
HAL Id: hal-00765602
https://hal.science/hal-00765602

Submitted on 15 Dec 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robust Failure Detection Architecture for Large Scale
Distributed Systems

Ciprian Mihai Dobre, Florin Pop, Alexandru Costan, Mugurel Ionut Andreica,
Valentin Cristea

To cite this version:
Ciprian Mihai Dobre, Florin Pop, Alexandru Costan, Mugurel Ionut Andreica, Valentin Cristea. Ro-
bust Failure Detection Architecture for Large Scale Distributed Systems. Proceedings of the 17th
International Conference on Control Systems and Computer Science (CSCS) (ISSN: 2066-4451), May
2009, Bucharest, Romania. pp.433-440. �hal-00765602�

https://hal.science/hal-00765602
https://hal.archives-ouvertes.fr

Robust Failure Detection Architecture for Large Scale Distributed Systems

Ciprian Dobre*. Florin Pop*, Alexandru Costan*, Mugurel Ionut Andreica*, Valentin Cristea*

*Computer Science Department, Faculty of Automatic Control and Computes Science,

University POLITEHNICA of Bucharest

(e-mails: {ciprian.dobre, florin.pop, alexandru.costan, mugurel.andreica, valentin.cristea}@cs.pub.ro)

Abstract: Failure detection is a fundamental building block for ensuring fault tolerance in large scale

distributed systems. There are lots of approaches and implementations in failure detectors. Providing

flexible failure detection in off-the-shelf distributed systems is difficult. In this paper we present an

innovative solution to this problem. Our approach is based on adaptive, decentralized failure detectors,

capable of working asynchronous and independent on the application flow. The proposed solution

considers an architecture for the failure detectors, based on clustering, the use of a gossip-based algorithm

for detection at local level and the use of a hierarchical structure among clusters of detectors along which

traffic is channeled. The solution can scale to a large number of nodes, considers the QoS requirements of

both applications and resources, and includes fault tolerance and system orchestration mechanisms, added

in order to asses the reliability and availability of distributed systems.

1. INTRODUCTION

Large scale distributed systems are hardly ever “perfect”.

Due to their complexity, it is extremely difficult to produce

flawless designed distributed systems. While until recently

the research in the distributed systems domain has mainly

targeted the development of functional infrastructures, today

researchers understand that many applications, especially the

commercial ones, have some complementary necessities that

the „traditional” distributed systems do not satisfy. Together

with the extension of the application domains, new

requirements have emerged for large scale distributed

systems; among these requirements, fault tolerance is needed

by more and more modern distributed applications, not only

by the critical ones. The clients expect them to work despite

faults occurring in such systems.

Although the importance of fault tolerance is today widely

recognized and many research projects have been initiated

recently in this domain, the existing systems often offer only

partial solutions that follow a particular underlying

distributed architecture. Traditional fault detection solutions,

in particular, fail to work properly in the context of large

scale distributed systems because of the large number of

involved monitored processes, high probability of messages

being lost, the dynamic nature of their topologies and the

unpredictable latencies of the message deliveries. The

characteristics of large scale distributed systems make fault

detection a difficult problem from several points of view. A

first aspect is the geographical distribution of resources and

users that implies frequent remote operations and data

transfers. These lead to a decrease in the system's capability

to detect faults, leading to the impossibility to manage correct

group communications and consensus. Another problem is

the volatility of the resources, which are usually available

only for limited periods of time. The system must ensure the

correct and complete execution of the applications even in the

situations when the resources are introduced and removed

dynamically, or when they are damaged. Solving these

problems still represents a research problem. The fault

detector must be very sensitive to dynamic network

conditions. In large scale distributed systems the probability

for messages being lost is higher than in case of traditional

systems: many resources being contributed means a higher

error rate; resources being dynamically introduced or

experiencing high loads leads to transitional errors; the

background noises can easily be mistaken for faults because

of the higher message delivering times. Another problem

relates to the flexibility of the applications being executed in

such systems. In large scale distributed systems different

applications must work concurrently despite of their various

objectives, requirements and politics. Such applications

inquire different levels of precisions in failure detection. For

example, a real-time application requires to be rapidly

informed when a process fails. On the other hand, a

distributed database could require a higher degree of

confidence that a given remote process has failed. A generic

failure detector support service must cope with the different

QoS requirements coming from various applications.

