture are defined by [57]:

ρ =
∑

k

αkρk (1)

ρu =
∑

k

αkρkuk (2)
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ρe =
∑

k

αkρkek (3)

Different two-phase models are proposed based on conservation laws written

for mixture or phases quantities. To close the system, an equation of state

(EOS) and a thermal relation are necessary to link the pressure and the

temperature to the internal energy and the density.

2.1. The pure phases EOS

In the present study, we used the convex stiffened gas EOS for the pure

phases (see [58]):

P (ρ, e) = (γ − 1)ρ(e − q) − γP∞ (4)

P (ρ, T ) = ρ(γ − 1)CvT − P∞ (5)

T (ρ, h) =
h − q

Cp

(6)

where γ = Cp/Cv is the heat capacity ratio, Cp and Cv are thermal capacities,

q the energy of the fluid at a given reference state and P∞ is a constant

reference pressure. The speed of sound c is given by:

c2 = γ
P + P∞

ρ
= (γ − 1)CpT (7)

2.2. The mixture EOS

On the basis of the stiffened gas EOS for each pure phase, an expression

for the pressure and the temperature can be deduced from the thermal and

mechanical equilibrium assumption [10]. These expressions are available in

all possible fluid states, function of the void ratio α = αv and the vapour

mass fraction Y = Yv:

P (ρ, e, α, Y ) = (γ(α) − 1)ρ(e − q(Y )) − γ(α)P∞(α) (8)
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1

γ(α) − 1
=

α

γv − 1
+

1 − α

γl − 1
(9)

q(Y ) = Y qv + (1 − Y )ql (10)

P∞(α) =
γ(α) − 1

γ(α)

[

α
γv

γv − 1
P v
∞

+ (1 − α)
γl

γl − 1
P l
∞

]

(11)

T (ρ, h, Y ) =
hl − ql

Cpl

=
hv − qv

Cpv

=
h − q(Y )

Cp(Y )
(12)

Cp(Y ) = Y Cpv + (1 − Y )Cpl
(13)

Without mass transfer, the propagation of acoustic waves follows the Wood

or Wallis speed of sound [59]. This speed cwallis is expressed as a weighted

harmonic mean of speeds of sound of each phase:

1

ρc2
wallis

=
α

ρvc2
v

+
1 − α

ρlc2
l

(14)

2.3. A five-equation model

We consider a variant of the reduced model proposed by Kapila [8]. The

model consists in mixture balance laws for momentum and energy, balance

laws for mass of each pure phase and an additional equation for the void

ratio. In order to simplify the formulation, we present below the inviscid

one-dimensional equations, expressed in variables w = (αlρl, αρv, ρu, ρE, α):

∂αlρl

∂t
+

∂αlρlu

∂x
= 0 (15)

∂αρv

∂t
+

∂αρvu

∂x
= 0 (16)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (17)

∂(ρE)

∂t
+

∂(ρuH)

∂x
= 0 (18)

∂α

∂t
+ u

∂α

∂x
=

(

ρlc
2
l − ρvc

2
v

ρlc
2
l

1−α
+ ρvc2v

α

)

︸ ︷︷ ︸

= K

∂u

∂x
(19)
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where E = e + u2/2 denotes the mixture total energy and H = h + u2/2 the

mixture total enthalpy.

The five equations form a system of conservation laws having a hyperbolic

nature. The eigenvalues of the system are:

λ1 = u − cwallis, λ2,3,4 = u and λ5 = u + cwallis.

2.4. A four-equation model

We modify the previous model assuming the liquid is at its saturation state.

The model consists in three conservation laws for mixture quantities and the

additional equation for the void ratio:

∂ρ

∂t
+

∂ρu

∂x
= 0 (20)

∂(ρu)

∂t
+

∂(ρu2 + P )

∂x
= 0 (21)

∂(ρE)

∂t
+

∂(ρuH)

∂x
= 0 (22)

∂α

∂t
+ α

∂u

∂x
= K

∂u

∂x
(23)

The pressure and temperature in the mixture follow the same relation pre-

sented above. To compute the mixture speed of sound, the system is writ-

ten with the primitive variable (α, P, u, e). We introduce the quantity C =

ρvc
2
v

(

1 +
K

α

)

= ρc2
wallis .

∂

∂t











α

P

u

e











+











u 0 − K 0

0 u C 0

0 1/ρ u 0

0 0 P/ρ u











∂

∂x











α

P

u

e











= 0
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The eigenvalues of the matrix of the system can be easily computed. The

system is hyperbolic, eigenvalues are (u-cwallis, u, u, u+cwallis). Eigenvectors

and characteristic relations are given in Appendix A.

3. The phase transition modelling

We added the mass transfer between phases ṁ in the formulation of the 4-

and 5-equation models. The void ratio equation becomes (the demonstration

for a five-equation model is given in [10]):

∂α

∂t
+ u

∂α

∂x
= K

∂u

∂x
+

(
c2v
α

+
c2l

1−α

ρlc
2
l

1−α
+ ρvc2v

α

)

︸ ︷︷ ︸

=1/ρI the interfacial density

ṁ (24)

Different formulation for the mass transfer ṁ are proposed in the litera-

ture. In cavitating simulations, a very popular model is based on an em-

pirical source term splitted into two contributions for the evaporation and

condensation processes. Moreover, another class of models based on three

mixture conservation laws with thermodynamic equilibrium assumptions is

also largely used in cavitation. The void ratio is computed with an algebraic

relation without any explicit source term. To close the system, an equa-

tion of state (EOS) is necessary to link the pressure to the thermodynamic

variables. In the following, we present a simple cavitation model with a

barotropic sinusoidal EOS.

