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Abstract: Failure detection is a fundamental building block for ensuring fault tolerance in large scale 

distributed systems. There are lots of approaches and implementations in failure detectors. Providing 

flexible failure detection in off-the-shelf distributed systems is difficult. In this paper we present an 

innovative solution to this problem. Our approach is based on adaptive, decentralized failure detectors, 

capable of working asynchronous and independent on the application flow. The proposed solution 

considers an architecture for the failure detectors, based on clustering, the use of a gossip-based algorithm 

for detection at local level and the use of a hierarchical structure among clusters of detectors along which 

traffic is channeled. The solution can scale to a large number of nodes, considers the QoS requirements of 

both applications and resources, and includes fault tolerance and system orchestration mechanisms, added 

in order to asses the reliability and availability of distributed systems. 

 
1. INTRODUCTION 

Large scale distributed systems are hardly ever “perfect”. 

Due to their complexity, it is extremely difficult to produce 

flawless designed distributed systems. While until recently 

the research in the distributed systems domain has mainly 

targeted the development of functional infrastructures, today 

researchers understand that many applications, especially the 

commercial ones, have some complementary necessities that 

the „traditional” distributed systems do not satisfy.  Together 

with the extension of the application domains, new 

requirements have emerged for large scale distributed 

systems; among these requirements, fault tolerance is needed 

by more and more modern distributed applications, not only 

by the critical ones. The clients expect them to work despite 

faults occurring in such systems.  

Although the importance of fault tolerance is today widely 

recognized and many research projects have been initiated 

recently in this domain, the existing systems often offer only 

partial solutions that follow a particular underlying 

distributed architecture. Traditional fault detection solutions, 

in particular, fail to work properly in the context of large 

scale distributed systems because of the large number of 

involved monitored processes, high probability of messages 

being lost, the dynamic nature of their topologies and the 

unpredictable latencies of the message deliveries. The 

characteristics of large scale distributed systems make fault 

detection a difficult problem from several points of view. A 

first aspect is the geographical distribution of resources and 

users that implies frequent remote operations and data 

transfers. These lead to a decrease in the system's capability 

to detect faults, leading to the impossibility to manage correct 

group communications and consensus. Another problem is 

the volatility of the resources, which are usually available 

only for limited periods of time. The system must ensure the 

correct and complete execution of the applications even in the 

situations when the resources are introduced and removed 

dynamically, or when they are damaged. Solving these 

problems still represents a research problem. The fault 

detector must be very sensitive to dynamic network 

conditions. In large scale distributed systems the probability 

for messages being lost is higher than in case of traditional 

systems: many resources being contributed means a higher 

error rate; resources being dynamically introduced or 

experiencing high loads leads to transitional errors; the 

background noises can easily be mistaken for faults because 

of the higher message delivering times. Another problem 

relates to the flexibility of the applications being executed in 

such systems. In large scale distributed systems different 

applications must work concurrently despite of their various 

objectives, requirements and politics. Such applications 

inquire different levels of precisions in failure detection. For 

example, a real-time application requires to be rapidly 

informed when a process fails. On the other hand, a 

distributed database could require a higher degree of 

confidence that a given remote process has failed. A generic 

failure detector support service must cope with the different 

QoS requirements coming from various applications.  

In this paper we present an innovative solution to solving the 

requirements involved in obtaining a robust failure detector 

designed for large scale distributed systems. Our failure 

detection tool counts for all the aforementioned problems, 

being particularly designed for highly dynamic large scale 

distributed systems. Its architecture allows applications to 

specify different QoS detection levels, while preserving 

scalability, generality and non-intrusive characteristics.  

The rest of this paper is structured as follows. Section 2 

presents related work to the problem of designing failure 

detectors for distributed systems. The next sections present 

the proposed architecture and key elements of the 

implementation of a robust failure detector, highlighting the 



 

 

     

 

proposed models and protocols. Finally, in Section 5 we 

present some conclusions and future work. 

2. RELATED WORK 

A failure detector is widely recognized as an oracle that can 

intelligently suspect processes to have failed 

(Chandra&Toueg, 1996). In distributed applications, failure 

detection is generally implemented through the use of 

directly invoked local services (unreliable local failure 

detectors).  

