Critical branching Brownian motion with absorption: survival probability

Abstract : We consider branching Brownian motion on the real line with absorption at zero, in which particles move according to independent Brownian motions with the critical drift of $-\sqrt{2}$. Kesten (1978) showed that almost surely this process eventually dies out. Here we obtain upper and lower bounds on the probability that the process survives until some large time $t$. These bounds improve upon results of Kesten (1978), and partially confirm nonrigorous predictions of Derrida and Simon (2007).
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00766307
Contributeur : Julien Berestycki <>
Soumis le : mardi 18 décembre 2012 - 10:07:37
Dernière modification le : mardi 11 octobre 2016 - 14:10:32

Identifiants

  • HAL Id : hal-00766307, version 1
  • ARXIV : 1212.3821

Collections

UPMC | PMA | INSMI | USPC

Citation

Julien Berestycki, Nathanael Berestycki, Jason Schweinsberg. Critical branching Brownian motion with absorption: survival probability. 2012. <hal-00766307>

Partager

Métriques

Consultations de la notice

91