3.1. A barotropic model

The sinusoidal barotropic law [30, 43] is considered for the mixture. This

law is characterized by its maximum slope 1/c2
baro. The quantity cbaro is an
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adjustable parameter of the model, which can be interpreted as the minimum

speed of sound in the mixture.

When the pressure is between Pvap + ∆P and Pvap − ∆P , the following

relationship applies:

P = Pvap +

(
ρsat

l − ρsat
v

2

)

c2
baro Arcsin (1 − 2α) (25)

where ∆P represents the pressure range of the law and, for a void ratio

value of 0.5, the pressure is equal to the saturation pressure Pvap. This law

introduces a small non-equilibrium effect on the pressure. The cavitation

phenomenon is assumed to be isothermal and thermodynamic effects are ne-

glected.

The void ratio is computed with saturation values of densities:

α =
ρ − ρsat

l

ρsat
v − ρsat

l

(26)

The speed of sound in the mixture can be computed easily:

c2 =

(
∂P

∂ρ

)

s

=

(
∂P

∂ρ

)

T

=
c2
baro

2
√

α(1 − α)
(27)

The system is hyperbolic with eigenvalues (u − c, u, u + c).

Properties of the model (such as convexity conditions of the EOS) and the

influence of the parameter cbaro have been studied in [43].

3.2. A source term based on the barotropic model

From the void ratio equation (24), a pressure equation is deduced (see Ap-

pendix B):
∂P

∂t
+ u

∂P

∂x
+ ρc2

wallis

∂u

∂x
=

c2
v

α
(1 −

ρv

ρI

)ṁ (28)
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To establish a link with the pressure equation expressed as

∂P

∂t
+ u

∂P

∂x
+ ρc2∂u

∂x
= 0 (29)

a possibility is to assume that the mass transfer is proportional to the diver-

gence of the velocity: ṁ = Z ∂u
∂x

. Therefore, we have the relation:

ρc2 =
ρlc

2
l ρvc

2
v

[

1 − Z ρl−ρv

ρlρv

]

αρlc2
l + (1 − α)ρvc2

v

or
1

ρc2
=

1

ρc2
wallis

×
1

1 − Z ρl−ρv

ρlρv

(30)

To ensure a thermodynamic coherence, the mixture speed of sound has to

vary between the Wallis and the equilibrium ones ceq. When exchanges of

mass and heat between phases are involved, the sound speed decreases to

the thermodynamic equilibrium one [60]. This limit speed is evaluated with

the assumption of local thermodynamic equilibrium: equalities of pressure,

temperature and free enthalpy g = h−Ts between phases. An expression of

the speed of sound ceq is given in [61].

The speed of sound of the barotropic model presented previously respects

this inequality, except when the void ratio is close to 1. We propose to

evaluate the quantity Z by identification with the barotropic speed of sound,

we obtain

Z =
ρlρv

ρl − ρv

[

1 −
c2
baro

2c2
wallis

1
√

α(1 − α)

]

(31)

Finally, the source term is

ṁ =

[

ρlc
2
l − ρvc

2
v

ρlc
2
l

1−α
+ ρvc2v

α

+
ρlρv

ρI(ρl − ρv)

(

1 −
c2
baro

2c2
wallis

1
√

α(1 − α)

)

Min (0, P − Pvap)

P − Pvap

]

∂u

∂x

(32)

In the solver, we added a limiter on the void ratio to avoid the singular value

α = 1. This source term can also be used with the 5-equation model. In
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the following, such models will be denoted as 4- and 5-equation barotropic

models.

The thermodynamic assumptions of the proposed barotropic models are sum-

marized in Table 1. In addition, assumptions for the 5-equation Kapila model

and the 3-equation equilibrium model are presented.

3.3. An empirical source term

A class of cavitation models introduces a mass transfer between phases in-

volving a separate contribution for vaporization and condensation processes.

Two tunable parameters are associated for each process. This empirical

source term can be calibrated with experimental data base. Different formu-

lations and sets of parameters are presented in [23].

In this study, we used a formulation derived from the model proposed by

Hosangadi and Ahuja [22]:

ṁ = ṁ++ṁ− = Cprod
ρv

ρl

(1−α)
Min (0, P − Pvap)

0.5ρrefU2
ref

+ Cdes
ρv

ρl

α
Max (0, P − Pvap)

0.5ρrefU2
ref

(33)

where Cprod, Cdes are constants to calibrate.

The evaluation of the pressure when cavitation appears is not clear using

compressible solvers. We decided to set the pressure to its saturation value

Pvap at the reference temperature. In this case, the production term is never

activated. We introduced a parameter ε in order to be smaller than Pvap:

P = Pvap − ε. In all our computations, ε was set to 10−3. The influence of

this parameter has not been studied.
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Moreover, with this formulation, the void ratio value can be higher than one.

We added a limiter in the solver to clip the void ratio into its physical domain

of evolution.

This kind of model reproduces propagation of acoustic disturbance at the

Wallis speed of sound that is not thermodynamically coherent. Moreover,

the behaviour of the mixture entropy has never been studied.

4. Numerical methods

The conservation laws governing both models can be written in the form:

∂w

∂t
+

∂F (w)

∂x
= S (34)

where w is the vector of variables, F the convective flux and S the source

term (only for the void ratio equation). The void ratio equation is written

in its divergence form:

∂α

∂t
+

∂(αu)

∂x
= (K + α)

∂u

∂x
+

ṁ

ρI

(35)

We focus herein on some finite volume schemes. Regular meshes are consid-

ered, whose size ∆x is such that: ∆x = xi+1/2−xi−1/2. Let us denote as usual

∆t the time step, where ∆t = tn+1 − tn. Let wn
i be the approximate value of

1

∆x

∫ xi+1/2

xi−1/2

w(x, tn)dx. A discrete form of equation (34) can be written as:

∆x
wn+1

i − wn
i

∆t
+ F n

i+1/2 − F n
i−1/2 = Sn

i ∆x (36)

where F n
i+1/2 is the numerical flux through the cell interface xi+1/2× [tn, tn+1].