 

Fig. 1. Federation of unreliable failure detector modules. 

The general strategy consists in attaching to each processes of 

a distributed application a failure detection module (see 

Figure 1). The failure detection module works asynchronous 

and independent on the application flow and is responsible 

with monitoring a subset of the processes in the system and 

maintaining a list of those it currently suspects to have 

crashed. A process can query its local failure detector module 

at any time. Internally, the failure detector module maintains 

a list of suspect processes that he suspects are crashed. The 

suspect processes list is permanently updated such that, at 

any time, new processes can be added and old ones removed. 

For example, a process suspected to have crashed at time t 

can be removed from the list at time t+1 (it is no longer 

suspected). The failure detector is considered unreliable 

(Chandra&Toueg, 1996) because is allowed to make 

mistakes, to a certain degree. A module can erroneously 

suspect some correct process (wrong suspicion) or can fail to 

detect processes that are already crashed.  At any given time 

two failure detector modules may have different lists of 

processes. 

The most common implementation of local failure detection 

is based on the heartbeat strategy. In this strategy every 

failure detector module periodically sends a heartbeat 

message to the other modules, to inform them that it is still 

alive. When a module fails to receive a heartbeat from 

another process for a predetermined amount of time (timeout) 

it concludes the remote process crashed. There is a tradeoff, 

however, for the timeout values being considered. If the 

timeout is short then crashes are detected quickly, but there is 

a high chance of suspecting of being crashed processes that 

takes a longer time to respond (due to a possible high load for 

example). Conversely, if the timeout is long, the chance of 

wrong suspicions if low, but the detection time is 

deteriorated. This approach does not consider also the 

heterogeneity of distributed systems. The fact that the timeout 

is fixed means that the failure detection mechanism is unable 

to adapt to changing conditions. A long timeout in some 

systems can turn out to be very short in a different 

environment.  

In the last years there have been many proposals to address 

some of the problems of ensuring scalable failure detection. 

In a large scale distributed system, consisting of many nodes, 

it is impractical to let the failure detection modules monitor 

each others. An alternative to this consists in arranging 

processes into an hierarchical structure (such as tree, forest, 

etc.) along which traffic is channeled. For example, one such 

solution relies on the use of a two-level hierarchy and is 

specifically designed for the Globus toolkit (Stelling, et al, 

1998). However, being a detection scheme based on only a 

two-level hierarchy, the proposed solution fails to take full 

advantage of the hierarchical approach and, consequently, do 

not scale well for large scale distributed systems.  

An alternative technique for implementing failure detectors 

comes in the form of gossip-like protocols. In this approach 

processes randomly pick partners with whom they exchange 

their information. The idea is that, with high probability, 

eventually all processes obtain any piece of information. One 

of the pioneering works in implementing gossip-style failure 

detectors is (van Renesse, et al, 1998). In their work the 

authors identified a variant specifically designed for large 

scale distributed systems: the multilevel gossiping. The idea 

is to define a multilevel hierarchy using the structure of 

Internet domains and subdomains as defined by comparing IP 

addresses. However, the protocol does not work well when a 

large number of components crash or become partitioned 

away.  

An alternative approach to implementing failure detectors 

comes in the form of adaptive protocols (Defago, et al, 2003). 

These protocols are designed to adapt dynamically to their 

environmental and, in particular, adapt their behavior to 

changing network conditions. A protocol that adjusts the 

timeout by using the maximum arrival interval of heartbeat 

messages was proposed in (Fetzer, et al, 2001). The protocol 

assumes a partially synchronous system model, being based 

on the assumption of a bound on message delays. In (Chen, et 

al, 2002) the authors proposed a different approach based on 

a probabilistic analysis of network traffic. Their protocol uses 

arrival times sampled in the recent past to compute an 

estimation of the arrival of the next heartbeat. The timeout is 

set according to the estimation and a safety margin, based on 

application QoS requirements (e.g. upper bound on detection 

time) and network characteristics (e.g., network load).  

