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Global hypoelliptic and symbolic estimates for the linearized

Boltzmann operator without angular cutoff

Radjesvarane Alexandre*' Frédéric Hérau ¥ Wei-Xi Li §

Abstract

In this article we provide global subelliptic estimates for the linearized inhomoge-
neous Boltzmann equation without angular cutoff, and show that some global gain in
the spatial direction is available although the corresponding operator is not elliptic
in this direction. The proof is based on a multiplier method and the so-called Wick
quantization, together with a careful analysis of the symbolic properties of the Weyl
symbol of the Boltzmann collision operator.

Keywords: global hypoellipticity, subellipticity, Boltzmann equation without cut-off,
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1 Introduction

In this paper we are interested in giving sharp subellipitic estimates for the non-homogeneous
linearized Boltzmann operator

P=v-0,—L

considered as an unbounded operator in L?(R3 x R3), where £ is the linearized Boltz-
mann without cutoff collision kernel whose precise expression is given in (5) in the next
subsection. Here x in R2 and v in R3 are respectively the space and velocity variable
and J, denotes the gradient in the space variable. The main result of this paper is the
sharp estimate given in Theorem 1.1. In this introduction we first present the model, then
the main results including Theorem 1.1 and bibliographic comments and we conclude by
giving some general comments about the interest of this work and the methodology we
followed for the proofs.

1.1 Model and notations

Let us first recall some facts about the non-cutoff inhomogeneous Boltzmann equation. It
reads
OF +v-0,F =Q(F,F), (1)

with F' standing for a probability density function, and a given Cauchy data at t = 0,
while the position z and velocity v are in R3, see [14, 42] and references therein for more
details on Boltzmann equation. In (1), the collision kernel @ is defined for sufficiently
smooth functions £’ and G by

Q(G, F)(t,z,v) = / B(v—wy,0) (F'G, — FG,) dv.do
R3 J 52

where F/ = F(v'), F = F(v), G\, = G(v,) and G, = G(v,) for short. For given velocities
after (or before) collision v and v,, v" and v/, are the velocities before (or after) collision,
with the following energy and momentum conservation rules, expressing the fact that we
consider elastic collisions

’2

Vvl = v 4., [P 4O = ) e (2)

where |v| denotes the canonical euclidian norm in R3. We will choose the so-called o
representation, for o on the sphere 52,

! vtus [v—v«|
V=5 + 5O
I vtvs [v—v«|

’U* - 2 2 g,



and define the deviation angle 6 in a standard way by

V — Uy

cosf = ,

v — sl
where - denotes the usual scalar product in R3. In the case of inverse power laws, see for
example [14], the collisional cross section B looks approximatively as follows

B(v—vs,0) = |v — vi|"b(cos h), (3)

for some real parameter v and some function b.

Without loss of generality, we assume B(v—wv,, o) is supported on the set (v—v,)-c > 0
which corresponds to 6 € [0,7/2], since as usual, see [11], B can be eventually replaced
by its symetrized version

B(v—wv,,0) = B(v—vs,0) + B(v—v,,—0).

Moreover, we assume that we deal with inverse power interaction laws between particles,
and thus according to [14], we assume that b has the following singular behavior when
0 €]0,7/2[ : there exist a constant ¢, > 0 such that

051971723 < sinfb(cosh) < ¢, 1725, as § — 0T,

In the preceding formulas, we will impose the following range of parameters, coming from
the physical derivation,
se€(0,1), ~ve€(—3,00).

Note that the last condition on 7+ 2s is weaker than in [7, 21] since we will deal only with
the linearized part of Boltzmann collisional operator.

The behavior of this singular kernel is strongly related to the following non-integrability
condition

/2
/ sin 0b(cos 6)df = oo,
0

which implies some diffusion properties of the (linearized) Boltzmann operator that we
will explain more in depth in a moment.

In some expressions involving the integral kernels, it may therefore happen that some
non-integrability arise, and in this case these integrals have to be understood as principal
values (see the appendix or [11]). Anyway we shall do most of the computations as if B
were integrable and use the principal value trick whenever needed.

In this work, we are interested in the linearized Boltzmann operator, around a nor-
malized Maxwellian distribution, which is described as follows. Let this normalized

Maxwellian be )
u(v) = (2m) e M2,

Setting ' = u + /pf, the perturbation f satisfies the equation
Of +v-0uf — w1 2Q(p, ViS) = n~2QU/AS, 1) = n QWAL Vi),
since W F +v -0, F — Q(F, F) =0 and Q(u, p) = 0. Using the notation

L(g. f)=n""?Q(Vag, Vif),



we may rewrite the above equation as

af +Pf=T(f, f),
where the linearized Boltzmann operator P takes the form
P=v-0,— L (4)

with . .
L=1L+ £2, 'le = F(\/ﬁa f), E?f = F(f, \/,l_/') (5)

The operator P acts only in variables (z,v), is non selfadjoint, and consists of a transport
part which is skew-adjoint, and a diffusion part acting only in the v variable.

The elliptic properties of this operator which is the autonomous linear part of the
Boltzmann equation are the main subject of this work and we present them below.

Notations

Throughout the paper we shall adopt the following notations : We work in dimension
d = 3 and denote by (z,v) € R2 x R3 the space-velocity variables. For v € R? we denote
() = (14 |[v|*)'/2, where we recall that |v| is the canonical euclidian norm of v in R?.

The gradient in velocity (resp. space) will be denoted by 9, (resp. 9,). We shall also
denote D, = %81,, D, = %835, and denote £ the dual variable of x and n the dual variable
of v.

We shall extensively use the pseudodifferential theory, for which we refer to the ap-
pendix here and the reference therein. In particular operators (D,) and (v A D,)** denotes
respectively the pseudo-differential operator with classical symbol () and (v A 7).

We will work througout the paper in L?(R3) or L? (Ri X ]R%) for which we denote
(without ambiguity depending on the sections) the scalar product by (-,-) and the norm
by ||+ |- We shall mainly work with functions in the Schwartz spaces S(R3) or S(R3 x R?).

In all the article, the notation a ~ b (resp. a < b) for a and b positive real means that
there is some positive constant C' not depending on possible free parameters such that
C~'a <b< Ca (resp. b < Ca).

1.2 Main results and bibliographic comments

The main theorem of this paper deals with operator P, viewed as an unbounded operator
in L? (R x R3). We adopt the conventions of notation given at the end of subsection 1.1

Theorem 1.1. For all | € R, there exists a constant Cy such that for all f € S(R2 x R3),
we have

1) (D) £+ || )7 (w A D) £ + [[0) 21
(D (DY p [ /D () g
<G (Pl + 11 ) £1]) -
Note carefully that we do not need to take into account the finite dimensional kernel

associated with the linearized Boltzmann operator [7, 21] which is hidden again in the
term H f H



As an intermediate result, we are also able to give an explicit form of the so-called
triple norm introduced in [7]. Previous estimates from below were also given in [39] and
[40], but the following coercivity estimate measures now explicitly the global weights and
regularity gains of the diffusion kernel £. Note that we again forget in the following result
the fact that there is finite dimensional operator kernel.

Theorem 1.2. For all l € R, there exists a constant C; such that for all for all f €
S(R3 x R2), we have

() Do) £+ ) (0 A DY £+ [ ) )
<—(Lf D+ f
< 0 (Il (D FIP +11 7 (o A DY I + | )72 £)

Theorem 1.1 can be extended to a time dependent version as follows, by considering
the time dependent operator B
P=0+v-0,—L,
the functional spaces being now L? (R; x R} x R?) with norm denoted by HH 12 With
T

this setting, one can show that

Theorem 1.3. For alll € R, there exists a constant C; such that for all f € S (Rt x R3 x ]R%),
we hcwe

| 55 D=5 fll g+ 7 (D0 Sl + [ @7 (0 A DY Sl + @757,
+ H v 7/(25-1—1)( >25/(23+1) fH + H 7/(23-1—1) <v A D:B>28/(28+1) inQT

<G (1Bl + | @) fHL%>

The preceding results are consequences of fundamental pseudodifferential properties
of the linearized Boltzmann operator. Indeed, as we shall see in Section 3, the operator
L = L1+ Lo can be splitted as

El = —a"¥ — /Cl, EQ = —ICQ

where a > 0 is real, its Weyl quantization a" being a pseudodifferential operator of order
2s, and IC = Ky + g is controlled by a™ (see Proposition 1.4 below and the review about
Weyl-Hormander calculus in the appendix, and we refer to [27, Chapter 18] and [29] for
more detail on Weyl-Hérmander calculus). Precise expressions of a and K; will be given in
Section 3. The most significant part of £ is therefore of a pseudo differential type and by
the next result, we have fundamental symbolic estimates for a, implying in particular that
operator a¥ is elliptic in its own calculus (although of infinite order). This very strong
property allows to avoid the systematic use of Garding type inequalities which are not
available here.

In the following, we denote I' = |dv|* + |dn|® is the flat metric in RS, (recall that 7
denotes the dual variable of v). Standard notions concerning symbolic estimates and the
pseudodifferential calculus are explained at the beginning of section 4.

Proposition 1.4. Define
a(v,n) () (1+ 02+ n Ao + [v*)?, for all (v,7) € RS,

Then we can write L = —a® — K, where



i) the symbols a, a are temperate w.r.t. T, a,a € S(a,T"), and there exists a positive
constant C such that C~'a(v,n) < a(v,n) < Ca(v,n);

it) for all € > 0 there exists C. such that
IEFIl < ella™ £l + el o)™ f

)

o

ii1) for a sufficiently large constant K depending only on the dimension, ap et +
-1

K (v)772* belongs to S(a,T), is invertible as an operator in L? and its inverse (a's)
has the form

(ai)™" = Hi (ay)" = (ai')" Ha,
with Hy, Hy belonging to B(L?), the space of bounded operators on L?.

Recall that in Hérmander’s terminology, a € S(a,I") means that for all multi-indices
a and 3, there exists a constant C, g such that

858 a(v, )| < Capalv,n).

The temperance then implies a correct definition for the associated operators. We postpone
to section 3 and the appendix a review of these standard notions of pseudodifferential
calculus.

The exponents of derivative terms and weight terms in Theorem 1.1 and Theorem 1.3
seem to be optimal, since the symbolic estimates provided by Proposition 1.4 implies that
the operator P should behave locally like a generalized Kolmogorov type operator

at"'v'a:v"' |Dv|28a

for which the exponent 2s/(2s + 1) for the regularity in the time and space variables is
indeed sharp by using a simple scaling argument (see also [32]). In the particular case
s =1 we recover formally the Landau equation and our exponents (both in regularity and
weight) match perfectly with the exponents in [24].

The main ideas of our proofs of the above theorems rely on some formal computations of
symbols in [1], on the method by multiplier used in [24, 35] and some microlocal techniques
developed by Lerner while using Wick quantization [30]. We refer to Section 1.3 for some
considerations about the methodology we used, and which comes form these previous
works. Let us note that functional estimates from a series of work of Alexandre et al. [9,
8,7, 6] and Gressman et al. [21] are also helpful for a clear understanding of the structure of
the collision operator, but a nice feature of our method is that we will be able to completely
avoid the use of these previous estimates. Note that there are some other methods to
study the regularity of the transport equation; for instance the average arguments used
by Bouchut [13] and a version of the uncertainty principle used by Alexandre et al. [5]
to prove the regularity in the time and space variables ¢,x. However, these results do
not provide any optimal hypoelliptic estimate for the spatially inhomogeneous Boltzmann
equation without angular cutoff.

We give now some bibliographical references about the hypoelliptic properties of the
non cutoff Boltzmann equation and related kinetic models. Note that the angular cross-
section b is not integrable on the sphere due to the singularity #~272% which leads to
the formal statement that the nonlinear collision operator should behave like a fractional
Laplacian; that is,

Q(g, f) = —Cy(—Ay)° f + lower order terms,



with C; > 0 a constant depending only on the physical properties of g. Initiated by
Desvillettes [17, 18], there have been extensive works around this result and regarding the
smoothness of solutions for the homogeneous Boltzmann equation without angular cutoff,
c.f. [4, 10, 15, 19, 20, 28, 36, 38]. For the inhomogeneous case the study becomes more
complicated. We remark that there have been some related works concerned with the
linear model of spatially inhomogeneous Boltzmann equation, which takes the following
form
O +v-0p +e(t,x,v)(—Ay)°, ti?fve(t, x,v) > 0.

This model equation was firstly studied by Morimoto and Xu [37], where a global but non
optimal hypoelliptic estimate was established. This study was then improved by Chen et
al. [16], and also by Lerner et al. in [32] for an optimal local result. We also mention
[3] where a simple proof of the subelliptic estimate for the above model operator is given.
For general inhomogeneous Boltzmann equation we refer to [9, 8, 7, 6] for recent progress
on its qualitative properties. Finally, let us also mention a recent global result by Lerner
et al. [33] in the radially symmetric case and the Maxwellian case (which corresponds to
~v = 0 in our notations), and closely related works [21, 22, 34] where the sharp estimates
for the Boltzmann collision operator were explored.

1.3 Further comments and methodolodgy

In this subsection, we give some additional comments on this work and explain the general
strategy of the proofs.

On the linear approach. First mention that we focus in this article on a linearized
Boltzmann operator. We note that a deep knowledge of the linear behavior is of great
interest in the study of the non-linear case, at least in a perturbative context (see for
example [7, 8,9, 21] and the references therein for this without cutoff case). These previous
works are mainly concerned with the global existence of solutions close to equilibrium for
the the full non linear Boltzmann equation, and important parts of the proofs are connected
with functional properties of the linearized part of Boltzmann collisional operator. Our
main goal here is to understand the functional properties of the linearized part of the full
inhomogeneous equation.

On the kernel of the collision operator. We emphasize the fact that we are absolutely
not interested in the (finite-dimensionnal) kernel N of the linearized Boltzmann collision
operator. This is an a priori independent question to establish so called hypocoercive
estimates on the orthogonal of N and related exponential return to the equilibrium of the
solutions of the Boltzmann equation. We only deal here with regularity or hypoelliptic
issues.

On the interest of regularization estimate. In this article we essentially focus on global
hypoelliptic estimates concerning the linearized Boltzmann operator P defined in (4). The
main result in Theorem 1.1 just concerns the independent of time problem and implies the
following type of result. If one consider an equality Pf = g with given f, g € L?, then in
fact f has a better regularity and space/velocity decay given by the inequality in Theorem
1.1 : it has some weighted H?® regularity in velocity and H25/(25+1) regularity in space.
Note that this kind of conclusion is not available if one only use triple norm estimates (see
the version given in remark 4.7 here) for which space regularity is not given.



Mention that estimates like in Theorem 1.1 and the careful study of the pseudodifferen-
tial and hypoelliptic structure of diffusive inhomogeneous kinetic equations have concrete
applications; for example many ideas and tools developed here lead in [25] and [26] to
the existence and uniqueness of solutions of the full non-linear inhomogeneous Boltzmann
equation without cutoff with close to equilibrium initial data in large spaces (in the spirit
of the theory developed recently in [23]).

A multiplier method. In this work we make use of multiplier method to explore the
intrinsic hypoelliptic structure of operator P = v.0, — L defined in (4). By multiplier
method we mean finding a bounded selfadjoint operator M, such that on one side the
commutator between the transport part and M

(M,v - 0ylu, u) > =Re(v-Opu, Mu);s

N |

gives some “elliptic” properties in spatial variables, and on the other side we can control
the upper bound for the term

|(Lu, Mu)pe|.

For the treatment of the latter we need to the representation of £ in term of pseudo-
differential operators (see Proposition 1.4) which will be useful to estimate the commuta-
tors between £ and M. The choice of the multiplier here is inspired by the Poisson bracket
analysis for the transport part and the collision part already done for other diffusive models
(see e.g. Fokker-Planck or Landau in [24] or [35]).