The time step should comply with some CFL condition in order to guarantee
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some stability requirement.

Various formulations of numerical flux have been proposed to solve multi-

phase compressible flows. In the present study, we tested and compared

various formulations: the Jameson-Schmidt-Turkel scheme [62], an AUSM-

type scheme [34, 63, 64, 65], the Rusanov scheme [66], the HLLC scheme

[67, 68, 69] and the VF Roe non conservative scheme [70, 71, 72]. The Jame-

son scheme is stabilized by an artificial viscosity, which includes a second-

order and a fourth-order dissipation terms. Each term involves a tunable

numerical coefficient, k(2) and k(4) respectively. To detect discontinuities a

sensor based on pressure gradients is used. For two-phase flows, the sensor

is also evaluated with density gradients.

The AUSM-type and VF Roe schemes are shortly described in Appendix C

and D.

4.1. Treatment of the source term

The numerical simulations of the initial-boundary value problems are ac-

complished using splitting approach. One starts in solving the source-free

homogeneous part of the whole system:

∂w

∂t
+

∂F (w)

∂x
= 0 (37)

This is followed by solving the system of ordinary differential equations de-

scribing the mass transfer between phases to obtain the complete solution:

dw

dt
= S(w,∇w) (38)
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4.2. Inlet and outlet boundary conditions

The numerical treatment of the boundary conditions is based on the use of

the characteristic relations of Euler equations. The number of variables to

impose at boundaries is given by the number of positive characteristics. The

characteristic relations obtained for the 5-equation system are (see Appendix

A for the 4-equation system):

−c2(ρc − ρs) + (P c − P s) = 0 (39)

(P c − P s) + ρc(V c − V s) = 0 (40)

(P c − P s) − ρc(V c − V s) = 0 (41)

(Y c − Y s) = 0 (42)

ρ(αc − αs) − K(ρc − ρs) = 0 (43)

The variables with superscript c denote the variables to be computed at the

boundary. Variables with superscript s denote the variables obtained by the

current numerical scheme.

At inflow, we impose the initial values of the void ratio, densities of pure

phases and the velocity. The pressure is evaluated with the relation (41) and

all variables can be evaluated at the boundary.

At outflow, the static pressure is imposed. The variables are computed with

four characteristic relations (39), (40),(42) and (43).

5. Presentation of the rarefaction test cases

5.1. Water-gas mixture expansion tube, | u |= 2 m/s

This test consists in a one meter long tube filled with liquid water at at-

mospheric pressure and with density ρl =1150 kg/m3. The temperature of
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water is T = 355 K. A weak volume fraction of vapor α =0.01 is initially

added to the liquid. The initial discontinuity is set at 0.5 m, the left ve-

locity is -2 m/s and the right velocity is 2 m/s. The solution involves two

expansion waves. As gas is present, the pressure cannot become negative. To

maintain positive pressure, the gas volume fraction increases due to the gas

mechanical expansion and creates a pocket. Liquid water is expanded until

the saturation pressure is reached then evaporation appears and quite small

amount of vapor is created. The solution with phase transition is composed

of four expansion waves. The extra two expansion waves correspond to the

evaporation fronts.

This test was computed with a 5-equation model in [10] and with a 7-equation

model in [49]. The solution extracted from [49] using a 5000-cell mesh is pre-

sented in Fig. 1. The evolution of mass and volume fractions, the velocity

and the pressure are plotted at time t = 3.2 ms.

5.2. Water-gas mixture expansion tube, | u |= 100 m/s

The same conditions are used except regarding velocities which are set to u=-

100 m/s on the left, and u=100 m/s on the right. In this case, evaporation

is much more intense resulting in a large cavitation pocket where the gas

volume fraction is close to 1. However, this pocket does not contain pure gas

but a mixture at thermodynamic equilibrium.

The solution extracted from [49] using a 5000-cell mesh is presented in Fig.

2. The evolution of mass and volume fractions, the velocity and the pressure

are plotted at time t = 1.5 ms.
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6. Results and discussion

The numerical tool has been validated on two-phase shock-tube problems

without phase transition (liquid-gas mixture and epoxy-spinel mixture as

computed in [73, 9]). Results are not presented, we focus here on the cavi-

tation cases.

The double rarefaction test case presented previously is considered for the

validation. Two initial velocities are tested: u = ±2 m/s and u = ±100

m/s. Moreover, two values of the initial volume fraction of vapor are tested:

α = 10−2 and α = 10−10. With the last value, quasi pure liquid is present

initially and the three-equation model can be used.

A shock-cavitation interaction is also considered. It is the same expansion

tube problem for which both extremities are closed leading to shock waves

generation.

The parameters of the stiffened gas EOS and saturation values for densities

are given in Table 2. The quantities have been evaluated with a saturation

table at the reference temperature. The vapour pressure Pvap = 51000 Pa.

6.1. Study of cavitation models

6.1.1. Expansion tube with initial value α = 10−2

The mesh contains 5000 cells as used in [49]. The time step is set to 10−7

s. Various simulations were performed by varying the cavitation model (4-

and 5-equation models) and the constant of models (cbaro and Cprod). The

constant Cdes is set to 0 because the case involves only an evaporation process.

All computations were performed with the Rusanov scheme.
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Calibration of cbaro

First, we present the influence of the constant cbaro for the low speed case

u = ±2 m/s. Solutions are shown in Fig. 3 at time t =3.2 ms. The void

ratio profiles put in evidence the large influence of the constant cbaro. Greater

is this constant, lower is the maximum value of the void ratio. In compari-

son with simulations presented in [11, 49], the better result is obtained with

cbaro = 1.31 m/s. With this value, results are in very close agreement with the

two-fluid solution. The same void ratio profiles are plotted with a logarithmic

scale. We clearly observe the two rarefaction waves and the two evaporation

fronts. The influence of cbaro is also well marked on the pressure evolution.