A distinctive category of detectors is represented by the 

accrual failure detectors (Defago, et al, 2003)(Defago, et al, 

2005). The family of accrual failure detectors consists of 

detector modules that associate, to each of the monitored 

processes, a real number value that changes over time. One 

example of an implementation of an accrual failure detector 

is the ĳ-failure detector (Defago, et al, 2003). The ĳ-failure 

detector samples the arrival time of heartbeats and maintains 



 

 

     

 

a sliding window of the most recent samples. The window is 

used to estimate the arrival time of the next heartbeat. A 

similar approach was also proposed in (Bertier, et al, 2002). 

However, the proposed failure detectors are poorly adapted to 

very conservative failure detection because of their 

vulnerability to message losses. In practice message losses 

tend to be strongly correlated (i.e., losses tend to occur in 

bursts). A proposed accrual detector designed to handle this 

problem is the k-failure detector (Hayashibara, et al, 2004). 

The k-failure detector takes into account both messages 

losses and short-lived network partitions, each missed 

heartbeat contributing to raising the level of defined 

suspicion according to a predetermined scheme.  

An important issue with failure detectors is their scalability. 

An approach that focuses on the scalability of failure 

detection was proposed in (Bertier, et al, 2002). However, the 

proposed system assumes simpler failure semantics such as 

crash failures. In (Khanna, et al, 2007) the authors proposed a 

different approach to failure detection, based on stateful 

identification of the application state. 

3. SYSTEM MODEL AND DEFINITIONS 

System model. The system model being considered in this 

paper is based on the one described in (Defago, et al, 2003). 

We consider a distributed system consisting of a set of 

processes ∏ = {p1,…pn}. The system assumes the existence 

of some global time, known to all processes, the domain of 

which, denoted by T, is an infinitely countable subset of real 

numbers with no upper bound. We assume that processes 

always make progress, and that at least į>0 time units elapse 

between consecutive steps (the purpose of this being to 

exclude the case where processes take an infinite number of 

steps in finite time). 

Failures. The failure model considered in this paper is based 

on the model of described in (Chandra&Toueg, 1996). A 

process can be correct or faulty. A process is faulty if its 

behaviour deviates from its specification, and a process is 

correct if it is not faulty. We say that a process fails when its 

behaviour starts deviating from its specification. Faulty 

processes never recover. 

A failure pattern is a function F : T-> 2∏, where F(t) is the 

set of processes that have failed before or at time t. The 

function correct(F) denotes the set of correct processes 

(processes that never belong to failure pattern F) while 

faulty=∏-correct(F) denotes the set of faulty processes. 

Failure detectors. In (Chandra&Toueg, 1996) the authors 

define failure detectors as a collection of failure detector 

modules, one attached to each process, that output 

information on the failure pattern that occurs in an execution. 

A failure detector module outputs information from a range R 

of values. A failure detector history H with range R is a 

function H: ∏ x T -> R, where H(p,t) is the value output by 

the failure detector module of process p at time t. H is only 

defined at times when the failure detector module provides an 

answer to a query; the failure detector module may be 

queried whenever process p takes a step, and each query 

eventually results in an answer. The times at which queries 1, 

2, … are answered are denoted by the sequence tp(1), tp(2), ... 

Correct processes query their failure detector modules 

infinitely-many times. 

Binary failure detectors, such as those defined in 

(Chandra&Toueg, 1996), output values from the range R = 

2∏. If a process is part of the output set, it is suspected to 

have failed, otherwise it is trusted. An S-transition occurs 

when a trusted process becomes suspected and a T-transition 

occurs when a suspected process becomes trusted. The 

authors in [1] define a class hierarchy of unreliable binary 

failure detectors, of which of particularly importance is the 

one called ◊P (eventually perfect). The class is defined by the 

set of failure detector histories that it permits, as specified by 

the following two properties of completeness and accuracy. 

(STRONG COMPLETENESS) Eventually every faulty 

process is permanently  suspected by all correct processes. 

(EVENTUAL STRONG ACCURACY) There is a time after 

which correct processes are never suspected by any correct 

process. 

Accrual failure detectors, such as those defined in (Defago, et 

al, 2003), output values from a range R = (R+)∏ (infinite 

range). In their case history is defined as H(q,t)(p) = slqp(t). 

The failure detector module outputs non-negative real values, 

with each value corresponding to a process and representing 

the current suspicion level of that process.  