The multiplier method explained on a toy model. To clarify the choice of the multiplier
M above we consider the case when P is replaced by a Kolmogorov type operator Ppy

Proi :v-(?m—@g.

(This corresponds to v = 0 and s = 1 in a simplified case). Then a direct computation
gives

[v.ax,—ag] — 20, - 0, [v-@x, [v-agg,—@%” — oA,

and we observe that this second-commutator analysis exhibit some Laplacian in x. This
suggests that the multiplier should be similar to the first-order commutator 20, - 9,. Since
it is not a bounded operator on L? we have to modify the multiplier to guarantee its
boundedness. It is then easier to see all the computation on the Fourier side : let us
¢ be the dual of v and 5 be the dual of v. then operator 29, - 9, is represented by a
multiplication by —2¢ - and we note that the laplacian in velocity is a multiplication by
—|n|? on the Fourier side. Then a good multiplier M is given by the quantization of the
following bounded function

& ( (n) )
m(&,n) = X :
@ \@©"
where x € C§°(R; [0,1]) such that x = 1 in [—1,1] and supp x C [—2,2]. This function
is clearly bounded thanks to the localization induced by x on small n frequencies, and it



has to be considered as a (truncated and weighted) modification of the fundamental stone
& - n. Computation of all involved commutators on the fourier side give then

“Ay+ [V 0y, M] ~ —Ay + (=AY + errors

leading after some work to subelliptic estimates of the form

1<D)* £l + 1D £l < € (IPraf | + [1£1)

for (compactly) supported smooth functions. We refer to [24] for more developed argu-
ments about this method, and complete computations in some simple cases. Theorem 1.1
is of the same form but global, with weights involving velocity and with regularity 2s or
2s/(2s+1) instead of 2 or 2/3 because of the structure of the Boltzmann collision operator
without cut-off. The proof is also much more complicated than for the previous toy model.

On the use of the Wick quantization. In the example just before, M was just a standard
Fourier multiplier. In the case of the Boltzmann collision operator, the corresponding
operator has a more tricky structure and has to be selected into the general family of
pseudodifferential operators. Its construction follows anyway exactly the same ideas as
before (see Subsection 4.3 for its expression). Now in all these strategies the positivity of
the symbols, multipliers and their commutators is an important point, and it appears that
one cannot apply standard positivity result of operators having non-negative symbols (as
the famous Garding inequality) since they are in bad classes in the sense of Hérmander
t(see e.g. [27] chapter 18 or [29]).

Anyway by choosing the Wick quantization of symbols, we can bypass this difficulty :
recall indeed that for any symbol ¢ > 0 we directly have ¢V > 0 in the sense of operators.
We will use the Wick quantization here instead of the classical or the Weyl ones, and
this will simplify our arguments substantially : the computations and inequalities can be
directly stated on symbols.

The paper is organized as follows. In Section 2, we provide precise estimates on the nice
terms appearing in the splitting of the collision operator £ = £ + Lo, involving compact
parts and relatively bounded terms w.r.t. the operator of multiplication by <v>7+25
Section 3 we deal with the main terms, which appear to be of pseudodifferential type, and
give precise symbolic estimates in the sense of the Weyl-Hérmander calculus. Section 4
is devoted to the proof of the main theorems. An appendix is devoted to a short review
of some tools used in this work (Wick quantization, cancellation Lemma and Carleman
representation).

. In

2 First estimates on the linearized collision operator

In this section we study the linearized collision part £ defined in (5). We cut it in many
pieces and study each of them except the two principal ones, which study is postponed in
section 3 (they are indeed of pseudodifferential type). We look here at the properties of
the non pseudodifferential parts, and write many estimates in weighted L? spaces.



The splitting of the linearized Boltzmann operator £ is as follows. We write of f € S,
Lf=p2Qu, p' P )+ ' PQ(u P £, 1)
=pu // dv.do B (ui(ﬂ’)1/2f’ — et f ! ()P fL u(u*)lﬂf*)
= [[ v ()28~ 1) 21 + )2~ )
— [[ dvdoBiu) ()25 (u)24)
+ [ [ do.doBu (2 - )

=Lif+Laof.

We shall study more precisely each part of £. Let us immediately point out that they
have completely different behaviors. The non local term Lo behaves essentially like a
convolution term, with nice estimates, and is relatively compact w.r.t. the main part of
L1 which will appear to be of pseudodifferential type.

2.1 Study of L,

Starting from the expression of Lo given by

Lof = //dv*dUB(u*)1/2 ((u’)mfi - (u)l/Qf*>,

we split it into four terms which make sense even for strong singularities of B, i.e. in
particular for s > 1/2. This point will be clear from the proof of Lemma 2.1 below.

£af = [ dv.doBlu) 2 (1212 - (0)'1.)
= [[ avdo (620002 = @20t 2) + [ [ dvidost? ((e)2 - )2) 1
= // dv.doB(pu' f), ((u’)l/2 - u1/2>
+ /2 // dv.do B <(u1/2f)L - (ul/zf)*>
et [ [ dvdon ((n)2 - ()2) 1
+ [ [ oo (00072 = 02) ()2 = )1 7) 1

= E2,rf + E2,caf + £2,cf + £2,df-

L3 cq involves essentially a convolution term and can be treated using the cancellation
lemma (see [11] and the appendix herein), and the three other ones can be estimated by
hands. Let us note that the analysis of £o was already given by [7], Lemma 2.15, but we
provide a somewhat direct and shorter proof.

Lemma 2.1. For all f € S(R3) and for all o, B € R there exists a constant C, 5 inde-
pendent of f such that

[ ()" L2 ()" f|| < Cap| £]-

10



Proof. We start with Lo .. f:

Load = [ [ dvido ((272), ~ n125).).

Applying the Cancellation Lemma (see [11] or the appendix), we get, for some constant ¢
depending only on b:

Local =an?® [ docfo 0. (212)..

This is an integral operator with the kernel K (v, v,) = cu/?(1us)"/?|v — v,|? for which we
can apply Schur’s Lemma to get

1£2.caf | S N1

Note that the assumption v > —3 is needed at this point.
More generally, replacing Lo cqf by (v)* L2 cq (v>ﬁ f leads to a kernel

Kas(0,0:) = e (007 ()7 (0)° Jo — w,]7
for which we can use the same argument to get
1{0)* Laca (0)7 £]| < Cagl|£]]

Next, dealing with Lo . f

Laof = [ [ doidob (02 = ()72) £

we split this term into a singular and a non-singular parts. First consider the non singular
part defined as

ﬁZCnonszngf d_ef 1/2 // dv*dUB]l‘U’—U\Zl ((M*)l/Q - (M:k)l/Q) f>|,<

As noticed in [7], one has p/p' = pop < (plp)Y/® due to the kinetic and momentum
relations in (2). Therefore

def

Af = |Lacmonsingf] S p'/1° // dv.do | B}y _yj>1 ‘(ul/lof)i

which writes in Carleman representation (see the appendix)
a-+h 1+~+2s
Af 5#1/10/ dh/ daﬂ|h\21ﬂ|a\z|h\%Kﬂl/mf)(a+U)|,
R3 Eon ||3t2s
where Ejj, denotes the hyperplane orthogonal to h and containing 0. By duality, we get,
forallg € S,
a+h 1+v+2s
Aral s [ o [ b [ doty b R G+ 0] 00
s Jre JE, I
a2 1/10 1/10
d dh dall 1
S R R R T T e R R

11



which upon using (82) yields

a’y+2s
(Af.9)] < / v / da / AR o oo S 10 4 ) [0 ()
rR3  Jr3  JEo. Al

5/ dv/ dar|a] 0F2)7 |10 f (o 4 )|t g (v)).
R JRY

Therefore
((A£, 9 S 208 ||| 720

from which follows that

H <U>a £2,c7nonsing <U>B f” S CCVﬁHfH (7)

for all real o and .
For the singular part Lo sing, again using Carleman’s representation (83) gives

Lo singf = MW/ dh/ dad(or, h) 1> Ljp <1
R3 Eon

a+h 1+~y+2s
<u1/2(oc +v—h)—p?(a —i—v)) %f(a—i—v).

Changing i — —h and adding the resulting two formulas (so we see that formally we
cancel higher singularities, using also that b(«, h) = b(f+a, £h)) yields
1 .
L3 singf = §M1/2/dh/ dabﬂla\zwﬂm\glx
h Eo,n

a+h 1+~+2s
(,ul/Q(oz +v—h)+pu?(a+v+h) —2u?(a+ v)) %ﬂa + ).

Factorizing by p'/?(a +v) we get
ﬁQ,c,singf
1 -
= n' /h dh/E dabl o> L <1 (e’("1'2*2(0‘”)"0/‘1 + e~ (IhF+2(ato)-h)/a 2)
0,h

|a + h|1+v+2s

P ,u1/2(a+v)f(a+v).

The term in parentheses is bounded by |h[21~'/*(a + v) thanks to the condition on the
support for h, and since |h| < |a], one has

1/2 af T,
|Locsingf| S w / /hdh/E daﬂ|a\2|h\ﬂ\h|§lmﬂ Mo + v)|f(a + o).
0,h

Using again (82) and the duality argument as in the non-singular case (now the singularity
in h is integrable), we easily get

|| (0% L2c,5ing (0)° F|| < Cap £]] (8)

for all real o and S.
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As for L, f, recalling that

Loyf = // dv.doB(u/? ), <(,/)1/2 _ M1/2)

we see immediately that, using the classical pre-post velocities change of variables that

(Lo f,9) = (f, L2.9)

and thus we are done for this term.
It remains to study Lo 4f which is exactly

Laaf = [ dvedoB ()12 = (072) ()2 = (2)'2) £

Using the equality a? —b? = (a —b) (a +b) for the Gaussian functions in the above factors,
we see again that we can put some power of a gaussian together with f, by using the
argument of [7]: that means that for some ¢ > 0,d > 0, one has

Laafl St [ [ dowdo B0 = (0] (ua) /4 = ) 4] 12

and then the remaining analysis is exactly similar to the computations done for L . gingf.
(]

2.2 Splitting of £,

The operator £ will also be cut into several pieces, which will require two different types of

arguments. For some of the nice parts, tools similar to the ones in the previous section will

be sufficient. The remaining pseudodifferential parts will be treated in the next Section.
Recall first that

£f = [ dvadoB) ()21 - (2)"2)

Let 0 < 0 <1 be a fixed parameter (either small or not, this will have no consequence
in the study). We first split the above integral according to whether or not [v' —v| 2 §. To
this end, let ¢ be a positive radial function supported on the unit ball and say 1 in the 1/4
ball. Consider ps(v) = o(|v|?/62), which is therefore 0 for |[v| > & and 1 for |v| < §/2. By
abuse of notations we shall also denote ¢s(r) = ¢s(v) when |v| = r. Set @5(v) = 1—ps5(v),
which is therefore 0 for small values and 1 for large values.

Then L1 f can decomposed as the sum of the following two terms

Zisf = [ [ dvadoBise’ = o))V ()21 = (1))

and

L1sf = / / dvudo Bos(v' — o)) ()2 f = ()" V2f).

13



Note that 2175 is a cutoff type Boltzmann operator. We split it into two terms since
there is no singularity any more

Lisf = [ [ dvedoBiae’ — o)) i) 2

- ( J[ vetoBiste - v)(u*)w(u*)”2> f (9)
=Lisaf + Lispf-

As for L1 45, again we split it into four terms:
Lraf = [ [ dvidoBos! — o)) ()25 = ()21 )
= [[ dvadoBest! o)y 2 - 1) (0 = (0)2)
([ dondoBiostsr = 2 (12 - ) 2)) £
+ // dv.doBps(v' — o), (f' = f)

+ (// dv,doBeos(v' — v) (1, — u*)) f

=Li1sf+Liasf+Ligasf+Lizsf

Let us immediately notice that this splitting takes into account all values of s. However,
for small singularities 0 < s < 1/2, a simpler decomposition is available and avoids some
of the issues dealt with below. We note that £q45f and £ 3 are of multiplicative type,
and together with 21757,1 f, they will be studied in the next subsection. They will appear
later as relatively bounded terms with respect to £ 15 + £12,5f. These last two parts
will appear to be of pseudodifferential type, and we shall estimate them very precisely in
section 3.

(10)

Remark 2.2. In the coming computations, we shall follow the dependence on parameter
0. We point out that it could be fixed at value § = 1. Anyway, as we shall see in the
coming sections, the explicit dependence on § of the various estimates enlightens the fact
that we are the non cutoff case. As already mentioned, the cutoff case corresponds to the
case when L; 5 = 0. It can also be seen as the limiting case § — 0 when looking e.g. at
L1, for which we give in Proposition 3.1 a lower bound which would be not relevant
anymore for § = 0.

2.3 Relatively bounded terms in £
Study of L35

Using some arguments from the proof of the cancellation lemma, see for example [11], we
get the following

Lemma 2.3. For all f € S(R3), we have, for all s < 1
1L155fI7 S %7 < v 7272 |

and Ly 35 commutes with the multiplication by (v)® for all o € R.

14



Proof. The last assertion is trivial since £; 3 s is a multiplication operator. In order to
prove the above inequality, recall first that

Lizsf(v) = (// dv,doBps(v' — v) (g, — M*)) I

Going back to the proof of the cancellation Lemma, it follows that

( [[ vedopest — ) (s - m) — 55y, u(v)

where, writing by abuse of notation ¢g(|z]) o @s(2) for all z € R3, S has the following
expression
/2 0 0 0
S(z) :|z|7/ sin 0b(cos 6) | @s( |Z|€ sin =) cos 277 = — s (|z|sin =) | db
0 coss 2 2 2

/2 0 0
:|z|7/ sin 0b(cos 0) s ( 2 sin =) (cos™7 = —1)df
0 cos g 2 2

/2 E .0
+ |2|” sin 0b(cos 0) | ps(—— sin ) — @s(|2[sin ) | df
0 coss 2 2
ZSl(Z) + SQ(Z)

For the first part Si(z), note that the integrand is now integrable in the 6 variable, and
we have

1S1(2) S 1217 (11)
The second part Sa(z) is zero if |z| < §/2, and we can suppose therefore that |z| > §/2.
Note also that for z bounded, say for |z| < C where C'is sufficiently large to be fixed later,
Sa(z) is also bounded. Since

lz| . @ .0
7 sin = > |z|sin -,
cos 5 2 2
we get that if |z] sing > ¢, the integrand is 0, and similarly for small values of 6. In

conclusion when |z| > C, the second integral can be estimated as follows :

cd|z| 71 ' |Z| ) 0
Sa(z) = |2|7 sin 0b(cos ) | ps(—5 sin5) — @s(|2|sin ) | dO,
bz 1 cos 5 2 2

where C' is a posteriori chosen so that C~'cd < /2. Using Taylor formulae, we get

cdlz| =t

cdlz| =t
195(2)] < 61|27+ / 62b(cos 0)[cos— 0/2 — 1]d0 < 5|2+ / 0% (cos 0)d0
c/§lz|~1 cdlz|—1

cdlz| 1

< 5—1‘Z"y+1 / 62_28d9 ~ 5—1‘z’y+153—25’2‘—3+25

~ 8|zt

< 52725‘z’7+2572.

This estimate together with (11) yield the proof of the Lemma. 0
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Study of Zl,g,a
We deal now with the non singular part 21757,1 of £ for which we have the following result

Lemma 2.4. (i) For all f € S(R3) and for all o, B € R such that o+ f+y+2s <0, we
have

[0} Erga () £ < 8717 Cap] ]|
(ii) For all f € S(R3) and for all &, B € R such that &+ + v+ s <0, we have

| @)% Lraa (0)°)1] <572°C; 5

where [-, ] stands for the commutator.