Greater is this constant, greater is the non equilibrium effect on the pres-

sure, as expected. The mixture speed of sound c is shown in this figure with

a logarithmic scale. The jump of speed of sound across the four waves are

well illustrated. At the ends of the tube, the speed of sound follows the Wal-

lis formulation: c = 80 m/s. The minimal value is given by the constant cbaro.

The influence of the constant cbaro for the high speed case u = ±100 m/s

is presented in Fig. 4, at time t = 1.5 ms. The influence is weak on both

the volume and mass fractions, and the velocity evolution. For the pressure

profiles, the non equilibrium effect is clearly visible. This phenomenon is

very intense, it reaches 0.3 bar in the solution presented in [49]. In our

simulations, it reaches only 0.05 bar, except with the highest value of cbaro.

When cbaro = 3.38 m/s, the non equilibrium effect is important (0.2 bar) but

centered on Pvap due to the symmetric form of the EOS. An improvement

of the model should be done by building a non-symmetric barotropic EOS
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or by using non isothermal model. The constant cbaro is set to 1.31 m/s, as

previously.

Calibration of Cprod

The calibration of the constant Cprod is presented in Fig. 5 for the case

u = ±2 m/s. The void ratio and mass fraction evolutions are illustrated.

Greater is this constant, greater are the volume and mass fractions, as ex-

pected. We can calibrate the model with the reference simulations presented

in [11, 49]. The closest result is obtained with Cprod = 1.

For the high speed case u = ±100 m/s, results are plotted in Fig. 6. The

influence is weak on the void ratio profiles. Differences are marked on the

mass fraction. A calibration can be done using the solution of Zein [49]. The

better results is obtained with Cprod = 100, instead of 1 in the previous case.

It is a characteristic of this model, the calibration varies with the test case.

The mixture speed of sound is plotted in the same figure. For this quantity,

we have not any reference solution. On both extremities of the tube, the

speed of sound is around 80 m/s. When the cavitation pocket develops, the

speed of sound first decreases around 20 m/s, and for void ratio values close

to one, the speed of sound increases up to 300 m/s.

Models comparison

Computations have been done with the 5-equation model including the barotropic

source term, with the constant cbaro = 1.31 m/s. All models are compared

in Fig. 7 for the low speed case u = ±2 m/s. The 4- and 5-equation models

provide an identical solution. Between the 4-equation models, the void ratio
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profiles are quite similar. The mass fraction obtained with both models are

close to those obtained in [11, 49]. The pressure evolution given by the em-

pirical 4-equation model do not reproduce the pressure diminution across the

evaporation fronts. Large discrepancies are noticeable on the mixture speed

of sound evolution (plotted with a logarithmic scale). It is due to the fact

that the empirical 4-equation model reproduces the Wallis speed of sound

even when mass transfer is taken into account.

For the high speed case, all models are compared in Fig. 8. Solutions ob-

tained with the 4- and 5-equation barotropic models are superposable. For

the mass fraction profile, the maximum value provided by the 4-equation

barotropic model is under-estimated in comparison with the solution of Zein

[49] and with the solution given by the empirical 4-equation model. With

this model, evaporation fronts can not be predicted on the pressure evolu-

tion. For the mixture speed of sound, large discrepancies are visible. With

the barotropic speed of sound, we can clearly observe variations across the

different waves.

6.1.2. Expansion tube with initial value α = 10−10

We consider the same test case but the initial gas fraction is now set to 10−10.

The barotropic 3-equation model can be compared with other models. For

this test case, we have not any reference solutions, we just propose a qual-

itative comparison between models. The speed of sound is initially around

1400 m/s in the water. We performed computations on a 5000-cell mesh and

compared solutions at time t = 0.2 ms. The time step is set to 10−8 s.
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Calibration of cbaro

For both cases, the influence of cbaro is weak. It is illustrated in Fig. 9

for the high speed case. The influence on the void ratio is null and it is

weak on the mass fraction. In comparison with the case with a small initial

gas fraction, the maximum value of the mass fraction is twice as high. On

the pressure evolution, the evaporation fronts are well illustrated. The non-

monotonic behaviour of the mixture speed of sound is clearly observed. In

the cavitation pocket where void ratio values are close to one, the speed of

sound increases and tends to the pure gas sound speed. As previously, the

same value cbaro = 1.31 m/s is kept.

Calibration of Cprod

The influence of the constant Cprod is illustrated in Fig. 10 on the volume and

mass fractions for the low speed case. The maximum value increases when

the constant increases. From Cprod = 75, results do not move any more. We

calibrated the constant in order to obtain the maximum value of the mass

fraction close to the previous case with the initial value α = 10−2, that is

cprod = 10.

The same quantities are plotted in Fig. 11 for the high speed case. From the

value 106, the solution does not move any more. We decide to set Cprod to

this value.

For the considered test cases, the domain of evolution of Cprod varies between

1 and 106. It is clearly a large drawback of the model.
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Models comparison

The comparison with all models is shown in Fig. 12 for the low speed

case. Computations were performed with the 3-, 4- and 5-equation mod-

els (cbaro = 1.31 m/s and Cprod = 10). As previously, solutions obtained with

the 4- and 5-equation models with the barotropic source term are identical.

The volume and mass fraction peaks mark differences between the 3- and

4-equation barotropic models. With the void ratio equation, the maximum

value is 1.75 times higher for the void ratio and 3 times higher for the mass

fraction. With respect to the width of the cavitation pocket, the solution pro-

vided by the empirical 4-equation model is larger in comparison with other

models.