In this paper we present an innovative solution to solving the

requirements involved in obtaining a robust failure detector

designed for large scale distributed systems. Our failure

detection tool counts for all the aforementioned problems,

being particularly designed for highly dynamic large scale

distributed systems. Its architecture allows applications to

specify different QoS detection levels, while preserving

scalability, generality and non-intrusive characteristics.

The rest of this paper is structured as follows. Section 2

presents related work to the problem of designing failure

detectors for distributed systems. The next sections present

the proposed architecture and key elements of the

implementation of a robust failure detector, highlighting the

proposed models and protocols. Finally, in Section 5 we

present some conclusions and future work.

2. RELATED WORK

A failure detector is widely recognized as an oracle that can

intelligently suspect processes to have failed

(Chandra&Toueg, 1996). In distributed applications, failure

detection is generally implemented through the use of

directly invoked local services (unreliable local failure

detectors).

Fig. 1. Federation of unreliable failure detector modules.

The general strategy consists in attaching to each processes of

a distributed application a failure detection module (see

Figure 1). The failure detection module works asynchronous

and independent on the application flow and is responsible

with monitoring a subset of the processes in the system and

maintaining a list of those it currently suspects to have

crashed. A process can query its local failure detector module

at any time. Internally, the failure detector module maintains

a list of suspect processes that he suspects are crashed. The

suspect processes list is permanently updated such that, at

any time, new processes can be added and old ones removed.

For example, a process suspected to have crashed at time t

can be removed from the list at time t+1 (it is no longer

suspected). The failure detector is considered unreliable

(Chandra&Toueg, 1996) because is allowed to make

mistakes, to a certain degree. A module can erroneously

suspect some correct process (wrong suspicion) or can fail to

detect processes that are already crashed. At any given time

two failure detector modules may have different lists of

processes.

The most common implementation of local failure detection

is based on the heartbeat strategy. In this strategy every

failure detector module periodically sends a heartbeat

message to the other modules, to inform them that it is still

alive. When a module fails to receive a heartbeat from

another process for a predetermined amount of time (timeout)

it concludes the remote process crashed. There is a tradeoff,

however, for the timeout values being considered. If the

timeout is short then crashes are detected quickly, but there is

a high chance of suspecting of being crashed processes that

takes a longer time to respond (due to a possible high load for

example). Conversely, if the timeout is long, the chance of

wrong suspicions if low, but the detection time is

deteriorated. This approach does not consider also the

heterogeneity of distributed systems. The fact that the timeout

is fixed means that the failure detection mechanism is unable

to adapt to changing conditions. A long timeout in some

systems can turn out to be very short in a different

environment.

In the last years there have been many proposals to address

some of the problems of ensuring scalable failure detection.

In a large scale distributed system, consisting of many nodes,

it is impractical to let the failure detection modules monitor

each others. An alternative to this consists in arranging

processes into an hierarchical structure (such as tree, forest,

etc.) along which traffic is channeled. For example, one such

solution relies on the use of a two-level hierarchy and is

specifically designed for the Globus toolkit (Stelling, et al,

1998). However, being a detection scheme based on only a

two-level hierarchy, the proposed solution fails to take full

advantage of the hierarchical approach and, consequently, do

not scale well for large scale distributed systems.

An alternative technique for implementing failure detectors

comes in the form of gossip-like protocols. In this approach

processes randomly pick partners with whom they exchange

their information. The idea is that, with high probability,

eventually all processes obtain any piece of information. One

of the pioneering works in implementing gossip-style failure

detectors is (van Renesse, et al, 1998). In their work the

authors identified a variant specifically designed for large

scale distributed systems: the multilevel gossiping. The idea

is to define a multilevel hierarchy using the structure of

Internet domains and subdomains as defined by comparing IP

addresses. However, the protocol does not work well when a

large number of components crash or become partitioned

away.

An alternative approach to implementing failure detectors

comes in the form of adaptive protocols (Defago, et al, 2003).