Proof. Recalling that

Lisaf = // dvedo B@s(v' — v)(us) V2 () V2 f
it, follows that
() L1 50 (0)° f = (0)° // dvdo Bos(v' — 0) () V2 (1) V2 ((0)8 1Y,
and

(0 [Lrsa 07]F = (@ Liga ) F— ) @) Ty saf
- // dvodo Bes(o' — o)) V2 ()2 (o) = )7) 1

(1) We first estimate (v)* L4, (v)? f. An application of Carleman’s representation (see
the appendix for instance) shows that

| (V) L15.0 (0)7 f] S (0)* / dh/E docll g s ip Wiy ss/2" * (a + v)put (o + v — h)
0,h
’h+a‘1+7+2s

(v =h)?|f(v = h)
‘h’3+2 (12)

v>°‘/dh/E da11|h‘25/2,u1/2(a—i—v)ul/Z(a—i—v—h)
0,h
’a‘1+7+2s

TThEE (v —n)7[f(v =),

where we used the fact that || > |h| for the second inequality, and recalling that Eyy,
denotes the vector plane containing 0 and orthogonal to h. Letting S(h) for the orthogonal
projection onto Ejj, we can write

_ 2 _ 2 2 1,2
—latul? — ~latS(h)ul? IS (h)ul2~ 1]

and similarly

elotv=hl? _ —latSh) @) oIS () w—h)~lo=h[>
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and therefore

12 (o 4 v)p?(a + v — h) = (2r) 32 <6a+s<h>v2 (62(|S(h)v|2f\vF)Hv\?f\v—h\?) Y 2)

1/2
— (2m)32 <e—a+5(h)1)2 (62(|S(h)v|2—v2)+2v~h—|h2)1/2> .

1/2

Going back to (12), we obtain

o= 5 o a 1+v+2s 5
[(0)° Brga (00" 51 S (00 [ dh [ dabiapspypgssss Tz (0 = B 170 = B)
R3 Eon Al

1/2
<e—a+5(h)v2 (62(|S(h>v|2—|v|2>+2v~h—|h\2)1/ 2) .

Performing the integration with respect to «, it follows that

) T (0 FIS 00" [ sy (S0 7 e (0= 107 (0 = 1)

(62(\S(h)v\2—|v|2)+2v-h—\h|2) 1/4

1

N /]RB dzlly_z 572 (V) (S(v — Z)) [o—zp+2 ()" |£1(2)

z

1/4
(ez(\sw—z)vP—\v\2>+2v.(v—z>—|v—z\2)

Y[ Kastw 2l

with
1
1 2
Ko p(0:2) = Dorora )" ()7 (S0 = 290002 ey

(62(\5(11—;;)@‘2,‘U‘Q)JFQU.(UiZ)i'viZ‘g) 1/4 .

We want to apply Schur’s Lemma. To this end, let’s first integrate w.r.t. to z, to get

1
d Ka _ dol,. o B S N I+y+2s
/R2 Ko 5(v,2) /R2 2hjy—zp>672 (0)7 (2)7 (S(v — 2)v) lv— 2[3+2s

1/4
<ez(\5(u—z)u\2—|v|2)+2u.(v—z)—\u—z|2)

«a s 1
— /RS dh]]‘|h‘25/2 <’U> <’U — h>ﬁ <S(h)’[)>1+’\/+2 ’h‘3+28
h

<62<\5(h)v\2—\v\2)+2u-h—\h|2) . )

17



so that

/ dzKq 5(v, 2)
R3

> (14+7+2)/2 4

B
[R[3+2s {v =)

o h
= / dh]l‘h|25/2 (v) 1+ |v|2 —|v- |2

2 P24 20-h— |2\ /A
e [k

(+r429)/2
> |h|3+2s

a v
= [ by 00" (1l = L P
s P!

BI2 1 o) v pp2 w2\ 4
(1 + |v]? — 2M|_v| h+ ]h\2> (e 2z | p42lol AR > .
v

Shifting to polar coordinates, with an axis along direction v/|v|, we obtain

™ o0 1
d2Kap(v,2) 5 drdyp (v)*sing (1 + |v]* — [v]? cos® @)(HVHS)/Q 1+2s
R? 0 Jo rl+

(14 [of? — 2elr cos p + 12)%/2 (e 20F eost ot 2hireos o)

1/4

Note here that if |[v| < 1, then we directly get that [p; dzK, g(v,2) < 1. Therefore we

may as well assume that |v| > 1. Setting ¢t = cos ¢, we get

/ d2K o (v, 2)

/ / drdt (v 1_,_‘@‘2 ’v’2t2)(1+'y+25)/2e(—2\v\2t2+2\v\7"t—7"2)/4 1

7’1+25

(1 + ]v[Q —2v|rt +r )ﬁ/2

ol det 1+ |vf2 — #2)(47+28)/20—(r=) /4 ! 14 [v]? = 2rt + r2)8/2
—|v] rl42s

(1+ ]v[Q 2+ (r — t)z)ﬁ/Q.

Y Jo)~ 1/_ |/ drdt(1 + |of? — $2)1+1+2)/2~(r=0)” /4r1+28

In the inner term, note that |v|? — 2 > 0. We now use Peetre’s inequality
() (w+w) S () < ) (u ot w)

to get here
(Ut o =2 4 (r = 0272 S (L o2 = 272 (r = 1) 7.

In addition, since 0 < § < 1, then r > ¢ implies that » > C¢ (r) for some C independent
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of 4. Thus

/ d2K o (v, 2)

<o () ol 1/ / drdt(1 + |v]?> — 2)(IH7+2s+5)/2 << _ A e—(r7t>2/4) : >11+2s
7v| r

- s s 1
<5 1-2 < > ‘U‘ 1/ Idt(l‘f“?}‘z )(1+’\/+2 +ﬁ)/2<t>1ﬁ

[l
< §5—1-2s <v>a71 / dt(l + |U|2 _ t2)(1+’y+25+5)/2 <t>1+25 )
0

(13)

Now for evaluating this quantity, we split the integral into two parts. First note that

A

/U/2 dt(1 + |v|2 o tz)(1+w+2s+6)/2 1 <v>1+"/+25+5 /U/2 dt 1
0 <t>1+28 0 <t>1+28 (14)

< <U>1+w+28+5 )

For the remaining part, we write

[v] 1
dt(1 + |v|? — 2)A+r+2s+5)/2
/v/z el =) ()

< (v>_1_25 /Ivl dt(1 + MQ _ tz)(1+«/+25+5)/2
|v]/2

|v]
S <’U>*1*2s / y dt(l + (|U| — t)(|fu| + t))(1+'y+25+5)/2

[v]
s / p L pl(l] =)0

Posing s = |v|(|v| — t), ds = —|v]|dt, we get

o 1
41+ [ol? (147+25+8)/2
/v/2 L+ ol = 1) ()

N

v|?/2
(v>*1*23 ]v[l/ I~/ d8(1+8)(1+7+2s+5)/2
0

,S <U>_1_28 ”U’_l <U>(1+'y+25+ﬁ)+2
S

</U>1+’Y+5 .
Putting estimates (14) and (15) in (13) we get

/RB dZKaﬁ(U,Z) 5 §5—1-2s <v>oz—1 <v>1+’y+ﬁ+25
< 5—1—25 <U>a+’y+ﬁ+25

<612 ifa+B+94+25<0.
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In conclusion, we have obtained that if « + 8 4+ v + 2s < 0, then
/ dzKy p(v,2) S 67172, (16)
R?

Now we look for the integration w.r.t. variable v of K, 3. We have

/]R3 dea,ﬁ(va Z) = /]R3 dv]l\v—z|26/2 <v>a <Z>6 (S(’U - Z),U>1+PY+2S

v — 2[3+2s°

since by direct computation
2(1S (v — 2)v[* = |v)?) + 2v.(v — 2) — |v — 2|?
= |S(v = 2)v? — [u* + [S(v - 2)(2)* — |2
Taking h = v — z, dh = dv, we get

/ dvKop(v,z) = / dhl | >5/2 (z 4+ h)* <z>ﬁ (S(h)(z + h)>1+«/+25
R3 %3

(e\s(h)(z'f'h)\Q—\Z+h\2+|S(h)(z)|2_|z|2)1/4 1
’h‘3+28

) /R dhljpjzs/2 (= + 1) (2)7 (S(R)2) 7+

h

(B\S(foz\?—|z+h|2+|S(h>z|2—|z|2) e 1
|h|3+2s’

so that expanding again the brackets, we get

/ dvK, g(v, 2)
]R3

v

)(1+'y+25)/2

a/2 h
- /R AMWpysgs (L4 |27 + 220+ 1) ()7 (1 + [2f? = e
h

ol 222 B |zl |2 /4 1
e e 7‘}”3_’_28.

We shift to spherical coordinates (along axis w.r.t z) (h = rw) to get

/ dvK, g(v, 2)
R3

™ o0
= / / desindr (22 (14 |22 + 2|z|r cos o 4+ r2)2(1 + |2]* = |2]? cos? ) (1H7+25)/2
0 Jé

/4 1
r1+25'

( —|2|? cos? p—2|z|r cos p—r2 —|z|? cos? <p>
€ €
Set t = cos ¢ to get

/ dvK, (v, 2)
R3

1 o)
= [t [T (o ol 4 )0 P P
-1 J

< 2222z |rt—r2 f|z|2t2>1/4 1
e € .
rl+2s
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We note again that if |z| < 1, this integral is bounded uniformly. We therefore assume in
the following that |z| > 1 and change variable ¢’ = |z|t to deduce that

/ K, (v, 2)

||
= |21 / dt/ dr ()P (14 |z + 2rt + 7 )a/2(1 + |z|? — )(1+’Y+2s)/2

|2l

—(t+r)2 / —t? /4#
T'1+28

<zt /z dt /00 dr ()% (1 + |2|? — ¢2)0trH2s4a)/2 1 4 t>|a‘ e (tHT)?/4g—t2/4 !
|z s

7a1+287

where the last inequality is a consequence of Peetre’s inequality. With exactly the same
argument as before for the integration w.r.t. r, for small J, we obtain

/RB dUKa,B(U,Z) S 5—1—25 <Z>a+5+’y+2s
and thus
/11&3 dvKq, (v, 2) S §1=2s (17)

when av+ 47+ 2s < 0. From (16) and (17), we use Schur’s Lemma to obtain conclusion
(i) in Lemma 2.4.

(ii) Now we prove the second estimate about the commutator in Lemma 2.4. Using
the o representation between v, v, and v, v}, (see Figure 2 in Subsection 5.1 of Appendix),
we have, for 0 €]0, 7,

,_
|U_U*|:|v7fg*| Sﬂ‘vl—v*| S\/§|U)\—’U* )
cos 5
where
vy=v+ A —v), Xe0,1].

As a result,
(0) < (v —=0a) + () < V2{0x —0a) + () < (1+V2) (vy) ()
which along with the estimate
(oa) < (L+V2) (V) (vs)
due to the fact that [v — v| = |v — vy sing < @ |v — vi|, implies

VeeER, (v < (0)" ()l

/1 (v,\>3_1 dX v — /|
0

S 0 ol o -]

Therefore, we have

N

(v = @]
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Then
()% [Ersa, ©)°]f] =

) [ [ dvado Bt — o)) () = 07) £

S @ [ [ do.doBastv' = o)) )2 ()5 o = ||
Using Carleman’s representation (see the appendix for instance) shows that
@) Ersar 071
S @ [dn [ dabist et out(at v
h Eo,n
<o+ ol

a+p-1 1 1 |04|1+V+28
S @ fan [ ot i@ oo+ o = S 0 - b
0,h

The last term is quite similar as the one on the right hand side of (12), with « and 3 there

—(3+2s)

replaced respectively by & + B —1 and 0, and pl/2, |h there replaced respectively

by p'/4, |h|7(2+2s). Then repeating the arguments after (12), we conclude

[0 Zasas ©0)11] S [ Raplo.2) 111 s

with
1
’1) _ 2’2—1—25

K4 5(0,2) = Njy_zp>50 (YT (S — 2)p) 2

(62(‘5(1)72)”‘27‘U‘2)+2’U.(U72)7|’U7Z‘2) 1/4 .

Arguing as for the analysis of K, 5 in (i), with o = & + B —1and f = 0, we obtain a
similar estimate as (13), that is,

> . [v]
/ dZKZB(U’Z) < 528 <U>(a+6—1)—1/ dt(1 + ‘0‘2 _t2)(1+y+25)/2 .
- : 0
It’s clear that
/ dZK&B(’U, Z) S 6—28
R3 ’

for all v such that |v| < 1.
We can therefore assume |v| > 1 in the following. We split the integration into three
parts as follows. First

1/2
/ dt(1 + |v]? — ¢?)UFr+2e)/2
0

1 1 2
<t>28 S <U> +v+ s

Next, for any g9 > 0,

v|/2 s
/I I/ dt(1 + |v]? — t2)(1+’y+2s)/2i < (s / 2 at
2 <t>28 - 1/2 12s

) (o 1), s 2172
(WY (In o] +1) < ()0 s =1/2

~

A

<U> 2+vy+eo + <U> 1+~y+2s
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Finally, repeating the arguments used to get the estimate (15), we have

[v] [v]2/2
/ dt(l + |v|2 _ 752)(1+ﬂ/+23)/2 <t;23 S <v>723 |v|71 / (1 + )\)(1+7+23)/2 d\
|vl/2 0

< <U>2+V )

~

Combining these inequalities gives, for |v]| > 1,
[t Ragoz) S 07 @I (g o)

< 5725 <v>d+5+v+60 + 5725 <v>d+5+7+28—1 )

~

Then choosing €y = s and using the assumption that & + 8+~ + s < 0, we conclude
/ dzK 5,2) S 5%,
]R3
Similarly as in (i), we can show that

/ dvf(d (v, 2) < 6%,
R3 ’

Then Schur’s Lemma applies and this completes the proof of conclusion (ii) in Lemma 2.4.
O

Study of £ 45
Lemma 2.5. For all f € S(R3), we have

L1 a6 fI? S 8272 <o > ],
and L4 45 commutes with the multiplication by (v)® for all o € R.

Proof. The last assertion is again trivial since £y 4 is a multiplication operator. Using
the formula 2a(b — a) = b — a® — (b — a)?, we get

Lrasf = 5F [[ dv.doBestv’ = o) () - ()
- o1 [[ dvdoBestvr = o) (07 - i)

= S Lisal + D],

It suffices to estimate D(v) in view of Lemma 2.3. To do so we essentially follow the
same process, except that we don’t need to use a symmetrizing argument to kill higher
singularities. We write

1 1/2 1/2 e

at+v)-h—h2/2 2 o + [T
< /RS dh/EOhda]laEMng(h) <€( ) /2 1) /‘(O‘_FU)W

s ‘a’1+v+25
/ dh/ dalljop s (W' (o + v) g
R3 Eo n ’h‘

< 52 28 ’y+2s
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following the same arguments as before. From the estimates on £; 3 5 and D(v), the proof
is complete. O

3 Pseudodifferential parts

In this section we deal with the remaining parts of £1, namely:

- a multiplicative operator Zl,g,b;

- the principal term L 2 5 which will appear to be of pseudodifferential type;

- and the term £, ; s which is also of pseudodifferential type but with lower order (and
we therefore call it subprincipal).
Our goal in this section is to prove Proposition 1.4 about the behavior of these pseudod-
ifferential parts of L.
In the following, we keep the notation for ¢s, the positive compactly supported function
equal to 1 in a d-neighborhood of 0 as introduced previously in the definitions of the
operators, and let Ey,, = w for the hyperplane containing 0 and orthogonal to w. We
study each operator separately. Proposition 1.4 will be obtained as a direct consequence
of Proposition 3.5 and Proposition 3.1 below and Definition 3.6.