The evolution of the pressure is consistent with our expectations. A small

non equilibrium effect and evaporation fronts are visible with all barotropic

models.

The mixture speed of sound is plotted with a logarithmic scale for both 4-

equation models. Large variations are highlighted, from the pure liquid high

value to small values in the cavitation pocket. With the barotropic speed of

sound, the four waves can be observed and the ratio between extremal sound

velocities is higher than 1000.

For the high speed case u = ±100 m/s, the 3-equation barotropic model was

unable to provide a solution (all computations led to divergence). This model

seems less robust than other barotropic models. All models are compared in

fig. 13 (cbaro = 1.31 m/s and Cprod = 106). The 4- and 5-equation barotropic

models give similar results. A large discrepancy appears on the mass fraction
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between the two formulations of 4-equation model (almost a factor 9). The

width of the evaporation area visible on the void ratio evolution is slightly

higher with the empirical 4-equation model. The Wallis and barotropic speed

of sound, plotted with a logarithmic scale, mark large differences, as expected.

6.2. Influence of the numerical scheme

The five numerical schemes were tested on the rarefaction cases with the

initial velocity u = ±2 m/s and u = ±100 m/s. It was not possible to obtain

a correct solution with the HLLC, VF Roe and AUSM schemes using the

barotropic source term. All computations led to divergence or oscillating so-

lutions. The approximate Riemann solvers (HLLC and VF Roe) are known

to fail when very low densities and pressures near the vacuum appear. An

anti-diffusive term can be added to the HLLC dissipation to improve the

scheme [74, 75]. It has been not tested in the present study. Similarly, the

AUSM-type formulation was not able to compute such applications.

Only the more dissipative schemes (Jameson and Rusanov) provided solu-

tions for all cases. Using the second-order Jameson scheme, the dissipation

parameter k2 is set to 1 and k4 varies between 0.008 and 0.02.

Comparisons between the Jameson and Rusanov schemes are presented in

Fig. 14 using the barotropic 4-equation model in which the constant cbaro is

set to 1.31 m/s. The considered test case is the expansion problem with the

low speed u = ±2 m/s and α = 10−2. Results are very similar. Pressure and

velocity evolutions are identical. A small discrepancy appears only on the

void ratio maximum value.

With respect to the CPU time, it is 18.8h for the two-fluid computation [49],
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whereas with our solver, using the 4-equation barotropic model, it is smaller

than 5 minutes.

The same scheme comparison for the high speed case is presented in Fig. 15

for the void ratio and pressure profiles. Results are obtained with cbaro = 1.31

m/s. Solutions are quasi identical. With respect to the CPU time, it is 8.5h

for the two-fluid computation [49], whereas with our solver it is smaller than

5 minutes.

6.3. Expansion tube with shock-cavitation interaction

This case is similar to the previous one, except that the two ends of the tube

are simultaneously closed once the flow starts. Therefore, a shock created

at each end moves towards the center, resulting in shock-cavitation interac-

tion and cavitation collapse. The flow is initially quasi pure water and soon

changes phase into a vapour-liquid mixture at the center, and then reverting

back into a pure liquid after the cavitation collapse. A similar test case was

depicted in [37] on a 400-cell mesh. Authors used a 3-equation solver with

various EOS for the mixture and a HLL numerical scheme.

A uniform mesh of 5000 cells is used and the time step is set to 10−8 s. Vari-

ous simulations are compared with the different models. Values for constants

cbaro and Cprod are set to 1.31 m/s and 106 respectively. With the 3-equation

model, all simulations led to divergence, as observed previously. Similarly,

only the Rusanov and Jameson numerical schemes allowed to obtain results.

First, we studied the influence of the numerical scheme using the new

4-equation model. Volume and mass fractions obtained with both numerical
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schemes are plotted at different times in Fig. 16 (with a logarithmic scale

for the mass fraction). As the cavitation pocket grows, up to time t = 0.3

ms, solutions are similar to those presented in the previous case. Discrepan-

cies between schemes are weak, a different form on the mass fraction profiles

is noticeable. After time t = 0.3 ms, the shocks created at the ends meet

the rarefaction waves generated at the center, and then interacts with the

expanding cavitation interface. The cavitation collapse begins. Both sim-

ulations predict the decrease of the volume and mass fractions. With the

Rusanov scheme, the phenomenon is more intense. At time t = 0.7 ms, the

maximum void ratio value is close to 0.2, whereas the value obtained with

the Jameson scheme is around 0.4. Mass fraction values are very small at

this time: around 5.10−5 for the Rusanov scheme and 2.10−4 for the Jameson

scheme. Moreover, oscillations on the solutions appear during the collapse.

It is clearly visible at time t = 0.45 ms for both numerical schemes.

Secondly, the influence of the constant Cdes is investigated for the Hosangadi

model using the Rusanov scheme. As the condensation process is present in

this case, the second constant Cdes is no more null. Three values are tested:

0.1, 1 and 10. The influence of this constant is presented in Fig. 17 on the

evolution of volume and mass fractions at different times. Both the growth

and the decrease of the cavitation pocket are well illustrated. As expected,

higher is the constant Cdes, more intense is the condensation phenomenon.

At time t = 0.7 ms, the maximum void ratio values are 0.5, 0.3, 10−9, for

Cdes=0.1, 1, 10, respectively. Similarly to the previous computations, we ob-

serve numerical oscillations during the cavitation collapse, especially at time
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t = 0.45 ms but also at time t = 0.7 ms.

The comparison between both 4-equation models is shown in Fig. 18 with

pressure and density profiles at different times. The constant Cdes is set to 1.