Quality of service metrics for failure detectors. The authors 

in (Chandra&Toeug, 1996) define metrics for the quality of 

service of failure detectors. Quality of service quantifies how 

fast a failure detector detects failures (completeness) and how 

well it avoids wrong suspicions (accuracy). For example, 

assuming the asynchronous model consisting of only two 

processes, p and q, the defined metrics are: 

• Detection time TD is the time that elapses since the crash 

of p and until q begins to suspect p permanently.  • Mistake recurrence time TMR measures the time 

elapsed between two consecutives mistakes. • Mistake duration TM measures the time it takes for the 

detector to correct a mistake. • Average mistake rate λM measures the rate at which a 

failure detector makes mistakes. • Query accuracy probability PA is the probability that 

the failure detector’s output is correct at a random time. • Good period duration TG measures the length of a good 

period, in which a process is not suspected. 

4. ARCHITECTURE OF THE FAILURE DETECTOR 

The proposed architecture (see Figure 2) is based on the idea 

of making the fault detector available as a service to 

applications. such that any distributed application could then 

use the failure detection capabilities of the failure detector. 

The architecture is based on the idea of fault detection oracles 

(Chandra&Toueg, 1996).  

The architecture is composed of several failure detection 

services running inside the distributed system. Each service is 

responsible with monitoring only a subset of the processes 



 

 

     

 

running inside the large scale distributed system and 

provides, in the form of service functionality, information to 

upper-level applications regarding the current suspected 

processes. The architecture is composed of three layers.  

 

Fig. 2. The architecture of the failure detection service. 

A first layer of the architecture is represented by the 

monitoring function of the detection scheme. At this layer 

each failure detector is responsible with gathering 

information about different processes running inside the large 

scale distributed system. By process we mean either another 

failure detector or a separate thread running inside a 

distributed process of a larger application. The monitoring 

capability is based on sending heartbeat messages to which 

the remote process must respond. For that, each failure 

detector sends heartbeat messages to gather information 

about the state of the distributed processes. More details on 

the implementation of the monitoring capability of a failure 

detector process are presented in the next section. 

In order to cope with the large nature of the underlying 

distributed system, the failure detection services are grouped 

in clusters, each failure detection service being responsible 

with monitoring all or only a subset of the entire set of 

processes running inside that particular cluster. The detection 

scheme uses the advantages of accrual detectors, being able 

to cope both with the changes in the underlying network, as 

well as to the dynamic requirements of the applications using 

the service capabilities of the failure detectors.  

However, the failure of a process as detected by a particular 

daemon can be attributed to several factors: the daemon does 

not have a direct link anymore with the monitored process, 

there is an increased background traffic that results in an 

increase in the time needed for the process to respond back to 

the daemon, the host on which the process runs experience a 

high load and, for that, the process fails to respond in time, 

etc. In order to cope with these problems we introduce a 

second layer of functionality in the architecture. In order to 

increase the level of confidence, at various moments of time 

the detectors exchange information between them, using a 

gossip-based approach, each one informing other detectors of 

their current knowledge of suspected processes. Upon receive 

of such an update a failure detector updates the local 

suspicious levels. For example, a process wrongly suspects a 

process of being failed because it does not have, from some 

moment of time forward, a direct network connection with 

that particular process. However, it further receives updates 

from another failure detection daemon in which he is 

informed that the process is still alive as it responds well to 

the second detector. 

The gossip-based approach ensures that the system is able to 

detect errors such that: a failure detection service fails to 

directly communicate with a monitored process, there is an 

increased background networking traffic that results in an 

increased time needed for the process to respond back, etc. At 

various moments of time the detectors exchange information 

between them, using a gossip-based approach, each one 

informing other detectors of their current knowledge of 

suspected processes. Upon receive of such an update a failure 

detector updates the local suspicious levels.  