3.1 Study of the principal term £, 5

Recall that
Liasf = // dvidoBeps(v' — o)l (f' = f)

B(v,0) = |v— v, <<’Z:Z‘a>> .

This will appear to be a genuine pseudo differential operator of order 2s for which we can
control the weigths. Namely one has

where

Proposition 3.1. We can write
Liosf = —ap(v,Dy)f,
where a, is a real symbol in (v,n) (see (19) below for the definition of ap) satisfying:
i) there exists C' > 0 such that for all 0 < k < 1,

CT1272 (—k ()77 4k (0) (0 + I A of™))

(18)
< ap(v,n) < C ()7 (1+ 0> + [n A vf*);

i) ap € S ((v)7 (1+[v[* + [n* + |n Av[*),T) . Recall T = |dv|? + |dn|* is the flat met-
Tic.

Remark 3.2. The first estimates in (18) explain why we don’t have regularity estimate
for the Boltzmann equation with angular cutoff, since it corresponds to the case § — 0
and thus we lose the regularity operator (v)? (D,)* + (v)7 (D, A v)** . Observe we exclude

24



the case s = 1, and this corresponds the Landau equation, which is the grazing limit of
Boltzmann equation without angular cutoff and still admits the diffusion structure.

Proof. From the expression of L2 s, using Carleman’s transformation as in previous
arguments and as in [1] (see also the Appendix), we get

- 1
Liosf = . dh/E dob(a, h) 1o > n s (R)p(a 4 v)|a + A7 (f(v — h) — f(v)) T
h 0,h

where b(a, h) is a function of o and h which is bounded from below and above by positive
constants, and satisfies that b(c, h) = b(£a, £h).

This integral is typically undefined for large values of s, and we have to use its sym-
metrized version in order to give a meaning in the principal value sense: for this purpose,
we change h to —h and add the two expressions to obtain

1 )
Lrasl =3 /hdh/E dablLjo > jny s (h)p(ex + v)|a + BT F7H2
0,h

<ﬂv—m+fw+m—aﬂwﬁﬂgg
a0 D)0) S = [ ayom e

with

def 1
o =3 [

-,

dh [ dabisippes(hiuta+ vla+ BT
Eo,n

1
|h[3+2s

3
h

(efin-h + ein-h _ 2)

dh/ dagﬂ\a|2\h|@6(h)/‘(a + U)|Oé + h|1+7+2$
Eo,n

1
(1 —cos(n-h)) e

3
h

The non-negativity of a,(v,n) is clear and we shall now work on some properties of
this symbol. First recall that on the support of the integrand, we have |h| < § < 1 and
that o L A, so that

s 1
0 < ap(v,n) < / dh/ Loy n Lnj<sdap(e +v) (a) 77 (1 — cos(n - h)) IREEG P
®h JEy, Al

Now we can shift to spherical coordinates h = rw, and (forgetting the truncation in «) we
get

4
1
ap(v,m) S /0 /52 drdw/E dop(a +v) (a>1+7+25 (1 — cos(rn.w)) T
%) 0,w

It is possible to integrate directly w.r.t. r, and use the fact that

é
1
/0 (1 — cos(rnw)) mdr < Cylw - nf*.
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In fact, note that

FY 1 2% Slwn| 1
/0 (1 — cos(rn.w)) de = |w -7 /0 (1 —cos(r)) 1125 dr

Next, we choose a small constant ¢ such that 1 —cosr > 72 if r < c.
If |w-n| > ¢, then we get

J cd
1 1 _
/0 (1 — cos(rn.w)) r1+2sdr 2w - 77|28/0 (1 —cos(r)) r1+2sdr > 52 25|w . 77|28,

while if |w - 7| < ¢, then we get

J 9
1 1 _
/0 (1 — cos(rn.w)) mdr 2w - 77|2/0 T2T1+2S dr > 62 28|w . 77|2.

On the whole, we get

6
1
/0 (1 — cos(rn.w)) E dr > 6% min{|w - n|*, |w - n|**}. (20)

In fact the same type of arguments show that we get a similar upper bound, and eventually

§
1
2 minfl o0} S [ (1= cos(rmas)) —ppdr S0 (@)

Next, we deal with the upper bound on a,. A crude estimate is enough and we get
ap(v,m) S/ dw/ dopi(a + v)|w - | (@) T (22)
S2 Eo,w

Splitting v = S(w)v + (w - v)w, we have

o +0f* = Ja + S(w)o + (- v)wl* = |a + Sw)o? +[(w - o) (23)
since a and w are orthogonal. We can therefore write
1/2

o+ v) = (2m) 72 (el Sl lwnl)

to get

1/2
ap(v,n) < / dw/ da (e_|a+s(w)”‘26_|(w'”)|2> |w - sz <a>1+w+25. (24)
SEJ EO,w
Next, note that
1/2
Blv,w) = /E dov (eflaJrS(w)v\Z) <a>1+7+2s ~< S(w) S1y+2s
0,w

and thus
ap(v,m) S / dwe@)IP/2 S(w)v >ITIF2 |y )28, (25)
82
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i = S@)n/|S()n|
k= v/l

Figure 1: spherical coordinates

We introduce polar coordinates in a coordinate system where i = S(v)n/|S(v) - nl,

k =v/|v].

In this system, we note that (w - k) = cos(y). Besides we have n = (n.k)k + S(v)n so that

(k- w) + (S(0)n) - w

= (- W)(k-w) + (S) - (Sw)w)
k- w) + (i - (S()w)) [S(0)n)

— - kcos(p) + | S(v)n] sin(p) cos(8).

and in a similar way

|S(w)o? = of* = [(v.w)]* = o] (1 = cos* () = |v]* sin* ().

We therefore get

™ 27
ap(v,m) < / dcp/ do sin(cp)e_‘”‘2 cos? () (1 + \v\z sin2(<p))(1+7+2s)/2
0 0
|- kcos(p) + [S(v)n| sin(y) cos(6)|**.

Setting cos ¢ =t in the preceding formula, we get

2T 1
ap(v,n) S/O d@/o dte*‘”‘QtQ (1 4 Mz(l . tz))(1+7+25)/2
-kt +|S(v) U|MCOS 0)[%. (26)

If we bound roughly 1 — #2? and cos(¢) by 1 and use the estimates that

e—|v|2t2 (1 + ‘0‘2(1 B t2))(1+7+25)/2 g e—|v|2t2 (1 + ‘0‘2)(14‘74'25)/2

for 1+v+2s>0o0r0<t<1/2, and that

67|v|2t2 (1 n |v|2(1 _ 752))(1+ﬂ/+23)/2 < 6,|v|2t2 < ei‘v‘2t2/2 (1 n 1)2)(1+V+28)/2

for 1+~ + 2s < 0 and uniformly w.r.t. 1/2 <t <1,
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then we get
o ! 242 (14++25)/2
ap(v,m) < / d9/ dt e 1"t /2 (1 + |v|2) (|77 . kt|2s + |S(v)77|28) .
0 0

If we set y = |v|t, we get

1 2w [v] 2s
ap(vym) S - (o)1 /O a6 /O dy V12 (m-kPSy +|5(v)77|25>

ol o
1 1
S o (In-kl23| 5+ IS(v)nl25> (27)
v v
<v>1+"/+28 < >1+’Y+2s
S WW\QS + T’S(U)U\QS-

For |v| > 1, we therefore get
ap(v,m) S (0)7 10> + ()T [S (0)n]*,
and thus

ap(v,m) S ()7 (In]* + v Anl*),

since |v A n| = |[v]|S(v)n|. For [v|] <1, a rough estimate gives directly |a(v,n)| < (1)** so

that the preceding estimate is also true. The proof of the upper bound is complete.

Now we deal with the lower bound. To this end, we shall use the formula (19)

N 1
ap(v,n) = / dh/ dabgs(h) 1> p (e + v)|a + R|1FYT25 (1 — cos(n - b)) —5Ts
rR:  JEy, - |32

As we want a lower bound we can restrict the integration range to {|a| > 10} since the
integrand is non negative. We use also the facts that b is bounded from below by a
positive constant and that | + h| ~ |a| since a L h and |h| < |af in the preceding
integral. Therefore, we have

s 1
ap(v,m) 2 /R3 dh/E @5(h) o> 10dap(a +v) <a>1+fy+2 (1 —cos(n-h)) 7|h|3+25'
h 0,h

We can use some of the previous computations, and from (20)-(21) we get as in (24),
ap(v,1) Z 8272 /52 dw/E da]l‘a|2103—|Q+S(W)U\2/2e—l(w-v)IQ/Zmin{|w 2w - 2} (@) s
s 0w
Note that
Brofe, ) dg/ doljgs19e 7S () TFIF2E Gy S1HH2
0w
Therefore

v, 28 [ doe I < S S mindl - af ool (28)
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We now consider an arbitrary real 0 < x < 1. Using the fact that
min{lw - 7l w7} > w9 -1,

and that the right member in (28) is non-negative, we get that

o) 26872 [ e 2 < (o ST minflu gl o 0f*)

2 56223/ dwe™ 1@ OIP/2 < G(w)y ST (w2 — 1)
S2

2 56223/ dwe™ 1@ OIP/2 < G(w)y STHIH2S |y )28 (29)
S2

2

_ I{522s/ duwe VP2 < gy 17+
52

def o _

= ko2 2Sapp — kd? 2Sapr.

We split the study of the two terms a,, and a,,. For a,,, we can use previous compu-
tations yielding to (25). More precisely, we have

2T 1
app(v,1) = / d@/ dte P (1 4 pl?(1 — ¢2)) T2
0 0
2s
‘77 -kt + ’S(U)n‘\/?ﬁcos(e)‘ . (30)
Now an easy remark is that the symbol a,, has the following parity properties:

app(iv, +n) = app(v, 7).

We can therefore assume that 7 -k > 0 in all the computations. Moreover we can restrict
the above integration to the following subsets

te0,v3/2], 6¢elo,n/3], (31)

which implies that all terms inside the absolute value

In -kt + |S(v)n|v 1 —tcos(0)]

are non-negative. We therefore get, when (31) is fulfilled, that
2\ (1+7+2s)/2
(14 (1 — tg))(1+’y+2s)/2 - (1 N %) > ¢, ()12

and

[kt +[S(v)n| V1 — 12 cos(0)]** > 47| - kt + |S(v)n][**
> cs (I - kt|* +[S(v)nl*) .

Therefore putting the above estimate into (30) gives

/3 \/3/2 242 1+~v+2s 2 2
app(v,) 2 /0 d /0 dt e TP YIS (kPS4 (S (o))
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As in the case of the upper bound, we set y = |v|t, and get for |v| > 1 that

1 14+~v+2s 7r/3 \/§|v|/2 2 2s y28 2s
eoplv) 2 1 )1 A MA @ewaM——+WWH>

|,U|28
1 /3 V3/2 2s
2 @ [ [Ty e (e s
|U| 0 0 |U|
zinW%me% %+wwwﬂ
ol ol

2 () Inf* + )2 S
where in the last inequality we use that 1 -k > 0 and the fact that if n - k < |n|/2 then
|S(w)nl = V3[n|/2.

Since |v A 5| = |v||S(v)n| we get for |v| > 1 the desired result

app(v,m) 2 (0)7 (In** + o Anl*). (32)

For |v| <1, a direct check, without the change of variables |v|t — v, gives

/3 v3/2 t2 2 2 2 2
awumzé wé die™ (1Kt + [S@n®) 2 |n- K> + S
> n* + o Al

So the preceding estimate (32) is also true for |v| < 1.
For the remainder term in (29), we can use similar computations as the ones done for
the upper bound for a,, and we easily get

apr S ()72
Putting this estimate and (32) together into (29) completes the proof of the lower bound
in (18).
Now we deal with estimates on the derivatives in 1 and v of a,. Recall that
7 14+y+2s 1
ap(v,n) = » dh ; dadll > s (h) (o + v)|a + hl (1 —cos(n-h)) T
h 0,h

which is clearly smooth with respect to v and 7. Let us consider for v, € N3 the
derivative

0y Oy ap(v,m) = /hdh/E dablL i) n0s(h) (04 p(a + v)) o + A|MTIH28
0,h

(822 (1 — cos(n - h))) Ihl%

Setting again h = rw, and (forgetting the truncation in «) we get

§
1
1%W%mmséégm%;mwwwwmw”%WWuwme;@-
%) 0,w

(33)

Since r € [0, d] we claim that we have the following rough estimate
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Lemma 3.3. Let 0 < s < 1. Then V vy, € N3, foédr‘a? (1—cos(rw-77))‘r1% <
Css (w- ).

Proof of the Lemma. This is clear for v9 = 0 from the previous upper bound
computation.
For || = 1 we have to estimate

5 ) s .
I(1p) = / dr ‘ (8117'2 (1 — cos(rw - 77)))| s < / dr |sin(rw - )| —.
0 T 0 r

Firstly, when 0 < s < 1/2, we directly get

)
1
I(1n) < / dr— < Co5 < Cos (w-m)*
0

7,,25

When s = 1/2 then

Slwnl | gin ¢ (Bwn) | gint Lisint (6w-n)
I(uz)g/ Mdtg/ Mdtg/ de/ 1dt
0 t 0 t o U 1

<1+ Cs(w-m) =Cs(w-n)™

When 1/2 < s < 1 we have

| sint|

T < oot [T S5 < g < Culer )™

Thus we obtain the estimate for |vs| = 1.
It remains to consider the case when || > 2. Observe 0 < s < 1, and thus

s 1 o dr s
H) = [ | (@5 (1= costrio- )| i < [ s < Cos < Cla o)™
0 T 0 T

The proof of the lemma is complete. O

End of the proof of Proposition 3.1 Now we go back to (33). We have also to estimate

the term (04! (v + v)) in this integral. For this purpose, we directly use the fact that for
all v,

22+ 0)| < Coyp2 (0 + ). (34)
Thanks to Lemma 3.3 and the preceding estimate, we get from (33) that

o 0rpapo.n)] < [ do [ doglPa0) @M )
w 0,w

For the final estimates, we can repeat exactly the proof of the case v; = v = 0, to get the
desired result. The proof of Proposition 3.1 is complete. a

For further use, we shall also need the following estimate
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Proposition 3.4. The symbol a, also satisfies the following estimate: for any 0 < e < 1,
Opap € S (8 WY (L4 9> + [n Av|*) + e ()72 ,F) ,

with semi-norms (see Subsection A.2 for the definition of semi-norms) independent of .

