The buffered chemostat with non-monotonic response functions

Alain Rapaport 1, 2, * Ihab Haidar 3 Jérôme Harmand 1, 4
* Corresponding author
1 MODEMIC - Modelling and Optimisation of the Dynamics of Ecosystems with MICro-organisme
CRISAM - Inria Sophia Antipolis - Méditerranée , MISTEA - Mathématiques, Informatique et STatistique pour l'Environnement et l'Agronomie
3 Division Systèmes - L2S
L2S - Laboratoire des signaux et systèmes : 1289
Abstract : We study how a particular spatial structure with a buffer impacts the number of equilibria and their stability in the chemostat model. We show that the occurrence of a buffer can allow a species to persist or on the opposite to go extinct, depending on the characteristics of the buffer. For non-monotonic response functions, we characterize the buffered configurations that make the chemostat dynamics globally asymptotically stable, while this is not possible with single, serial or parallel vessels of the same total volume and input flow. These results are illustrated with the Haldane kinetic function.
Complete list of metadatas

Cited literature [53 references]  Display  Hide  Download
Contributor : Alain Rapaport <>
Submitted on : Sunday, May 25, 2014 - 2:37:42 PM
Last modification on : Wednesday, November 7, 2018 - 11:10:06 PM
Long-term archiving on : Tuesday, April 11, 2017 - 1:38:26 AM


Files produced by the author(s)



Alain Rapaport, Ihab Haidar, Jérôme Harmand. The buffered chemostat with non-monotonic response functions. 9th IFAC Symposium on Nonlinear Control Systems (NOLCOS 2013), Sep 2013, Toulouse, France. ⟨10.3182/20130904-3-FR-2041.00039⟩. ⟨hal-00766243v2⟩



Record views


Files downloads