Between clusters the information is propagated using 

specially designated failure detection services, located at the 

border of the cloud. In order to minimize the number of 

exchanged messages, the information is propagated only on 

requests coming from upper-level applications. This is 

motivated by the current functionality of large scale 

distributed applications. If we refer to Grid systems, a 

distributed application is decomposed into several tasks that 

are scheduled for execution using batching systems in one (or 

few) clusters. This is because tasks generally communicate 

mostly between them or with certain localized services and, 

by scheduling the tasks of an application inside one cluster 

(or a small number of closely situated clusters), the 

communication delays are minimized. For large scale 

distributed application the preferred way is to use a meta-

scheduler, but even in this case an application is scheduled 

for execution in several clusters (if the application is big 

enough) that are closely localized. In case of cloud 

computing, an application is generally executed inside one 

cloud, which in our approach will constitute one cluster. 

Based on these observations, it is sufficient to let a failure 

detection services monitor only other services located inside 

the same cluster. 

When an application or process needs information regarding 

the suspicion level that a certain process from another cluster 

failed it issues a request to a local failure detection service. 

This service then forwards the request to a border failure 

detection service from the second cluster (in our approach we 

use a DNS-based naming approach for finding border 

detectors) and obtains the value that he then sends back to the 

application. This approach has two major advantages. By 

using a propagation-on-request approach we minimize the 

number of messages being exchanged. Then, by monitoring 

only processes located in the same clusters, the probability of 

failure detections due to long delivery delays is reduced. 

Also, a solution in which each failure detector service 

maintains states regarding all the processes inside a 

distributed system is not practically feasible because the 

failure detection services run on hosts having limited 

amounts of resources (memory, cpu, etc.). The proposed 

failure detection architecture also scales well because each 



 

 

     

 

module is responsible with keeping only a small list of 

confidence levels for several processes. 

 

Fig. 3. The interoperability between the failure detection 

service, application and various middleware services. 

Finally, the last layer is represented by the service 

capabilities being provided to various applications running on 

top of the large scale distributed system. As in case of accrual 

failure detectors (Defago, et al, 2005), we provide a complete 

decoupling between monitoring and interpretation. The 

failure detection architecture follows the SOA approach, 

applications being able to send requests regarding current 

suspicious levels of failures for certain processes from the 

failure detectors services using a standardized service 

approach. Also, this approach has the advantage of coping 

well with various existing service-based middleware 

platforms, providing several functionalities as presented in 

Figure 3.  

The solution is designed to interact with various services 

provided by a possible underlying middleware services. For 

example, in order to query and obtain the confidence level of 

some process from another cluster a failure detector can use a 

transport service provided by the middleware (such as the 

GridFTP service provided by the Globus Toolkit), and in 

order to obtain accurate results on the reasons for a process 

failure it could interact with a monitoring service (such as 

MDS4 service provided by Globus Toolkit). 

The architecture is designed to scale well and provide timely 

detection. For that, we combine the advantages of several 

proposed failure detection solutions. We believe that, in order 

to cope with the large scale nature of today’s distributed 

systems, a failure detector must scale well and also the 

probability of false detections must not be influence by the 

number of monitored processes. For that, a gossip-based 

protocol provides several advantages (a formal demonstration 

is provided in (van Renesse, 1998): the probability that a 

member is falsely reported as having failed is independent of 

the number of processes; the algorithm scales in detection 

time and in network load, and for large networks the 

bandwidth used in the subnets is approximately constant. 

We combine these properties with those introduced by the 

accrual detectors. Such detectors provide a lower-level 

abstraction that avoids the interpretation of monitoring 

information (see Figure 4).  

 

Fig. 4. Structure of the accrual failure detectors. Monitoring 

and interpretation are decoupled. Applications interpret a 

common value based on their own interpretation. 

Some value is associated with each process that represents a 

suspicion level, which is then left to the application to be 

interpreted. In this way a real-time application could take 

quicker decision on processes being considered failed, while 

application requiring a high-level of confidence in their 

decisions (such as a data warehouse synchronization service) 

might require higher level of confidence that a process really 

failed. By setting an appropriate threshold, applications can 

then trigger suspicions and perform appropriate actions. 

Alternatively, applications can directly use the value output 

by the accrual failure detector as a parameter to their actions.  