Proof. We can again rely on the preceding arguments. We begin with (33) and we can
write for |vg| > 1,

6
|0k 02 ay (v, )| SC/ dr/ dw/ da (07 p(a +v)) |
0 52 Eow

1

(a)tt7tes (812 (1 — cos(rn.w))) T

Suppose that |vo| > 2. We can verify directly that, observing 0 < s < 1 and |w| =1,

6d aug 1 < g dr <
; r{( n (1 —cos(rw-n)))‘ P S | et S Cs,s-

Therefore, using also (34),
o0 ayon)| S [ do [ dapPao) (@) S 0,
SL,% EO,UJ

the last inequality following the same computation as that after (22) with |w - n|** there
replaced here by 1.
Consider the case when |va| = 1. Then we have

' 1 % Isin(rw -
/ dr ‘(8717/2 (1 — cos(rw- 77)))| s = / wdr.
0 r 0 r

Furthermore if 0 < s < 1/2 then

S ls
sim(rw -
/0 (-l < o,

r2

and if 1/2 < s < 1 then

/‘5 |sin(rw - n)‘dr
0

7,,25

IN

Slwnl 15in @
|w.77|251/0 ‘S;I;S L4 < Css(1+ (w >

S elw )+ S ey 4!

for any 0 < & < 1, and finally if s = 1/2 then

/5 |sin(rw - n)| dr
0

7428

IN

Slwnl |gin @
/ %d@ < Css(1+In{w-n)) < Css(1+ (w-n)?)
0

S elwm* e

for any € > 0. Thus combining the above estimates we conclude, for 0 < s < 1 and for any
0<e<l,

é
1 o -~
/0 dr‘(@f(l—cos(rw-n))ﬂm56((»-77}2 +e71.
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Therefore we get that, using again (34) the arguments after (22),

o) < [ dw [ o) (@) (s o) )
) 0,w

Se()T (L4 + o Anf*) + 7 )72,

with |va] = 1.
Combining the estimates for || > 2 and for |vs] = 1 we obtain the statement in
Proposition 3.4, completing the proof. a

3.2 Study of the multiplicative term Zl,g,b

Recall that the multiplicative part Zl,g,b has the following form

Lispf =— <// dv.doBps(v' — U)M*) I

A nice feature of the multiplicative function defining £; 5, is its good symbolic properties.
Proposition 3.5. We can write
Lispf = —am(v)f,
where a., is a function in v satisfying the following symbolic estimates:
i) there exists C' > 0 such that C~' (v)7 < a,, (v, 1) < C ()71

i) am € S((v)77% . T).

Proof. Let us again use Carleman’s representation. We get

. i .1
am(v) = / dh/ dablljg)>p Ps(h)p(v + a — h)|a + h|ttT2 ITREE (35)
R JE, AP+

In this integral h L o and |a| > |h| so that there exists Cs such that
Oy o742 < [+ M < Cfaft 4, (36)

Therefore, shifting to spherical coordinates, and recalling that we write ¢s(h) = @s(r) for
r = |h| by abuse of notation, we have

~ 1
am(v) < // dwdr/ dad|g>,Ps(r)p(v + a — rw)\a!HV“S—THQS
EO,w
1
_ 14742
< // dwdr /Eo dod o>, s (r) (v + a — rw)|al 7 sm.
Note that

v+ a— 71w = |a+ Sw)? + |(w-v) —r)?
exactly as in (23) so that

_ )2 _ 2 N2
e |[v+a—rw| — e |a+S (w)v] e [(w-v)—r] ]
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Moreover, we have
/E daa] 2 u(a + S(w)v) ~ (Sw)n) T,
0,w

and we get (forgetting the truncation function in «)
- ) p2 L
am(v) S // dwdr@s(r) (S(w)v) T2 g llw)=r] T

We can now integrate w.r.t. r and compute by virtue of Peetre’s inequality (forgetting
now the dependence on § for the constants)

/drgbg(r)e(w-v)m% < /dr@g(r)e(w'”)m r—uw- v>1+25 (w- v>*(1+23)
r

< w- ) 142

and thus

~

am(v) < /52 duo (- 0) "1 (S (w)o) IR

We therefore have a similar integral as in (25) and using exactly the same change of

polar coordinates and computations as therein with el replaced by (w - v)f(HQS)

(see Figure 1), we get, just repeating the arguments between (25) and (26),

™ 2m
am(v) S /0 d(p/o dé (|v| cos @) ~1F2) sincp(l—i—]v[zsin2<p)(1+7+25)/2

1 2m
0 0

1/2
< / dt (t |v|>*(1+2s) (1 + |v|2(1 . tz))(1+v+2s)/2
0
1
_|_/ dt <t |v|>7(1+2s) (1 + |U|2(1 o t2))(1+’7+2s)/2
1/2
def

= am,1+ am2.

One has

~

1/2
- §/ dt (¢ [o])~ (42 (1 + ‘0‘2)(14-14—25)/2 < ()72
0
and for the term a,, 2 we have, by changes of variables and using the fact that v > —3,

1
.2 5 / dt <v>7(1+2s) (1 + |U|2(1 _ t))(1+“/+23)/2
1

/2
wi*/2 (14~+25)/2
< <U>—(1+25) ‘U’—Q/ di (1+7) +7+2s)/
0
- <v>7(1+25) |v|72 /v|2/2 df(l +af(1+s) (1 +a(3+w+4s)/2
~ 0
/2 1
,S </U>7(1+25) <’U>72 <v>3+’\/+45/ dF (1 + t“) (1+s)
0
S <v>’y+2s‘
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Combining these inequalities we conclude

am S <v>7+2s .

For the lower bound we can do essentially the same computations : because of the non-
negative sign of a,, we can restrict the computations to the following subdomains in (o, h)

{la| > 10} and {|A| < 10},

and following (35) and using (36) we get

1
am(v) 2 //dwdr/ dall iy >10li<r<iop(v + o — )|a|1+7+2sr1+25
EOw

lwwl? 1
< //deT/EO dodl|y>10L1<r<10p(a + S(w)v)e ool /2|0‘|1+y+28m

since Ps = 1 in the set {1 < r <10} (recall 0 < 6 < 1), and
v+ a—rw)? = [Sw)v+a)® + |w-v—r* <|SWv+al* + |w-v]* +100
for » < 10. Then as before we can use the fact that

/da]la|210|a|1+v+25u(a+s(w)v) - <S(w)v>1+7+23

and )
/d’l“ﬂlgrglom ~ C

and we get for a new constant C' that
) > O /dw Y125 o=l P2,

and again we can follow the computations as in (28) and thereafter to get
m(U) > Cfl <U>ﬂ/+23.

The proof of i) is thus complete.
As for the proof of ii), we use (35) to get

- ~ o s 1
Oan(v) = [ b [ dablapss() Gn(o+a— ) o+ T
i " i, i

which gives

. - - v4+a—h s 1
Oy am(v)[ S [ dh dabll g Ps(h)p | ——5— ) la+ |72 e
R X A3+

2

Then repeating the arguments as in i), we conclude that
105 am(v)] S (o).

This completes the proof of ii). O
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3.3 Proof of Proposition 1.4 i)

In this subsection we prove part i) of Proposition 1.4 concerning the so-called symbol a.
We first give its definition, then prove the Proposition, and we shall end this section by
giving additional properties of a which will be needed in the sequel.

Definition 3.6. We define a to be the following real symbol:
a = ap + Qm,
where ay, is defined in Proposition 3.1 and a,, is defined in Proposition 3.5.

We now give the proof of Proposition 1.4 i). From Proposition 3.1 and Proposition 3.5
we know respectively that

CH ()™ < a(v,n) < C )7+
and for all 0 < k <1,
C7H =k () o) (L [+ I A ) < ap(v,m) < C (@) (14 [0 + [y A of),

where in both cases C' denotes a constant independent of x (but depending on ¢, s).
Choosing & sufficiently small and fixed from now on, and adding the two inequalities gives

CTH (@) 4 ) (10 + [ A ol*)) < afv,n) < C @) EC ) (L + Iy avl).
so that
CTH ) (1ol + Inf + ln A ol?)” < a(,m) < C @) (1+ ol + Inf2 + [ A v

for a new constant C'. This proves the lower and upper bounds for a. Using the definition
of a

S
a(v,n) = () (1+ ol + Il + I A of?) (37)
we get
C~'a<a<Ca (38)
From Proposition 3.1 and Proposition 3.5, we also directly get by addition that
acSa,r).

Moreover, we claim that
ae Sa,n). (39)

To see this we use induction on |« + | to prove that for any x € R and any |« + 3] > 0,

K K
0505 (14 1ol + 2 + In Avl?) | S (1 ol + 0l + I AoP?)” (40)

which obviously holds for [a + | = 0. Now suppose | + 3| > 1 then we have either |a| > 1

or || > 1, and suppose || > 1 without loss of generality. So we can write a8 = (95 On;
with |5 = |8| — 1 and thus

0005 [ (14 1ol + [0 + g A vf?) "]

- r—1
= 6385 {n <1 + )+ [n]? + In A v[2> (2n; +2(n A v) By, (nAw)) },
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which along with Leibniz’s formula and the induction assumption yields

agafj[ (1 + ) +[n]? + n A U‘Q)K] (

N

2 2 2\ ! 2
L+ [v” + 0" + [n A vl L+ ol +[nAv||o| + [nAv|+ [0 o] + |v]

K

A

S (1+ 1P+l + InAv)

We have proven (40). Now using (40) and Leibniz’s formula we conclude
S

0505 [ o) (1 1ol + 2+ Iy A v2) "] | < Cag ) (14 o + nf? + In A ol?)

This gives the statement in (39).

It only remains to check the temperance of a and a. From (38) it is sufficient to verify
that there exist two constants N and C, both depending only on s and +, such that for
all Y = (y,n), Y = (v',n') we have

a(Y) <ca(YhQ+TY —Y)V.

This is a direct consequence of Peetre’s inequality since we have powers of polynomial type
quantities. Indeed, we have

S
ay) _ ()’ > + () + ly Anl?
aY') = W) \ L+ 1y + P+ ly A
On the other hand,
" _ I
< 2Pl (y—y)"
Wy (y=v)
due to Peetre’s inequality. Similarly,
)+ m)?

<4ly—yV +aln-n).
L+ 1y P+ ) + |y ) < )+ )

Moreover using the relation
yAn=(—y)Am=n)+y—v) A0 +y' A@—n)+y An,
we compute

2
ly Al
2 2 2
L+ 1"+ 7" + [y A
2 2 2 2 2 2 2
dly =y " In—0"+4ly =y "0+ 41" In —o'|" + 4|y A1

<

N L+ |y P+ 0P + |y Al
< dly—y[ln—nP+aly—v|P+4ln—n| +4
< 10((y—y) +(n—n))".

Thus,

W) + () + |y Al
L+1y P+ + |y Al

< B{y-y)+m-n)".
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Combining the above inequalities, we get
a(Y)
a(Y’)

<Cy, (<y _ y/> 4 <77 _ n/>)4s+|7\ < CN«M (1 LI(Y — Y/))4s+|7|

with Cs , and C’Sﬁ two constants depending only on s and ~y. The temperance of a follows.
The proof is complete. O

For further use we also give here two propositions concerning a and a, which will be
of great interest in the next section.

S
Proposition 3.7. Recall a(v,n) = (v)” (1 + o>+ [n2 + n A v[2> . We have

i) for any |a| > 0 and any |B| > 1, there exist two constants Co g > 0 and Cg such that

3385@‘ < Cag <aa tel <v>25+7)

and 12
98] < €5 ™ (1o + P + I Aol?)

i1) the following estimate is true for any 0 < e < 1, with semi-norms (see Subsection A.2
for the definition of semi-norms) independent of €:

Ona, Opa € S(ea +¢e* ()7 T); (41)
iii) we have
~ 5 2 2 2\*2 2 2\ /2
€ 0pal S () (14l + Il +InAvl?) * (P +loael) . (42)

Proof. The point i) for a is just an immediate consequence of Proposition 3.4. Now we
check for a. Recall

s

afv,m) = ()7 (14 ol + [0 + n A vf?)

We claim, for any < € R and any || > 1,

1
K k—1
08T (11l + lav?) ]| 5 @ (Ll avP) 2,

which can be deduced by induction on |3]. Indeed, by direct computation we see the above
estimate holds for |3] = 1, since

0, [ 07 (14 1ol + ol + 1y A of2)" |

K (v)? (1 + o® + [0 + [n A vl2>H (205 +2(n Av) By, (n A v))‘

< 0% 1 2 2 2 el
S @7 (T4 ]+ Inl* + In Avl ([l + |n Aol |v])

o 1

S @ (1 ol + [0+ Aol
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Moreover for any |5| > 2, we may write o = 8587” with |8] = |8] — 1 and thus
K
o5 [y (11w +1nf? + n A of?) "]
~ r—1
=05 [k ()7 (1ol + [+ InAv) " (205 4+ 20 Av) 8y, (A D) |.
As a result, by Leibniz’s formula and the induction assumption on |3|, we obtain

02 [ 7 (14 o + ol + In A of?) ]|

A

r—1—1
™ (o A oR) T | (Tl Aol o + 1)

k—1—1

S @ (Tl P AvR) T (Tl I A+ o)
Kk—1/2

S @ (Tl P aoP)T

Applying the above inequalities for kK = s, we obtain the desired estimate for a.
Next we prove Point ii). The conclusion for d,a follows from the estimates in i). And
we have to check 0,a, and we have shown in i) that

s—1/2

Byal S @ (1ol I A of?)

< (o) gl

Then arguing as above we can use induction on |a| + |3| to obtain, for |a| + |5] > 0,

aga{fana‘ < (u)V/2Hs gl/2,

This gives the conclusion for 0y a.
Point iii) in Proposition 3.7 is a direct consequence of the computation on a, since

£-0,a =5 (o) (L o>+ [nP + o) (260 +20A8)- (wAm).

The proof is complete. O

3.4 Study of the subprincipal term £, ;s

Proposition 3.8. We can write

El,lﬁf = —(ZS(’U, Dv)fa

where as, defined by (44) below, is a (complex valued) classical symbol in (v,n) satisfying
that for all 0 < s <1 and any 0 < & < 1, we have, with semi-norms independent of €,

as(v,n) € S <€a + e (p)7 T2 ,F). (43)
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Proof. We recall that
Liaaf = [ dvadoBos(v’ = o)) 21 = 1 (1) = (6)2)

We shift to Carleman’s representation and get

Craaf = [ ah [ dabtaspla+ b s Rl (o + o) = b) - 7o)
h 0,h

1
(a+ v)) T

N

@aa+v—m—u
=:—-J[ Fm)e™ ag(v, n)dn
R

with

(MMWZ—A

7 1 .
dh [ dabisyplo+ BT (i (o o) = 1)
0,h

</ﬁ(a +v—h)— /ﬁ(a —|—v)> W:}% (44)

For the study of this symbol, we shall essentially follow the same computations as in
the £q 25 case. We first note that we have the following bound for all h # 0

NI

‘Qﬁm+v—m—u(a+m)%ﬂéa

So that using also that |a| < |a + h| < 2|a| due to the fact that a L h, we get
—ih-n __ 1
ostosnl 5 [ ah [ dala" o oS
R3 Eo.p A
Now we shift to spherical coordinates taking h = rw and we get
|e—irw-7] _ 1|

“+o00
ol [ [ dodr [ dalo T @ ot g @)
W 0,w

We can directly integrate w.r.t. r and this gives

> |e_"‘”'”—1| J | cos (rw - n) — 1] 9 |sin (rw - ) |
/0 (pg(?“)TdT < /0 or dr —i—/o — 5, ——dr.

r

We have proven in the proof of Proposition 3.4 (see the treatment of the case |vo| = 1
threein) that

0 | o i
/ ’SIH(T‘;) n)‘drgg‘w_nlls_i_g—l
0 res

for any 0 < ¢ < 1. Furthermore if 0 < s < 1/2 then

S 5

(rw ) — 1 1

/‘@%&wn) hhg/izﬁrgam
0 o

,,a2s
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and if 1/2 < s < 1 then

/5 |cos(rw-n)—1|dT§ |w‘n|231/5“"’7| |cos€—1|d9
0 0

,,a2s 923

min{1,8|w-n|} cosf —1 blw-n] cosf —1
.77,28—1/ [cost — 1] o ‘d0+ !w-n\%_l/ %d@
0 0 min{Lolwn} 0

25—1 ! 1 25—1 Foo 1
0 1

S Jwn* Tt SefweonP +e® ) Selw o 47

N
€

N

and finally if s = 1/2 then

% | cos (rw - n) — 1] min{ed} | cos (rw - n) — 1] 0 | cos (rw-n) — 1]
/ o dr < / dr + / . dr
0 r 0 T min{e,d} r

- min{e,d} 1o 1 o o
< wen ; dr+e " Selw-n+e =¢clw-n[” +e .