The shock propagation through the rarefaction region is well illustrated on

both the pressure and density profiles, up to time t = 0.35 ms. Both models

provide similar results. Then shocks interacts with the expanding cavitation

interface, resulting in a discontinuity forms at the interface. The cavitation

collapse generates two shocks which propagate outwards. Oscillations on

the density profiles during the cavitation collapse are clearly visible at time

t = 0.5 ms with both models. At time t = 0.6 ms, discrepancies appear on the

density profiles. The empirical 4-equation model provides a higher maximum

void ratio value (see also the void ratio profiles in previous figures). In

comparison with results presented in [37] computed with a 3-equation model,

we observe large differences on the intensity of the shocks created during the

cavitation collapse. In their simulations the two shocks propagates with equal

strength as that for the shocks generated initially at the two ends. In our

simulations, the strength of shocks is very lower: the maximum pressure is

around 100 bars at time t = 0.5 ms instead of 1700 bars for the initial shocks.

7. Conclusion

In the present study, a comparison of models was proposed for the simula-

tion of 1D inviscid cavitating flows. A hierarchy of homogeneous model from

3 to 5 equations was investigated. The 3-equation model was closed with a

sinusoidal barotropic EOS. A new source term based on barotropic EOS prop-
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erties was introduced for a 4- and 5-equation model. Moreover, a 4-equation

model with an empirical source term involving evaporation and condensa-

tion processes was studied. The proposed models were validated through

various test-cases based on rarefaction waves leading to a phase transition,

for which numerical solutions obtained with 2-fluid models are available. A

shock-cavitation interaction case was also considered. The capability to ob-

tain correct solutions for rarefaction waves, evaporation fronts and cavitation

collapse has been investigated. These test-cases lead to different concluding

remark:

• The 4- and 5-equation models provided identical solutions. It seems

that it is not necessary to allow the liquid to be in a metastable state.

• Between the 3- and 4-equation models built with the barotropic EOS,

large discrepancies appeared for the prediction of both the volume and

mass fractions. For the stiffest cases, the 3-equation model was unable

to give a solution. On the contrary, the 4-equation model showed good

properties of robustness and provided a good quality of solutions while

initial velocities are moderate.

• Solutions obtained with the two formulations of 4-equation models

marks large differences for the mass and volume fraction (both the max-

imum values and the width of the cavitation pocket), for the stiffest

cases. Moreover, the non equilibrium effect on the pressure can not be

reproduced by the empirical model. With respect to the constant cal-

ibration, the parameter cbaro was easy to calibrate. All computations

were performed with one fixed value. On the contrary, the constant
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Cprod varies largely between cases (from 1 to 106). The calibration of

this model is a real problem.

On another hand, a comparison of various numerical schemes was proposed.

Different families were considered: AUSM-family, approximate Riemann solvers

(VF Roe, HLLC), a simple Godunov approach (Rusanov) and a space-

centered scheme with artificial dissipation (Jameson). The simulation of

rarefaction waves near the vacuum apparition was a hard case for both the

approximate Riemann solvers and the AUSM scheme. It was not possible to

obtain a solution with these schemes using the barotropic source term. Only

the Jameson and Rusanov schemes allowed to simulate the cavitation cases.

Finally, the proposed numerical tool allowed to drastically reduce the CPU

cost in comparison with a 2-fluid model involving relaxation procedures for

the pressure and the velocity.

Further works are in progress to introduce a non isothermal thermodynamic

path and to perform realistic turbulent configurations.

Appendix

Appendix A: eigenvectors and characteristic relations, 4-equation model

The system written with primitive variables tW = (α, P, u, e) is

∂

∂t











α

P

u

e











+











u 0 − K 0

0 u ρc2 0

0 1/ρ u 0

0 0 P/ρ u











∂

∂x











α

P

u

e











= 0
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Eigenvalues are (u, u, u − c, u + c) and the associated right eigenvectors are

R1 =











0

0

0

1











R2 =











1

0

0

0











R3 =












-
Kρ

P
ρ2c2

P

-
ρc

P

1












R4 =












-
Kρ

P
ρ2c2

P
ρc

P

1












And the left eigenvectors are

tL1 =












0

-
P

ρ2c2

0

1












tL2 =












1
K

ρc2

0

0












tL3 =












0
P

2ρ2c2

-
P

2ρc

0












tL4 =












0
P

2ρ2c2

P

2ρc

0












Characteristic relations are given by

tLi

(
∂W

∂t
+ A

∂W

∂x

)

= 0 (44)

Finally, relations are

dP

d t
− c2d ρ

d t
= 0 (45)

dα

d t
−

K

ρ

d ρ

d t
= 0 (46)

dP

d t
− ρc

d u

d t
= 0 (47)

dP

d t
+ ρc

d u

d t
= 0 (48)

Appendix B: pressure equation

From the conservation laws for the mass of each phases, we have

d ρv

d t
=

1

α

(

ṁ − ρv
dα

d t

)

− ρv
∂u

∂x
(49)
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d ρl

d t
=

1

1 − α

(

−ṁ + ρl
dα

d t

)

− ρl
∂u

∂x
(50)

We deduce the following relation using the void ratio equation

1

c2
v

d P

d t
=

d ρv

d t
=

ṁ

α
−

ρv

α

(

K
∂u

∂x
+

ṁ

ρI

)

− ρv
∂u

∂x
(51)

The pressure equation is therefore

∂P

∂t
+ u

∂P

∂x
= −ρvc

2
v

(

1 +
K

α

)
∂u

∂x
+

c2
v

α

(

1 −
ρv

ρI

)

ṁ (52)

We introduce the Wallis speed of sound

ρvc
2
v

(

1 +
K

α

)

= ρc2
wallis (53)

Finally the expression of the pressure equation is

∂P

∂t
+ u

∂P

∂x
+ ρc2

wallis

∂u

∂x
=

c2
v

α
(1 −

ρv

ρI

)ṁ (54)

Appendix C: an AUSM-type scheme

The flux formulas of AUSM-type have been tested in the resolution of shock

waves and interfaces in multicomponent problems under high density ratio

between two phases [34, 63, 64, 65]. We proposed an AUSM+type formula-

tion following the AUSM+up model proposed by Chang and Liou [65].