5. IMPLEMENTATION DETAILS 

The building block for implementing the failure detection 

monitoring capability is the accrual detector construction 

(Defago, et al, 2005). An accrual failure detector outputs 

values from a range R = (R+)∏ (infinite range). In their case 

history is defined as H(q,t)(p) = slqp(t). The failure detector 

module outputs non-negative real values, with each value 

corresponding to a process and representing the current 

suspicion level of that process.  

As such, the monitored process p sends heartbeats at regular 

intervals to the monitoring process q. Upon a query, the 

detector at q simply returns the time that elapsed since the 

reception of the last heartbeat. Unlike previous solutions, we 

assume that processes can fail by crashing permanently, but 

also that they can only experience temporary crashing, due to 

high loads for example (in practice, a process that can not 

respond for a certain amount of time is also considered failed, 

since a process can not use any functionality provided by the 

process). Informally, if p crashes, it stops sending heartbeats, 

and this triggers an increase on a suspicion level associated 

with that process. The suspicion level function satisfies the 

following two properties (Defago, et al, 2003): 

Property 1. (Accruement) If process p is faulty, then 

eventually, the suspicion level slqp(t) is monotonously 

increasing at a positive rate. 

Property 2. (Upper bound) If process p is correct, then the 

suspicion level slqp(t) is bounded. 

The first property translates into the following. When p stops 

sending heartbeats the suspicion level associated with it by 



 

 

     

 

process q increases forever. In contrast, if p is correct, it is 

possible to compute an upper bound on the maximal time 

elapsed between any two consecutive heartbeats (property 2), 

based on the characteristics of the execution.  

 

Fig. 5. Information flow in the proposed implementation of 

the failure detector. 

Our implementation of the heartbeat accrual failure detector 

works as follows. Each heartbeat that was not received 

contributes partly to the suspicion level of the failure 

detector. The contribution of a heartbeat H increases from 0, 

meaning that H is not yet expected, to 1, meaning that H is 

considered lost. The suspicion level is calculated as a sum of 

all contributions. But, unlike previously other existing 

implementations of accrual detectors, the suspicious level in 

this case is not computed only from the local heartbeat 

contributions, but also from contributions received from other 

failure detectors located in the local cluster. 

The contribution function is computed as follows. Each 

failure detector maintains a local suspicious level value 

slqp(t). The heartbeat messages are sampled by the detector in 

order to estimate the time when the next heartbeat is expected 

to arrive. For that the detector can use any of several 

prediction methods. The predicted value for the next arrival 

of a heartbeat message is further used for computing slqp(t): 

}1(log,0max{)( 10 +−= prednowqp tttsl  (1) 

This means that, as time passes and the heartbeat message fail 

to arrive, slqp(t) will come closer to 1. This strategy is 

described in Figure 5. 

We next evaluated the accuracy of several prediction 

algorithms using a Java class for each method. The program 

runs as a background thread providing real time prediction 

for sampling of the heartbeat values.  

Simple Moving Average. A simple prior moving average 

(SMA) is the unweighted mean of the previous n values. For 

example, a 5-minute simple moving average of the heartbeat 

is the mean of the previous 5 sampling values. Considering 

the values are Lt, Lt-1, ..., Lt-4, the formula is 

5

4321 −−−− ++++= ttttt LLLLL
SMA

. 
(2) 

While it is easy to implement and requires no additional 

overhead, SMA’s performance is marginally satisfactory. By 

the nature of the calculation, this algorithm produces results 

that are both delayed and dampened. The algorithm has a 

tendency to flatten local peaks as a result of the averaging 

function, but the result generally follows the real trends. 

 

Fig. 6. Heartbeat interarrival real times (red) and predicted 

(blue) values using a restricted moving average. 

Restricted Moving Average. Experimental results have shown 

that the behavior of the simple moving average prediction 

algorithm is not the desired one. The predicted value is 

sometimes an increasing value, and the real value is actually 

decreasing. To eliminate this behavior, a restriction on the 

moving average algorithm has been introduced. If the 

predicted value is higher than the last value, the predicted 

value will become the last real value that has been provided. 

When using this algorithm, the peak sensitivity problems 

persist and the restriction itself is a big source of errors, 

especially in the case of fast, high amplitude variations. In 

some cases the predicted values and the real ones show 

opposite trends (e.g. the real value increases but the predicted 

value is lower than the previous one). 