Combining the above estimate we have

00 e*l’rw-n -1 B
| et s e,

and thus, in view of (45),
stonl Se [ dw [ dalal 7 b+ o)l ol
w 0,w

47t /52 dw/E da | T2 u%(a—i—v).
") 0,w

This enables us to do exactly the same computations as in the £, 5 5 case, with the factors
(o + v) in formula (22) replaced respectively by z/2(a +v) here and the factor |w - n|**
by 1. We directly get, following the computations after (22) , that

las(v,m)] S e () (L4 [0l + o AnP*) +e7 ()77 Sea e ()7,

the last inequality using (38).

Again the proof of the estimates for higher order derivatives of a; is similar to the one
of order 0, and we skip this part of the proof for brevity. This completes the proof of
Proposition 3.8. O

4 Proof of the main results

This section is devoted to the proof of the main results mentionned in the introduction,
including in particular Theorems 1.1 and 1.3. We shall use extensively properties of
the classical Weyl and Wick quantizations, for which we postpone a brief review in the
Appendix. In Subsection 4.1 we make the reduction to the hypoelliptic problems for a
simplified operator, by virtue of Proposition 1.4 whose proof is also presented in this
subsection. In Subsection 4.2, we give some coercivity estimates, and recover a result of
coercivity of [7] implying the so-called triple norm. The proof of the main results is then
achieved in the last subsection 4.3.
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4.1 Proof of Proposition 1.4 ii) and iii) and related results

In the previous sections, we splitted operator £ into several pieces in the following way,
with a = a, + a,, defined in Proposition 3.1 and Proposition 3.5, and as defined in
Proposition 3.8,

L = Li+Ly=—a(v,Dy)+ Lo+ Lisa+ L1355+ L145— as(v,Dy)
= —a"— (=Ly—Lisa—Li3s — L1a5+ as(v,Dy) + (a(v, Dy) — a®)),
K

recalling that £y, Lo are defined by (6), a(v, D) = —L125—L1 55 and as(v, D) = —L1 1.,
and L1 54, L1,5p and L1s,1 < j <4, are given by (9)-(10). Thus we can write

P=v-0, +a¥+ K.

Notice that the diffusion term a" + K above is only an operator with respect to the
velocity variable v. So we only work on the resulting operator after performing partial
Fourier transform in the x variables, considering the dual variables £ of x as parameter.
More precisely we will study the operator

PK:i(v-é“)—i-a}”(,

where
ag = a+ K ()17,

with K a fixed number, constructed in Lemma 4.2 and Lemma 4.8 below, depending only
on the integer N in (85). Accordingly we also introduce the weight function

g =a+ K (v)*"7,

where a is the weight function given in Proposition 1.4. We claim that ayx is temperate
uniformly with respect to K. Indeed, by Proposition 1.4 i), whose proof is given in Sub-
section 3.3, we see a is temperate weight with respect to I, i.e., there exist two constants
C and N, both depending only on 7, s, such that

Y (o) (w,0) € RS, A0 oty w4 - ).

a(w, )
Thus for any (v,n), (w,¢) € RY,
ax(v.n) - _ (v, 1) L K@
ar (w, ) a(w,C) + K <w>28+7 a(w,) + K <w>2s+“/
a(v,n) K (v>28+7

: a(w, ¢) - K(w>23+7
< C(o—w)+ (n— )N + 220 (v — )+
< <C + 2\2s+v\> ((v _ w> + (77 _ <>)N+\2s+y| ,

the second inequality using peetre’s inequality. This gives ax is temperate uniformly with
respect to K, since the constant C' above is independent of K.



We note that ax € S(ag,I') uniformly in K, since for any multi-index a, 8 € Z3, we
have

o505 ar (v,m)|

< |osogatv,n)| + |os0g (K )*))]
< Capalv,n) + KCop (0)*"7
< 2Ca,5 arK (U7 77) < Ca,B,'y,s CNZK (Ua 77)7

with C, g a constant depending only on «, 3, and C, g, a constant depending only on
a,fB,v and s. Thus ax € S(ax,I') uniformly in K. More generally we can show, for
re [—1,1],

VaeZl, |0%%|<Cual < Coily

by induction on |a|, which gives aY, € S(a%,I") uniformly w.r.t. K for all r € [-1,1].
Working with a%- instead of a" will enable us to construct the inverse of the former, see
Lemma 4.2 below. This is of big importance in the following analysis of hypo-elliptic
estimates.

Notations. In the following, let K be fixed, satisfying the assumptions in Lemma
4.2 and Lemma 4.8 below, and let £ € R be an arbitrary number, fixed and as small as
we want. To simplify the notation, by A < B we mean there exists a positive constant
C, which may depend on K and ¢ but is independent of the parameters &, such that
A < CB, and similarly for A 2 B. While the notation A ~ B means both A < B and
B < A hold. Given a symbol ¢ and a weight function M, by ¢ € S(M,T") we alway mean,
in the following discussion, q lies in S(M,T") uniformly w.r.t. K and &.

Now we state the main result of this subsection, which shows that it is sufficient to
study the operator Py instead of the original one.

Proposition 4.1. The conclusion in Theorem 1.1 holds true if the estimate

Ja(.&) == |+ ae £l < 1Pl + 161 (46)

holds uniformly with respect to .

We proceed to prove the above proposition through several lemmas. Firstly we begin
with the construction of the inverses of operators.

Lemma 4.2. There exists a Ko sufficiently large, depending only on a fixed finite number
of semi-norms of a, such that for all K > Ky we have

(i) a¥ is invertible and its inverse (a}-)”" has the form
(ai) ™" = Hu (ag')" = (ag')" Ha:

with Hy, Hy belonging to B(L?), the space of bounded operators on L?, and HHjHB(L2)

bounded from above by some constant independent of K for j =1,2;

(ii) (a}f)w is invertible and its inverse [(a%2>w]_1 has the form

[<a}</2>w]—1 e <a;(1/2>“’ _ <a;<1/2)“’ Gy

with Gy,Gy € B(L?) and HG]-HB(LQ) bounded from above by some constant indepen-
dent of K for j =1,2;

43



(i) (&}(/2(1}(/2)“’ is invertible and its inverse [(d%2a%2>w]_l has the form

[(a}(/Qa}(/Q)w]—l — 0, (&[—(1/2(1[—(1/2)‘” _ (d[—(l/QaI—(l/z)w 0,

with Q1,Q2 € B(L?) and HQ]'HB(LQ) bounded from above by some constant indepen-
dent of K for j =1,2.

Proof. Note first that in all what follows, we shall crucially use the fact that only a
finite number N (depending only on the dimension n = 3 here) of seminorms of a symbol
is needed to control the norm of the corresponding pseudodifferential operator (see (85)
here and e.g. [29, Lemma 2.5.2]).

Let us now prove the conclusion in (i). Using (86) and (87), we may write

a¥(ax)” =1d — RY, (47)

where
1 1
Ric = = [ Oy0r) 0 (Oulaz)) 0+ [ @uai) o (0y(a)) 0
0 0
with gfigh defined by
gieh(Y) = / / e 2o Y =YD/ L o3\ (3 )aY Yy (n6)° (48)
6 21.9 1 2 1aYs .

Let now N be the integer which is given in (85) (and therefore depending only on the
dimension n = 3 here). By [12, Proposition 1.1] we can find a constant Cy and a positive
integer /5, both depending only on N but independent of K and 6, such that

| (Gnax) to (9u(ax")) HN;S(l,F) = CNHaWaKHZN;S(&K,I‘)H (@u(az")) HZN;S(&;(I,I‘)’

where the semi-norm || - is defined by (84). Moreover, using (41) for ¢ = K~1/2

ol Hk;S(M,F)
yields

HaWaKHZN;S(aK,F) < CnK
and from the fact ax € S(ag,T) it follows that a' € S(ag',T), and thus
Hav(a;(l)HzN;S(a;(l,F) <Cy
with Cy a constant depending only on N but independent of K. As a result,
H (Onax) fo (811(“}_(1)) HN;S(LF) < CNCYJQVK*%'
Similarly,
H (Bvarc) o (377(%_(1)) HN;S(LF) < CNCYJQVK*%'
Then
HRKHN;S(LF) < 201\7(712\7[(7%7
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and thus by (85)

78| rzy < 200K

with C' a constant depending only on the dimension. This implies Id — RY% is invertible
in the space B(L?) of bounded operators on L? if we choose K in such a way that K >

SN2
<4CCNC]2V) . Moreover
(Id—R¥)~™" = (RE) € B(L?).
7=0
Taking into account (47), we conclude
al ((a;(l)w (1d — R;’g)—l) — 1d.

Similarly we can find a Rx € S(1,T) such that

((Id ~Ry) (aKl)w> o — Td.

These facts imply a% is invertible and its inverse (azj’()_1 has the form

() = (0 (- B = (10— ) (0"

We have proved the conclusion in (i) in Lemma 4.2. The remaining proofs in (ii) and (iii)
can be deduced quite similarly and are therefore omitted. The proof of Lemma 4.2 is thus
complete. O

In the following, we always let K be fixed satisfying the condition in the above lemma
4.2.

Corollary 4.3. Let e be an arbitrarily small number and let g € S <€aK + e (u) P)
uniformly with respect to €. Then

lgC, Do) £l 2 + 119" £l 2 S ellai fll +7H] @)% F]] o

Proof.  We first show that cax 4+ ¢! (0)**17 is a temperate weight uniformly with
respect to . Recall ax(v,n) = a(v,n) + K (v)”. By Proposition 1.4 i), whose proof is
given in Subsection 3.3, we see a is temperate weight with respect to I, i.e., there exist
two constants N and C, both depending only on 7, s, such that

=

(v,m)

Y (0),(5,7) €R’, T2

<C({v—=o)+@m—a)"

=)
=1

As a result,

ea(v,n) ea(v,
cag (0,7) + -1 (@)% ~ ea(,

Y (v.). (5,7) € R, ) < o)+ (-

2|3
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Moreover, for any (v,n), (7,7) € RS,

25+ 25+
eK (v)=*™7 eK ()™ ojasty) (v — Y2+
25+ — cK <2~}>2s+’y - ’

8&]{(5, ﬁ) + g1 </l~)>
the last inequality following from Peetre’s inequality. Similarly,
6_1 </U>25+’y 6_1 v 25+

< < 9l2s+9 1y _ 5)2s+7]
i)+ o e T

The above inequalities yield, for any (v, n), (9,7) € RS,

cag(v,n) + e <U>2S+’Y

eag (,7) + et (0)**H

< (C + 21+\23+”{|> ((v =) + (n — 7)) +[2s+7] )

Observe the constant C' above is independent of &, and thus eax +e~! (v>25+7

weight uniformly with respect to ¢.

Now we will prove the conclusion in the corollary. This is just a consequence of the
conclusion (i) in Lemma 4.2. In fact note that K > Ky with K{ the constant given in
Lemma 4.2, and thus K + ¢ > Ky. Then the assumption in Lemma 4.2 is fulfilled and we
may apply the conclusion (i) in Lemma 4.2 to conclude that a- 4o I8 invertible and its
inverse has the form

_ —1 w
(a%+€—2) 1 _ (a% +€—2 <,U>2s+’7> — (a;(1+672> H

with H a bounded operator in L?. The assumption on g shows

is a temperate

elges <aK + 72 (0)2 F> ,
and thus we can write
w
0" = (e719)" (agoms) " He (af +272 ()2,

€ B(L?)

which yields the desired estimate for ¢g*. The estimate for g(v,D,) is similar, since
g(v,D,) = (Jfl/Qg)w with J~1/2g belonging to the same symbol class as g. We have
obtained the desired estimate in Corollary 4.3. The proof is complete. O

We will apply the preceding lemma to specific pseudodifferential operators:

Lemma 4.4. The symbols of as(v, D,) and a® — a(v, Dy) lie in S (ga el ()25t F)

for all e > 0 with seminorms independent of ¢.

Proof. For the first operator as(v, D,), this is point ii) of Proposition 3.8. For the second
one a* —a(v, Dy), we need more facts from the theory of Weyl and classical quantizations.
In order to get the result, we use the expansion of J/2a, which reads (c.f. [29, Lemma
4.1.5] and the appendix)

a® —a(v,D,) = <J1/2a) (v, Dy) — a(v, Dy) = R(v, D)
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with

1
Reon) =5 [ (42 (D, 0,)) (v, )b
Proposition 3.7 implies that D, - d,a € S (M, I') uniformly with respect to e, where
M, =ca+e L ()7,

Then proceeding as in the proof of [29, Lemma 4.1.2], we conclude that J%?2 (D, - 9,a)
belongs to the same symbol class S (M., I') as D,, - 0,a, due to the fact that

M.(v+2z,n+¢) < CM:A(v,n)H((z),(C))

with H((z),(¢)) being some polynomial of (z),(¢) and C' a constant independent of e.
Observe a < ag due to Proposition 1.4 i). Then we have proven that the classical symbol

of the difference a(v, D,) —a™ lies in S (8(1 + e (u) F). The Weyl symbol therefore

also belongs to this class by direct transformation. The proof is complete.

Proposition 4.5. Let £ be the dual variable of x and let £ be an arbitrarily real number.
Then for any e, there exists a constant C. such that

Ve S 1@ Al < ella e+ Ce (o6 = OF |+ 1) - (49)

Proof.  Let us first recall the coercivity estimate (see for instance Theorem 1.1 and
Proposition 2.2 in [7] and [39, 40]) : for 0 < s < 1 and v > —3,

VFeSERY, || )2 d-P)f|5. S (~LF, f)pe

where Id stands for the identity operator and P is the L?-orthogonal projection onto the
null space

Span {12, vy oo g2, of? 412}
Consequently we have, for any ¢ € R,
¥ feSMRY), ()2 f|. SRe((iv-€—L)f, P+ || @) 21|l (50)
Now applying estimate (50) to the function (v)**2 f yields
| @) £[7. S Re (o€ = £) )3 £, @3 1) +]1£]7
< J(Go-e-or @>0r) |+ (@ [ @31 5) |+ 11

and therefore

| @) £132 S llGv- €= DF 15 + 1715 + | (@2 (2 @27 f) |- 6D

We have to treat the last term in the above estimate, which is bounded from above by

(3 [av, @) 35 1) |+ (@3 [k @ 3)r 7).

(52)
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We apply (41) and [29, Theorem 2.3.8] to conclude that for any £ €]0, 1[ the symbol of the
operator

()" ()7 [0, (v)*2]
belongs to
S <eaK + e (), I‘)

uniformly with respect to €. Then Corollary 4.3 gives, with £ arbitrarily small,
(2 [, @211 1) | s (elaisllpe + 7 @ £l ) 1@ £l

S ellageflze +ll o)™ £llze + Ceell Il

where in the last inequality we used the interpolation inequality:
)™ 7 £l 2 < &l )™ £] o+ Cel| £]] 2
Now we have to deal with the operator
<v>s+% [IC, <v>s+%]
n (52). For this purpose, we split K into three parts :
K = —Lo—Lisa—L135— L1as+as(v,Dy)+ (a(v,Dy,) —a). (53)

’Csmall ’Cmult Kpseudo
For the second part IC,,;, the estimate is easy since, as recalled in lemma 2.3 and 2.5,
operators L3¢ and L 45 commute with the multiplication with a function of v. We

therefore have
(@) Ko 0731 1) | = 0.