We define the interface speed of sound and the interface density as:

c1/2 =
1

2
(cL + cR) and ρ1/2 =

1

2
(ρL + ρR) (55)

where subscripts L and R denote the left and right states with respect to the

interface. The left and right Mach numbers are then defined based on this

speed of sound as:

ML =
uL

c1/2

and MR =
uR

c1/2

(56)
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Then the following split Mach numbers and pressures are used, in which

three sets of polynomials are required:

M±

(1) =
1

2
(M± | M |) (57)

M±

(4) =







±
1

4
(M ± 1)2(1 +

1

2
(M ∓ 1)2) if |M | < 1

M±

(1) otherwise

(58)

And

P±

(5) =







1

4
(M ± 1)2(2 ∓ M) ±

3

16
M(M2 − 1)2 if |M | < 1

M±

1

M
otherwise

(59)

The numerals in the subscripts of M and P indicate the degree of the poly-

nomials. The interface values for Mach number and pressure are defined

as:

M1/2 = M+
(4)(ML) + M−

(4)(MR)

P1/2 = P+
(5)(ML)PL + P−

(5)(MR)PR + KuP
+
(5)(ML)P−

(5)(MR)ρ1/2c1/2(uL − uR)

where Ku is a coefficient set to 0.125.

A general form of interface mass flux in the AUSM-type scheme is defined

as:

(ρu)1/2 = c1/2

(

ρLM+
(1)(M1/2) + ρRM−

(1)(M1/2)
)

+ Dp (60)
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where Dp is a dissipation term based on pressure difference:

Dp = Kp
∆M Max (1 − M

2
, 0)(PL − PR)

c1/2

(61)

∆M = M+
(4)(ML) − M+

(1)(ML) − M−

(4)(MR) + M+
(1)(ML) (62)

M =
1

2
(ML + MR) (63)

where Kp is a coefficient set to 1.

For the void ratio equation, we introduce the interface velocity:

u1/2 = c1/2

(

M+
(1)(M1/2) + M−

(1)(M1/2)
)

(64)

With the 4-equation system, the expression of the numerical flux is:

Fi+1/2 =











(ρu)1/2

1
2
(ρu)1/2(uL + uR) − 1

2
| (ρu)1/2 | (uR − uL) + P1/2

1
2
(ρu)1/2(HL + HR) − 1

2
| (ρu)1/2 | (HR − HL)

1
2
u1/2(αL + αR) − 1

2
| u1/2 | (αR − αL)











And with the 5-equation system:

Fi+1/2 =














1
2
u1/2(αlLρlL + αlRρlR) − 1

2
| u1/2 | (αlLρlL − αlRρlR)

1
2
u1/2(αvL

ρvL
+ αvR

ρvR
) − 1

2
| u1/2 | (αvL

ρvL
− αvR

ρvR
)

1
2
(ρu)1/2(uL + uR) − 1

2
| (ρu)1/2 | (uR − uL) + P1/2

1
2
(ρu)1/2(HL + HR) − 1

2
| (ρu)1/2 | (HR − HL)

1
2
u1/2(αL + αR) − 1

2
| u1/2 | (αR − αL)














Appendix D: a VFRoe ncv scheme

The VFRoe non conservative scheme is an approximate Riemann solver in-

troduced in [70, 71, 72]. Finding a matrix satisfying Roe’s condition may be
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difficult for two-phase problems with complex EOS. This fact has motivated

the development of an alternative to the Roe scheme. The scheme is based

on the resolution of linearized Riemann problems written in non conservative

variables. It admits entropy-violating stationary discontinuities, we switch

on the Rusanov scheme in this case.

Considering the change of variables w → W (w), the system reads in non

conservative form:
∂W

∂t
+ B(W )

∂Y

∂x
= 0 (65)

where B is the matrix of the transformed system.

At each interface, we solve the following linearized Riemann problem:

∂W

∂t
+ B(W̃ )

∂W

∂x
= 0 with







W (x, 0) = WL if x < 0

W (x, 0) = WR if x > 0
(66)

where W̃ is an average state depending on WL and WR; here we use the

simple arithmetic average. The matrix B(W̃ ) is diagonalizable with real

eigenvalues λ̃i. We note r̃i and l̃i the right and left eigenvectors respectively.

The difference WR − WL is projected directly into the space spanned by a

linear combination of the right eigenvectors:

WR − WL =

p
∑

i=1

α̃ir̃i with α̃i = tl̃i.(WR − WL) (67)

The solution of the Riemann problem is composed of constant states sepa-
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rated by a fan of p characteristic lines:

W (
x

t
; WL,WR) =







WL if x < λ̃1t

Wk = WL +
∑k

i=1 α̃ir̃i if λ̃kt < x < λ̃k+1t

WR if x > λ̃pt

(68)

If we suppose that no eigenvalue vanishes, we note W ∗ the approximate state

at the interface, i.e. for x
t

= 0. The numerical flux is given by:

Fi+1/2 = F (w(W ∗)) (69)

For the 4-equation model, we choose for the non conservative variable tW =

(τ, u, P, Y ) where τ =
1

ρ
and Y =

αρv

ρ
is the mass fraction. The matrix B

can be easily computed:

B =











u − τ 0 0

0 u τ 0

0 ρc2 u 0

0 0 0 u











(70)

The associated right eigenvectors are:

r̃1 =











τ̃

c̃

-ρ̃c̃2

0











r̃2 =











1

0

0

0











r̃3 =











0

0

0

1











r̃4 =











τ̃

−c̃

-ρ̃c̃2

0











And the left eigenvectors:

tl̃1 =












0
1

2c̃

−
τ̃

2c̃2

0












tl̃2 =











1

0
τ̃

2c̃2

0











tl̃3 =











0

0

0

1











tl̃4 =












0

−
1

2c̃

−
τ̃

2c̃2

0











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For the 5-equation model, we use the non conservative variable tW = (s1, s2, u, P, Y )

as proposed in [73], where sk is the entropy of the phase k.
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Table 1: Thermodynamic assumptions and characteristics of models

models 5-eqt Kapila 5-eqt baro 4-eqt baro 3-eqt baro HEM

solved 2 masses 2 masses 1 mass 1 mass 1 mass

equations 1 moment. 1 moment. 1 moment. 1 moment. 1 moment.