Weighted Moving Average. A weighted moving average 

(WMA) is an average that has multiplying factors to give 

different weights to different data points. The weights are 

decreasing arithmetically as the values are older in time. In an 

n-value weighted moving average, the last value has weight 

n, the value before the last has weight n - 1, and so on. 

12345

2345 4321 ++++
++++= −−−− ttttt LLLLL

WMA
. 

(3) 

Although this prediction algorithm is giving extra weight to 

more recent data points, the predicted values are not very 

accurate. The reason is that the recent past may not offer 

sufficient information with regard to the next value of the 

monitored parameter. The weighting procedure assumes that 

more recent data is more significant, which in some cases 

may not be the case, for example for rapid fluctuations. 



 

 

     

 

Exponential Moving Average. In an exponential (weighted) 

moving average (EMA) algorithm, the applied weights are 

decreasing exponentially. In this way, a more recent heartbeat 

arrival time is given much more importance than the 

weighted moving average algorithm. In the same time the 

algorithms does not discard older observations entirely. The 

constant smoothing factor is the degree of weighing decrease 

and is a number between 0 and 1. If the value at the time t is 

Lt and the vales assigned to EMA at the same time is St, then 

S1 will be undefined and S2 will be initialized as the average 

of the first 5 values. The formula for calculating the 

exponential moving average at any time periods t ≥ 2 is 

11 )1( −− ×−+×= ttt SLS αα
. (4) 

Depending on the constant Į, older values have more or less 

importance in the sum. If the smoothing factor is higher, the 

older observations are discounted faster. While the 

performance is generally better than the one expected from a 

simple moving average algorithm, this method fails to 

produce very accurate results when there is a significant 

difference between values at consecutive time points. Good 

results can be achieved by tuning the smoothing factor, if the 

general behavior of the signal is known. For completely 

random interarrival times, the results are only slightly better 

than the ones produced by the moving average technique, 

with the greatest error being produced mostly when the signal 

varies abruptly after a period of little or no change. 

In terms of behavior, when the network is stable, i.e., few 

messages are lost, only one single heartbeat contributes to the 

suspicion level significantly, and thus the suspicion level 

reflects the contribution function. If the contribution function 

adapts well to the variability in arrival times (as in case of 

using an exponential moving average function), so will the 

applications using the failure detector. On the other hand, 

when the network is unstable with a lot of message losses, or 

if the monitored process crashes, contributions for all missed 

heartbeats but one will likely be close to 1. In this case, the 

failure detector will give a count of missed heartbeats, and 

the shape of the contribution function will be nearly 

irrelevant. In order to cope with that situation, we introduced 

another construction. 

The construction is based on the use of a gossip-style 

approach. In this approach, a failure detector forwards 

information to other randomly chosen members of the group. 

Each member occasionally broadcasts its list in order to be 

located initially and also to recover from network partitions 

(van Renesse, et al, 1998). In the absence of a broadcast 

capability, the network could be equipped with a few gossip 

servers, that differ from other members only in that they are 

hosted at well known addresses, and placed so that they are 

unlikely to be unavailable due to network partitioning. This 

step ensures that the detectors know at least a subset of the 

entire group of failure detectors running in the local cluster 

(detectors themselves can fail, for this reason we state subset 

in this statement). 

Whenever the suspicion level slqpt reaches a certain threshold 

value TV, the failure detectors randomly selects several other 

failure detectors (for example, by tossing a weighted coin 

(van Renesse, et al, 1998) and sends its current value. It does 

not continue to increase the suspicion level computed using 

the accrual algorithm previously described until a certain 

condition occurs. 

 

Fig. 7. The gossip-based information flow of local suspicious 

level values slqp(t). 

The gossiping has the role of eliminating false positives. A 

failure detector q sends out a message saying he suspects 

process p of being failed. Another failure detector q’ 

eventually returns back an answer (or submits a message that 

its suspicion level for the same process crossed the threshold 

TV) containing its currently computed suspicion level slq’pt. 