For the first part ICgpqu of K in (53), we expand the commutators and use Cauchy-Schwarz
inequality to get

‘(<v>s+% [Ksmall’ <U>S+%]fa f L2
S Cef| )77 [Kamanrs (0)°72] (@) @) £]|7, + ]| @0 £
< C H ’U 787% [’Csmalla (’U>7%] <,U>s+'nyiQ + Cs” [’Csmalla <U>7877] <U>S+A{in2

+6H (v) QS”fH

Ce (Il ) F L2 0
+CaH (v>‘8‘5 [L16a, (V)
+el| ()2 77

ol
2

@S+ )™ Lo (o) £+ 22 )7 @ )

) fI + Cel| a0 @) £,

Then, we use Lemma 2.1 and conclusion (ii) in Lemma 2.4 with either & = —s — /2,
8= —v/2 or & =0, B=—s— v (for which we have in both cases a+pB+~v+s< 0) and
we get

S @y F|P + e ) g

< Cellll7 + 2el| o)+ £

(00 Ko, (935, 7)

L2
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since s > 0.
Next we deal with the last part Kpseudo of K in (53). From Lemma 4.4, we already
know that Kpseudo belongs to

S <5a + e ()T F>

with uniform semi-norms with respect to €. We follow the same strategy as in the lines just
after (52) for commutators involving a®. Using that 9, (v)* = O((v)* 1) for all y € R,
and applying [29, Theorem 2.3.8] (see also appendix), we get that for any £ €]0, 1] the
symbol of the operator

(W)~ ()2 [Cpgenao, (0)*F2]

belongs to
S <eaK +e7 (), I‘)

uniformly with respect to €. Then Corollary 4.3 gives, with £ arbitrarily small,
(003 entor @038 1) | S (ellateflle + 7 @02 ) @27

ellaff FI2 + €ll () £I% + el 2

N

N

Combining these estimates we obtain

(w0 *F [k, @31 f)

< ellafefllze +ell @ £l + Cesl £II7;-

Now taking into account (51), the desired estimate (49) follows if we choose € small enough.
The proof is thus complete. O

In order to prove the main result, Proposition 4.1, we will need the conclusion in
Proposition 1.4. So let us firstly present the proof of this Proposition.

Proof of Proposition 1.4 ii) and iii). = We have shown Proposition 1.4 iii) in Lemma
4.2. For the conclusion ii), let us rewrite the linearized Boltzmann operator £ as

L = —a"+Lo+Lisa+Li3s+ L1as— as(v,Dy) — (a(v, Dy) —a™).

-K

As a direct consequence of Lemma 2.1, conclusion (i) in Lemma 2.4, Lemma 2.3, Lemma
2.5 we have

H (/32 + Zl,5,a + L35+ £1,4,5) fHLz S H <U>28+v fHL2-

Moreover from Lemma 4.4 we know that for any € > 0,
—Kpseudo = —as(v, Dy) — (0 — a(v, Dy)) € Opyeyt <€a +et <v>25+7, F>
uniformly with respect to €, and thus

1 Kpseudof || 12 S ella £ + 7Y @) £,

due to Corollary 4.3.
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The proof of point ii) of Proposition 1.4 is complete. a
The rest of this subsection is devoted to the

Proof of Proposition 4.1.  Now assuming that (46) holds, we have

o, )7 £ + [lage £l S [ Go- & = £ £l o+ £l + 1| (i€ = £ = Prc) ] o
On the other hand, note that
w-E—L—Px=a"+K—(a+ K @>)" =K - K (v)*,

and thus Proposition 1.4 yields, with e arbitrarily small,

| (-6 £=Pi) flle S ellaifll o+ Cell 00> £
< ellae sl + e (NG & = )] +1171l2)

the last inequality following from (49) . Combining these inequalities and letting the above
€ be sufficiently small, we get

o, )%= 1| + lage Il S [l & = £F ] 2 + 1712
Taking into account the facts that

</U>’y/(23+1) <£>23/(23+1) + </U>’y/(23+1) <’U /\5>23/(2S+1) 5 &(v,é-)l/(25+1)
and that

H (v)" (Dy QSfHH + H {(vA D, QSfHH + H 2S+7fHL2 S Ha}l}(fHH

due to the conclusion (i) in Lemma 4.2, we obtain the desired estimate in Theorem 1.1.
The proof of Proposition 4.1 is complete. a

4.2 Proof of Theorem 1.2 and boundedness estimates

In this section we prove first Theorem 1.2 about coercivity. As mentioned in the introduc-
tion it can be understood as an exact estimate for the so called triple norm introduced in
[7] and recalled in Remark 4.7 below. It involves the pseudodifferential part a®, for which
we have elliptic properties stated in Proposition 1.4. Theorem 1.2 is a direct consequence
of the following Lemma:

Lemma 4.6. We have for a sufficiently large constant C' and for alll € R with 1 < ~/2+s,

[ )2 (D) £+ || )7 (w0 A Do) £1* + || )2 1
~ (@ f, )+ C|| W) f|P = = (Lf, 1)+ || W) £

where in the last equivalence the constant depends on l.
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Proof. We first show the second equivalence. To do so rewrite the linearized Boltzmann
operator L as

L = —a"+ Lo+ Lisa+ L35+ L1as— as(v,Dy) — (a(v,Dy) —a").
K

As a direct consequence of Lemma 2.1, conclusion (i) in Lemma 2.4, Lemma 2.3, Lemma
2.5 we have

‘((52 + Lisa+ L135+ L1as) [, f)LQ‘ S H <”>7/2+s in?'
Moreover from (43) and Lemma 4.4 we know that
~Kpseudo = —a5(v, D) = (a” = a(v, Dy)) € Op (eaxc +7* ()7, T),
and thus for any & > 0,
|(Kpseudofs Pzl Sl (ail?)" £IP + 74 )72 £
due to (i) Lemma 4.2. Combining these estimates we conclude
—(Lf, Pz = @F, fiz+(Kf, i
with
(f Ngal Sell (i) AP + 27 072 1[5
Moreover by (54) we have
@ f, fp+ (K@ 5 f) =@t £ = (a)" 1P
and thus choosing ¢ small enough, we get
—(Lf, e =(a"f, £z + (RS f)
with

S| @) e

~

(£s.9),,

As a result, combining the estimate (see (50) for instance)

[ ()72 115, S —(LF, Fe + || @) F]5

we obtain the second equivalence.
Next we show the first equivalence. Using the estimate (54) below, we see that

(@f, f)ge+CIE @ 1]l = @, e~ | ()" £

On the other hand by conclusion (ii) in Lemma 4.2 we can deduce that
1 (@32)" 7l = 114007240y FIP + [ )72 0 A DY 71+ || w725 g
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Then the first equivalence follows, and the proof is complete. a

Remark 4.7. In [7], the authors introduced the following non-isotropic norm

H‘me o /// (Jlv —vs|) COSH)M* f— f /// (lv — vy|)b(cos 0) f (\/7 \/_>

where the integration is over R x R3 x S2. For such a norm, Theorem 1.1 of [7]) says,
with [ € R arbitrary (and equivalence norm depending on 1),

|72 (D) £ + 1| )72+ £ S WA < (L4, £) + Cal| ) £

provided the Boltzmann cross-section B satisfies (3) with 0 < s < 1 and v > —3. In
Lemma 4.6 above, we are therefore able to exhibit the complete form of this triple norm
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Now we focus on the more difficult subelliptic estimate stated in 1.1. We begin with
another coercivity estimate for the Weyl quantization a¥.

Lemma 4.8. Let Px be the operator defined at the beginning of Subsection 4.1. Then
there exists a positive number ko > 0 such that for all K > ko and any f € S(R?), we
have

| (ai)" 71 = (@i f, Do =Re (Pt 1), (54)
and
| (a}2ail?)" £1P ~ (@xcar)” £, £ (55)

Proof. The arguments are similar to the ones used in the proof of Lemma 4.2. Together
with (86) and (87), we may write

(ay®y“(a)?y” = a¥ — R, (56)

where

R:_/Ol( n(@il®)) to (0 <}§2>)d9+/01(v< i) to (04(ail?)) a6

with ggh defined in (48). Using (41) for e = K~'/4, we conclude that
1/2 1/2
On(arl’) € S(K~Htay?, T)

uniformly with respect to K. On the other hand, it is clear that 9,(a Y 2) € Slay 2 I).
As a result, [12, Proposition 1.1] yields

( ( 1/2)> ﬁg( ., (a 1/2)),( (a 1/2)) ﬁe( ( 1/2)) € S(K 1/4CLK, T

uniformly w.r.t. K. Thus R € S(K~"*ag, T) uniformly w.r.t. K. Then the conclusion
(i) in Lemma 4.2 allows us to rewrite R" as

R = G R ) R )]

€B(L?2) uniformly w.r.t. K
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which gives
(RYf, f)p2] < CoK™V4||(ail) £

with Cp some constant independent of K. Taking into account the relation (56) we obtain
(@ fy e < (@@ 8, f) |+ R @A < (Co+ 1) @) s
and

(@@ 5., 1) |, < @F. Dra+ CoE™ @) 1|

The desired estimate (54) follows if we take K sufficiently large such that K > ko ey 16C§.
Since the second estimate (55) can be deduced similarly by virtue of (iii) in Lemma 4.2,

we omit it here. The proof is thus complete. O

Corollary 4.9. Let £ be an arbitrary real number. The following estimate

v FESM), @ |+ 1@ ) L S

Al G7)

holds uniformly with respect to .

Proof. We have obtained in the proof of Lemma 4.6 the estimate

1@ £l S @il )7 £ o

8+’y/2 f

Moreover using the coercivity estimate (54) applied to the function (v) , we have

| )5 F72 + (@) )7 £ 7

< |(Pi oy s <v>5+”/2f)L2
< ([P S*’W]f, @2 1) |+ (Pt w0 r)
S|l @) @2 )+ e [ Brf s+l @+ £3

We apply (41) and [29, Theorem 2.3.8] to conclude that the symbol of the operator
[, (@)°*2]

belongs to
S (a}(/2 ()2t P) :

This fact, together with Lemma 4.2 (ii), allows us to write
[a®, (0)**%]
~1
= oy ) D e, @) 3] @ D ()] e ()

€ B(L?)
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Then

(e @18 2 ) L] 5 el (@) @ A e
S ell ()" 0 1+ el 00 1
+Cel| ) £
Letting € be small sufficiently gives the conclusions. O

Corollary 4.10.

(@ )™8 5) s (@) 1), < |(Bxf £) ).

. (59)

Proof. The first inequality is due to the positivity of Wick quantization. The second
one is just an immediate consequence of (54) and Lemma 4.2, since we may write

(@(o,m) ™V = (a))" [(@)) @, m) "V [(a)?)] (a)D)",
eB(L?)

w

where we use the fact (see the appendix) that Vi = v* with b belonging to the same

symbol class as a. The proof is complete.
O

4.3 Hypoelliptic estimates and proof of Theorems 1.1 and 1.3

This last subsection is devoted to the proofs of the main results, Theorem 1.1 and Theorem
1.3. As explained in Proposition 4.1, we only work on Py instead of P. Therefore, in this
subsection, £ and 7 are considered as parameters. Recall that a is defined in (37), whose
explicit form, as to be seen below, will be of convenient use. The main result to be shown
here can be stated as follows

Proposition 4.11. Under the conditions of Theorem 1, we have, for any £ € R,

la(o, &)= f|| + |a f|| S | Brcfllz + || (0 £ o

The above proposition will be proved in several steps, following the multiplier strategy
introduced in [24]. To this end, throughout this section, we let x € C§°(R; [0,1]) such
that x = 1 in [—1,1] and supp x C [-2,2], and let g be a symbol given by

o) = ge(o,m) = ~ 22Dy ), (59)
i(v,€) T
where i
blosn) = x <M> (60)
a(v7§) 1425
and
as(o,n) = ()7 (1+IP 12+ ae?) (Entwag) @wam). (o)
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The main property linking a3 and a is that

s—1

{ag(v,m),v- €} = a(v,) = ()7 (14 o + [ + oA gP) (62)

where {-, -} is the Poisson bracket defined in (92). Thanks to the explicit symbolic esti-
mates for @, g and 1 also have good behavior as symbols, that is,

g9, ¥ € S(1,|dv|* + |dn|*)

uniformly with respect to &, where we use the estimate

25—1 _

las(v,m)| S a(v,€) 5 alv,n).
Moreover direct computation shows that
1§ - Ol < av,m). (63)
Lemma 4.12. Under the conditions in Theorem 1, we have

VfeSRY, |aw,)TE |’ S

Pres |+ 115

Proof. The proof is divided into three steps.
Step 1) Let g™V'® be the Wick quantization of the symbol g given in (59). We claim

(k5 ),

S ‘(pKf’ f)L2 '

(64)

w
Indeed, let us write, denoting by H the inverse of (a}(ﬂ) ,

(51 %) = (o 1. ()5 ()" 1),

W
Note that Ha% H and (a%Z) gWVikH are bounded operators on L? due to Lemma 4.2

and the fact that g"Vi%k = g% with § € S(1,T) (see the appendix). Then one has

atf, gVer)
( ),

I (ai®)" £l 5| (Pet. 1),

)

the last inequality following from (54).
Step 2) We now prove

(v, &) f|| 2 S [|a(v, ) 75 Prc |- (65)

Note that g € S(1,T') and a(v,§)" € S (a(v,&)",T') for any r € R. Then the above estimate
will follow if we can show that

la@.0)7 % f5 < |(Pat. 1) | +|(Prcss 9¥%5) |-

(66)
To prove the above inequality we make use of the relation

Re (i(v- &) f. ¢V7)  =Re (Pif. ¢¥7)  —Re (afs, gV%5)
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and (64), to conclude that

Wick » b Wick
Re (i(w-6) £, oV%r) S|Pt f) | +| (Pt 95)
Next we will give a lower bound of the term on the left hand side. Observe that by (90),

U.é-:(v.g)Wick.

. (67)

Then we have, by (91),

Re <Z (v f, gWiCkf>L2 <{g, v eV, >L2' (68)
Using (62) we compute
{97 v - g}
s—1
) ()2 (L4 ol + €7+ o A g
= (v, &) FTY - ( —— ) vt D) ey
a(v,§) a(v, &)+

)7+ (L ol + 162+ o aeP)

(v, €)1

= (v, §) 7% —a(0,) % (1 - 1) -

+M§ - Oy
(0.9

This along with (67) and (68) yields

. 3 N A~ .
(@@ om=) " 1), S 3T+ |(Pah, ) [+ |(Par a™55) [ 00
J=1
with
1 Wick
1= ((awom=a-0)""r 1)
L2
Wick
7, - (( 72 (1 bl 1R + oA gR) T ao e ) g, f) ,
L2
Wick
T - <( R f) .
a v é“ 1+23 12
Note that a(v, £)T125 < a(v,n) on the support of 1 — 1, and thus
(v, &) 7 (1 - 9) < (v, ).
Then the positivity of Wick quantization gives
T S (@)™ £, £ 5| (Pt ) |- (70)

where the last inequality follows from (58). Similarly, observing that
s—1 2s
W (14 P+ 6P+l AeP) T a(,€) Ty < @)
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we have

S ‘ (PKf’ f) 12

(71)

75 ()" 1. 1)

As for T3, it follows from (63) that

_ @) e pb < ato,n).

a(v,§) T+

L2

Thus
Ty 5 (@)™ £, 1) o S |(Prcts 1)

This, together with (69), (70) and (71), gives
(@w.em=)"y, 1) s |(Pet f)

As a result, the desired estimate (66) follows, since by (90),

2l

(pa o),

( (U 5) 1+2 )chk /&(’U — B, 5)?1236727r6223d2~},

which is bounded from below by a(v,&)/(1429) by a direct check (see for instance the
arguments used in the proof of [24, Lemma 3.14]).