1 energy 1 energy 1 energy 1 energy 1 energy

+ α +α +α

equilibrium u yes yes yes yes yes

equilibrium P yes 1 pressure, non equilibrium effect yes

equilibrium T no yes yes yes yes

equilibrium g no no no no yes

metastable liquid liquid - - -

states vapour vapour vapour - -
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Table 2: Parameters of the stiffened gas EOS for water at T = 355K.

γ P∞ (Pa) q (J/kg) Cp (J/K.kg) ρsat (kg/m3)

liquid 2.35 109 -0.1167 107 4267 1149.9

vapor 1.43 0 0.2030 107 1487 0.31
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Figure 1: Water-gas double rarefaction with cavitation |u| = 2 m/s, solutions extracted

from [49], mesh 5000 cells, t = 3.2ms. Volume and mass vapor fractions, pressure and

velocity.
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Figure 2: Water-gas double rarefaction with cavitation |u| = 100 m/s, solutions extracted

from [49], mesh 5000 cells, t = 1.5ms. Volume and mass vapor fractions, pressure and

velocity.
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Figure 3: Water-gas double rarefaction with cavitation |u| = 2 m/s, influence of cbaro,

4-equation barotropic model, Rusanov scheme, mesh 5000 cells, t = 3.2ms. Void ratio,

mixture speed of sound and pressure.
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Figure 4: Water-gas double rarefaction with cavitation |u| = 100 m/s, influence of cbaro,

4-equation barotropic model, Rusanov scheme, mesh 5000 cells, t = 1.5 ms. Void ratio,

mass fraction, pressure and velocity.
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Figure 7: Water-gas double rarefaction with cavitation |u| = 2 m/s, models comparison,

Rusanov scheme, mesh 5000 cells, t = 3.2ms. Void ratio, mass fraction, pressure and

mixture speed of sound.
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Figure 8: Water-gas double rarefaction with cavitation |u| = 100 m/s, models comparison,

Rusanov scheme, mesh 5000 cells, t = 1.5 ms. Void ratio, mass fraction, pressure and

mixture speed of sound.
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Figure 9: Water double rarefaction with cavitation |u| = 100 m/s, influence of cbaro, 4-

equation barotropic model, Rusanov scheme, mesh 5000 cells, t = 0.2 ms. Void ratio, mass

fraction, pressure and mixture speed of sound.
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Figure 10: Water double rarefaction with cavitation |u| = 2 m/s, influence of Cprod, 4-

equation empirical model, Rusanov scheme, mesh 5000 cells, t = 0.2 ms. Void ratio and

mass fraction.
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Figure 11: Water double rarefaction with cavitation |u| = 100 m/s, influence of cprod,

4-equation empirical model, Rusanov scheme, mesh 5000 cells, t = 0.2 ms. Void ratio and

mass fraction.

60



x (m)

al
ph

a

0.49 0.495 0.5 0.505 0.510

0.2

0.4

0.6

0.8 4 eqt baro
4 eqt empir.
5 eqt baro
3 eqt baro

x (m)
P

(b
ar

)
0 0.2 0.4 0.6 0.8 10.4

0.6

0.8

1

4 eqt baro
4 eqt empirical
5 eqt baro
3 eqt baro

x (m)

Y

0.49 0.495 0.5 0.505 0.510

0.0002

0.0004

0.0006 4 eqt baro
4 eqt empir.
5 eqt baro
3 eqt baro

x (m)

c
(m

/s
)

0 0.2 0.4 0.6 0.8 1100

101

102

103

4 eqt baro
4 eqt empirical

Figure 12: Water double rarefaction with cavitation |u| = 2 m/s, models comparison,

Rusanov scheme, mesh 5000 cells, t = 0.2 ms. Void ratio, mass fraction, pressure and

mixture speed of sound.
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Figure 13: Water-gas double rarefaction with cavitation |u| = 100 m/s, models compari-

son, Rusanov scheme, mesh 5000 cells, t = 0.2 ms. Void ratio, mass fraction, pressure and

mixture speed of sound.
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Figure 14: Water-gas double rarefaction with cavitation |u| = 2 m/s, numerical schemes

comparison, 4-equation barotropic model, cbaro = 1.31 m/s, mesh 5000 cells, t = 3.2ms.

Void ratio, pressure and velocity.
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Figure 15: Water-gas double rarefaction with cavitation |u| = 100 m/s, numerical schemes

comparison, 4-equation barotropic model, cbaro = 1.31 m/s, mesh 5000 cells, t = 1.5 ms.

Void ratio and pressure.
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Figure 16: Shock-cavitation interaction, Jameson versus Rusanov scheme, 4-equation

barotropic model, cbaro = 1.31 m/s, mesh 5000 cells. Void ratio and mass fraction at

different times.
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Figure 17: Shock-cavitation interaction, 4-equation empirical model with cprod = 106,

influence of cdes, Rusanov scheme, mesh 5000 cells. Void ratio and mass fraction at

different times.
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Figure 18: Shock-cavitation interaction, models comparison, Rusanov scheme, mesh 5000

cells. Pressure and density at different times.
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