At any moment of time the current suspicion level is 

considered to be the minimum value from the set of values 

obtained in this algorithm (the values received from other 

detectors, together with the locally computed suspicion level 

value). At some time a failure detector might receive again a 

heartbeat message from the suspected process. In this point 

the suspicion level starts to decrease, meaning the value again 

crosses the suspicion level TV. Again, it selects a random 

number of failure detectors and sends a message containing 

the current slqpt value.  

As demonstrated in (van Renesse, et al, 1998), this protocol 

does not impose a significant amount of load on the network 

bandwidth and is resilient against network partitions. 

However, unlike a basic gossip-based failure detector, it does 

not suffer from the disadvantage that failures have a negative 

influence on the number of rounds needed for information to 

be disseminated through the system, and hence on failure 

detection times across subnets and domains (because each 

detector already know a local level of confidence previously 

computed). 

In order to better understand the behavior of the presented 

failure detection approach we analyze two cases. Assuming 

two detectors monitor the same process. When a link fails 

between the first detector and the process the value slqpt will 

increase from 0 to 1. In the same time the suspicion level, in 

case of the second detector, will remain somewhere around 1. 

When the two detectors exchange information they will result 

in both knowing that one process still reaches the process 

and, thus, the process is still alive.  

Next, we consider the case when a process runs on a 

workstation that becomes increasingly loaded. In this case the 



 

 

     

 

error is transient. All failure detectors will correctly suspect 

the process of being failed, as it will not send heartbeats 

anymore. When the workstation becomes free again the 

process will eventually start sending heartbeat messages. In 

this case the first detector that receives a heartbeat message 

will inform the other the process is alive, thus the time taken 

by the detectors to correctly detect the good health of the 

process is reduced compared to other existing detection 

approaches. 

5. CONCLUSIONS 

As society increasingly becomes dependent of distributed 

systems (Grid, P2P, network-based), it is becoming more and 

more imperative to engineer solutions to achieve reasonable 

levels of dependability for such systems. Failure detection 

constitutes a fundamental abstraction for fault tolerant 

distributed systems.  

In this paper we presented a robust failure detection 

architecture that combines the power of existing approaches: 

fast propagation of information as offered by gossip-based 

failure detection approaches together with the decoupling of 

monitoring and interpretation as offered by the accrual failure 

detection solutions. The solution is based on several 

prediction functions and a new alternative of computing the 

contribution function. The approach has several advantages, 

among which we mention a better estimation of the 

interarrival times of heartbeat messages and an increase level 

of confidence in the suspicions of processes being lost.  

The approach considers both the various networking 

conditions of large scale distributed systems and the different 

QoS detection requirements coming from various 

applications. In our approach the interpretation of the 

suspicion level is left to the distributed application using it. In 

this way multiple applications, having different QoS 

requirements, use the same failure detectors in different 

ways. The application could take either conservative (slow 

and accurate) or aggressive (fast, but inaccurate) decisions.  

In order to cope with the large scale and dynamic nature of 

contemporary distributed systems, our solution considers a 

clustering of the detection functionality, with detectors being 

responsible with only subsets of the entire monitored 

processes of the underlying large scale distributed system.  

In order to cope with transient errors, but also with the failure 

of network links we presented a solution in which we 

combined the detection function with an approach in which 

the detector exchange information using a gossip-style 

approach. The solution was further extended with a 

hierarchical information dissemination approach, in which 

information belonging to other clusters can be propagated 

from cluster-to-cluster when requested by applications. In 

this way, our solution has also the advantage of imposing a 

limited number of messages being exchanged in the network, 

mostly only on local levels, such that to be as non-intrusive 

as possible regarding the functionality of the entire 

distributed system.  

In order to be of better use, the proposed failure detection 

offer capabilities to various applications as a service. This 

means that the framework can be easily incorporated in 

various existing distributed systems, and also can use the 

capabilities offered by various middleware architectures 

(such as it could use the transport capabilities offered by a 

transport service or can adapt the suspicion levels based on 

monitoring results obtained from a monitoring service, or can 

output current suspicion levels in a monitoring repository). 

In the future, we aim to fully deploy this solution in various 

existing system and compare the obtained performances 

against various existing solutions. We also plan to extend the 

architecture in order to include not only detection 

capabilities, but also means to allow application to 

automatically asses various recovery and masking 

(redundancy) mechanisms.  
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