Step 3)  Now applying inequality (66) to the function a(v, g)ﬁf, we get

(v, )55 . S alv, &) 25 Pra(v, )55 £,
S N Picf| e + |alv, &) 5% [0, (v, )T £

In view of (87), the symbol of a(v, &)1/ (2+45) la¥, a(v, 5)1/(2+48)] has the form

1
30,97 [ (G0t (2,3 @,
0
which, arguing as in the proof of Lemma 4.2, belongs to
S (al/z <v>s+’y/2’ F) .
As a result, we can use (ii) in Lemma 4.2 to write

(v 5) 2+4s[ v, d@@)ﬁ]
1 wy —1
= a(v,&)” 2+4s[ W, (v, £) 75| (v)~(517/2) <<a}(/2) > (a}(/Q)w ()52

€ B(L?)

This gives

@x*)” )2 £l

a(v, &) 7% [a, a(v,)205 ] £ .

IZANRYAN

{151z
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where the last inequality follows from (57). Combining these inequalities, we get the
desired estimate

(0, &) T f|| 2 S

Picfll = + (11l 2+

The proof of Lemma 4.12 is thus complete. O

Lemma 4.13. Under the conditions in Theorem 1, we have, for any £ € R,

s Il < 1 Pecfll e+ 1) fl e

Proof. The proof is divided into four steps. In the following, let ¢ > 0 be an arbitrarily
small number, to be fixed later on, and denote by C. different suitable constants depending
only on € and appearing in the the estimations below.

Step 1) We define p. by

a<v,5>ris>

ea(v,n)

pe(v,m) = X (

where x € C§°(R; [0,1]) such that x = 11in [-1,1] and supp x C [—2,2]. Let A; . and Aa .
be two symbols defined by

Are(v,m) = pe(v,m)av,n) (72)
and
Aoe(v,m) = (1= pe(v,m))a(v,n). (73)
Then p(v,n) € S(1, T),
M Ao €S (a(v,m), T) and g € 8 (=7 'a(v, )%, T) (74)

uniformly with respect to £ and e, due to the conclusion (i) in Proposition 1.4 and the

fact that a(v,n) < 6_1d(v,£)T125 on the support of Ay .
Step 2) Let A\j ¢(v,n) be given in (72). In this step we show that

(o€ M7 1) | < llati ]2 -

In fact, the symbol of the above commutator [v &, Xﬂe] is

1
—%5 “OpAie(v,m),

which belongs to S (8(1+2S)/23d(v,77)2, I') uniformly with respect to £ and e, due to (42)
and the fact that

1+2s

€]+ o A €] S (v, €)% ()3 < e e a(v,n)

1-02—323 <U>72;g
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on the support of A .. Thus writing

[v-& A =eaf (af) v & AP (a%) T al,

we obtain

S el sl

(fo-& AL D),

This gives the desired upper bound and therefore the proof of (75).
Step 3) Let Aa.(v,n) be given in (73). We claim that

Sellw-f |7+ |

[ MLILT) Prcf |7+ [1£1172) - (76)
L 1

Indeed, we write [v &, )\5"’6] =v-§AY. — Ay v+ € to get

‘([v'éa Ag),s]fa f)LQ

<2 (0- ) f] A2 o
Moreover it follows from (74) that
1302 S € e, VO p o S e (1P + 161z
the last inequality using Lemma 4.12. Combining these inequalities, we obtain the desired

estimate (76).
Step 4) Now we are ready to prove that

a% £][72 < |

PrcAllp + 141z (77)
This inequality will be obtained if we can show that
Re (i(v- ), @ f)pal S ellai £ + Ce (1P f1l52 + 117172 (78)

and ) 5
la fI> < Re (@, af) e+ <llap fI + 0 (

due to the relation

Re (Pxf, a%f)  =Re(i(v-&)f, a¥f)rz+Re(aff, a%f)e.
L2

Eerl 4 A), (o

To prove (78), we compute

s ar ),

56 axls g),,
(e s 1),

Re (v ), @5 f) el =
S |([vee adr f)

with A1 ¢, A2 defined in (72) and (73). Combining the above inequalities and the conclu-
sion in the previous two steps, we have

|Re (Z(U ’ g)fa dqlﬂ( )L2| S 5Ha1[1}(inQ +5H(U : g)inQ + C- (

Prcf |72 + 11113 ) -

59



This inequality along with the relation

(- )% S|

implies the desired estimate (78).
We now prove (79). In view of (87) we may write

Prcf 72+ ok £ 72

(dKﬁaK)w = (&K(IK)w + ’I“w, (80)

where

1
. 1
r(Y) = /0 / / e YD o Dy, 0y, (Y ar (Yo)dYidYadd/ (n0)".

Note that (41) also holds true, with a replaced by ax or ax. Then in view of [12,
Proposition 1.1], we can check that

res <a‘;’</2 (Y2 r) ,
and thus we may use Lemma 4.2 to rewrite 7% as
w_ 1/2 w w =1 w s \—(s+7/2) 1/2\Y1-1 _—172 ( _1/2\Y , \s+7/2
rY =e/ay (a%) Y (v) [(af™) ] e ay: (v) .

€B(L?)

This gives

0F el S ellafes I+ 27 (o) )72 £

< el Iz e (1217 + 113,

the last inequality following from (57). Taking into account (80), one has

Re ((axax)” f, fie S Re(aif, ancf)pe +el|asef 7. + 272 ([|Pa s[5 + 171172 )

which along with (55) yields

| (ai2ai?)" 72 S Re (@ f, axc)pe +ellas fllga +=72 (1P sl + [1£13:)

Moreover note that ) s 1\ .2
lag f132 S Il (aiail)” 115

due to the conclusion (iii) in Lemma 4.2. Then the desired estimate (79) follows from the
above inequalities, completing the proof of Lemma 4.13. O

Combining the conclusions in Lemma 4.12 and Lemma 4.13, we obtain Proposition
4.11. Thus Theorem 1.1 follows due to Proposition 4.1. Now it remains to do the

Proof of Theorem 1.3. Let 7 be the dual variable of ¢ and let P, be the operator
defines as follows

~

P.=ir+iv-&—L=i(t+v-&+a"+ K.
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Just proceeding as in the proof of Lemma 4.12 and Lemma 4.13, we have the maximal
hypoelliptic estimate

1) Lo+ 40 Fll g+ 0¥ o+ [| ) 5 [el 55 £ 5 |

Pefll o+ 11l -
(81)
Now it remains to prove

y—2s

| ()72 (1) 5 ), S

To do so, we compute

Pefll o+ 11l 2

y—2s 2s y—2s 2s yY—2s 2s
<U> 1425 ‘7-’ 1+2s <1)> 1425 ’7- +v- é“ 1+2s 4 <1)> 1425 ’U . é“ 1+2s
v 1;55 T + [ 1-?»525 + V) 1+2s 1-?»525

§ §

()17 7+ v €] + (0) T ||

I ANRZANRZAN

where the last inequality follows from the Young’s inequality:

~y—2s\ 1+2s

Lo o _ <<v> 1“5) 2s 2s N (1425)/(25)
1+2s . £ T+2s . £l T12s .

()T Ir - € < S—=ms +1+25(‘T+” ¢l )

As a result we have,

[0 55 7175 flle S ([0 € L + [ @) ] + || @)% 61755 £,
S sl + 1171l
where the last inequality follows from (81). The proof of Theorem 1.3 is complete. a

A Appendix

In this section we briefly review some tools used through the proofs. The first section
is devoted to the links between some integrals concerning the Boltzmann kernel. In the
second one, we recall some basic facts about the Weyl-Hormander quantization, and the
last section will recall some ideas and results about the Wick quantization.

A.1 Integral representations

Principal values

Let ¢(0) be a given measurable function such that

/ 1q(0)] dOdf = oo, / 62 |q(0)| db < oc.
R R
Then for any 1(0) € C*(R), the function

0 — q(0) (¥(0) + ¢ (=0) — 2¢(0))

belongs to L! locally. In particular, when ¢(#) is moreover an even and compactly sup-
ported function, we use the notation

[ a@s@)a0 ™ 5 [ a6) (5(6) + v(-6) ~ 2000)) 0.

In our paper, we use it for the function ¢(0) = |9|71725 Lig|<r/2-
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A basic formula

The first tool we use is the following Fubini-type formula, derived by rather explicit com-
putation.

Consider a measurable function 0 < F(a, h) of variables h and o € R3. For any h € R3,
we denote by Eyj, the (hyper-)vector plane orthogonal to h. Then

h
/ dh/ daF(a,h) :/ da/ dhuF(a, h). (82)
R3 Eon R3 Eo.a o]

Carleman representation

The second formula is the so-called w-representation. It says that we have the following
(almost everywhere) equalities when all sides are well-defined :

// dv,dob(cos 0)|v — v [T F(v, vy, 0, 0))

1
:4/ dh/ do————b(cosO)|a — h|"F(v,v +a — h,v — h,v + «
RS Ey» ‘Oé—i-h‘ ’h‘( )’ ’ ( )

1 o — |h|2>
A dh/ dadly, b < a+ h|?
/Rg o Motz R e ) 1

Flv,v+a—h,v—h,v+a).

These formulae are consequences of the following properties (see picture 2):

1. We make the change of variables (vi,0) — (o, h) with o' =v —h, v, = v+ a — h,
vl =v+a.

2. Since we restricted by symmetrization to the case o-(v—wv,) > 0 (which is equivalent
to cos > 0), this implies |a| > |h|. Note also that h | « and therefore | + h|? =
oo — h[? = [af” + |h]*.

[of2—|h|?

aTI and sin § = 2oL 1Al

lat+h[?

3. By immediate trigonometric properties we have cos ) =
From the singular behavior of the singular kernel we deduce

o = | + h|AH4s | + h|?F2s
0 < b(cos) = K627 ~ K(sinf) > > ~ K‘a’2+2s’h‘2+28 SEENTIPETI

since |a|? < |a+ h|? < 2|al?. At the end we get

// dv.dob(cos 0)|v — v |TF (v, vy, 0, 0))

’a+h7+1+2s
/ dh/ dab(a, h) Wia> b33 — P Fv,v+a—h,v—hv+a). (83)
Eo,n

where B(a, h) is bounded from below and above by positive constants, and B(a, h) =
b(+a,+h). Figure 2 shows the preceding relations between all vectors and angles.
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Figure 2: ¢ and Carleman representations

The cancellation lemma

We give here an other formula, in a slightly different version than the original one presented
n [11]. We consider a function G(|v — vy, |[v — ¢']). Then for smooth f, we have

(//dv*daG(h} v, v — v/|)b(cos B) (f] — f*)> ey f).

where for all z € R3, S has the following expression

w/2
S(z) :271/ df sin Ob(cos 0) <G< ‘zle, MG sin g) cos ™3 g — G(|z], |z| sin g))
0

COS 5 COS 5
This applies in particular to functions of type
G(Jv — v, |v — V'], cos 0) = b(cos ) |v — vi|Tp(v — V).

A.2 Weyl-Hormander calculus

We recall here some notations and basic facts of symbolic calculus, and refer to [27, Chapter
18] for detailed discussions on the pseudodifferential calculus.complete

From now on, we set I' = |dv|* + |dn|?, and let M be an admissible weight function
w.r.t. I, that is the weight function M satisfies the following conditions:

(a) (slowly varying condition) there exists a constant ¢ such that

VXY |X —Y| <6, M(X)~MY);

(b) (temperance) there exist two constants C' and N such that

VX,YeRS, MX)/MY)<C(X-Y)V.
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Considering symbols ¢(&,v,n) as a function of (v,n) with parameters £, we say that ¢ €
S (M,T') uniformly with respect to &, if

Va,B e, Vv,neR?’, 8335(]({,1),77) < CqopM,

with Cy g a constant depending only on a and 3, but independent of §. For simplicity of
notations, in the following discussion, we omit the parameters dependence in the symbols,
and by ¢ € S(M,I") we always mean that ¢ satisfies the above inequality, uniformly with
respect to £. The space S(M,T") endowed with the semi-norms

max  sup |M(v,n)"'050]q(v,n)], (84)

Hqu;S(M,F) - 0<|e|+IBI<E (y,)eRE

becomes a Fréchet space. Let ¢ € S'(R3 x Rf’]) be a tempered distribution and let ¢ € R.
We define the operator op,q : S(R3) — S*(R?), with S*(R3) the antidual of S(R?), by the
formula

<(Optq)f7 h>$"7 S = <q7 Qf,h>8/7 S
where

Qep(t)(v,m) = /e2i”2'"f(v + (1 = t)2)h(v — tz)dz.

In particular we denote ¢(v, D,) = opyq and ¢“ = op, /24 Here ¢% is called the Weyl
quantization of symbol q.

An elementary property to be used frequently is the L? continuity theorem in the class
S (1, g), see [29, Theorem 2.5.1] for instance, which says that there exists a constant C
and a positive integer N depending only the dimension, such that

Vue L’ [lq*ull 1 < Cllallyseryllul 2 (85)

Let us also recall here the composition formula of Weyl quantization. Given p; € S(M;,T")
we have

PPy = (p1fip2)” (86)

with pifips € S (M1 Ms, T') admitting the expansion

1
—2io0(Y — — 1
pifip2 = p1p2+/ //6 2o (Y —11,¥ YQ)/GEO-(ﬁYU8Y2)p1(Y1)p2(Y2)dY1dYéd9/(W9)6’ (87)
0
where o is the symplectic form in RS given by

For the relation between the classical pseudodifferential operator ¢(v, D,) and Weyl quan-
tization ¢, we have the formula (see Proposition 1.1.10 and Lemma 4.1.2 of [29]):

" = (J"%q) (v, Dy), (88)
where J1/2 : 8" — S’ is defined by

(JV2q)(wn) = 2 / / ey 4 2,17+ () dzdC. (39)
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A.3 Wick quantization

Finally let us recall some basic properties of the Wick quantization, and refer the reader
to the works of Lerner [31, 30, 29] for extensive presentations of this quantization and
some of its applications. Let Y = (v,71) be a point in RS, The wave-packets transform of
a function u € S (RY) is defined by

WU(Y) = (U, SDY)LQ(]R?’) — 23/4 u(z)e—ﬂ|2—v|262i7r(z—v/2).n dZ,

with
QDY(Z) _ 23/46—7r\z—v\2eQiﬂ(z—v/Z)-n, = R3.

Then W is an isometric mapping from L?(R?) to L?(R%) with adjoint W*. We define the
Wick quantization of any L symbol ¢ as

The main property of the Wick quantization is its positivity, i.e.,
Wick >

q(v,n) >0 for all (v,n) € R® implies ¢

According to Proposition 2.4.3 in [29], the Wick and Weyl quantizations of a symbol ¢ are
linked by the following identities

g Wick — (q " 236_%\.‘2)10 g (90)

with )
r(Y) = / / (1—6)¢" (Y +02)2% 27" 23 dzdp
0 JRS

if we use here the normalization chosen in [19] for the Weyl quantization

(u)(a) = [ ey (206 ) utuva

which differs (without any influence) from the one chosen in the rest of this paper. As a
result, ¢V is a bounded operator in L? if ¢ € S(1,g) due to (85).

We also recall the following composition formula obtained in the proof of Proposition
3.4 in [31]

q q

Wick
1 q192 —

. 1 1 .
Wick 1o Wick

— —d - S T 91
2 [ 0+ o @]+ T (91)
with 7' a bounded operator in L?(R?"), when ¢; € L>®(R?") and ¢ is a smooth symbol
whose derivatives of order > 2 are bounded on R®. The notation {q1,q2} denotes the

Poisson bracket defined by

dq1 O0q2  Oq1 Ogqo
a1 @) on Ov  Ov On (92)
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