These protocols are designed to adapt dynamically to their

environmental and, in particular, adapt their behavior to

changing network conditions. A protocol that adjusts the

timeout by using the maximum arrival interval of heartbeat

messages was proposed in (Fetzer, et al, 2001). The protocol

assumes a partially synchronous system model, being based

on the assumption of a bound on message delays. In (Chen, et

al, 2002) the authors proposed a different approach based on

a probabilistic analysis of network traffic. Their protocol uses

arrival times sampled in the recent past to compute an

estimation of the arrival of the next heartbeat. The timeout is

set according to the estimation and a safety margin, based on

application QoS requirements (e.g. upper bound on detection

time) and network characteristics (e.g., network load).

A distinctive category of detectors is represented by the

accrual failure detectors (Defago, et al, 2003)(Defago, et al,

2005). The family of accrual failure detectors consists of

detector modules that associate, to each of the monitored

processes, a real number value that changes over time. One

example of an implementation of an accrual failure detector

is the ĳ-failure detector (Defago, et al, 2003). The ĳ-failure

detector samples the arrival time of heartbeats and maintains

a sliding window of the most recent samples. The window is

used to estimate the arrival time of the next heartbeat. A

similar approach was also proposed in (Bertier, et al, 2002).

However, the proposed failure detectors are poorly adapted to

very conservative failure detection because of their

vulnerability to message losses. In practice message losses

tend to be strongly correlated (i.e., losses tend to occur in

bursts). A proposed accrual detector designed to handle this

problem is the k-failure detector (Hayashibara, et al, 2004).

The k-failure detector takes into account both messages

losses and short-lived network partitions, each missed

heartbeat contributing to raising the level of defined

suspicion according to a predetermined scheme.

An important issue with failure detectors is their scalability.

An approach that focuses on the scalability of failure

detection was proposed in (Bertier, et al, 2002). However, the

proposed system assumes simpler failure semantics such as

crash failures. In (Khanna, et al, 2007) the authors proposed a

different approach to failure detection, based on stateful

identification of the application state.

3. SYSTEM MODEL AND DEFINITIONS

System model. The system model being considered in this

paper is based on the one described in (Defago, et al, 2003).

We consider a distributed system consisting of a set of

processes ∏ = {p1,…pn}. The system assumes the existence

of some global time, known to all processes, the domain of

which, denoted by T, is an infinitely countable subset of real

numbers with no upper bound. We assume that processes

always make progress, and that at least į>0 time units elapse

between consecutive steps (the purpose of this being to

exclude the case where processes take an infinite number of

steps in finite time).

Failures. The failure model considered in this paper is based

on the model of described in (Chandra&Toueg, 1996). A

process can be correct or faulty. A process is faulty if its

behaviour deviates from its specification, and a process is

correct if it is not faulty. We say that a process fails when its

behaviour starts deviating from its specification. Faulty

processes never recover.

A failure pattern is a function F : T-> 2∏, where F(t) is the

set of processes that have failed before or at time t. The

function correct(F) denotes the set of correct processes

(processes that never belong to failure pattern F) while

faulty=∏-correct(F) denotes the set of faulty processes.

Failure detectors. In (Chandra&Toueg, 1996) the authors

define failure detectors as a collection of failure detector

modules, one attached to each process, that output

information on the failure pattern that occurs in an execution.

A failure detector module outputs information from a range R

of values. A failure detector history H with range R is a

function H: ∏ x T -> R, where H(p,t) is the value output by

the failure detector module of process p at time t. H is only

defined at times when the failure detector module provides an

answer to a query; the failure detector module may be

queried whenever process p takes a step, and each query

eventually results in an answer. The times at which queries 1,

2, … are answered are denoted by the sequence tp(1), tp(2), ...

Correct processes query their failure detector modules

infinitely-many times.

Binary failure detectors, such as those defined in

(Chandra&Toueg, 1996), output values from the range R =

2∏. If a process is part of the output set, it is suspected to

have failed, otherwise it is trusted. An S-transition occurs

when a trusted process becomes suspected and a T-transition

occurs when a suspected process becomes trusted. The

authors in [1] define a class hierarchy of unreliable binary

failure detectors, of which of particularly importance is the

one called ◊P (eventually perfect). The class is defined by the

set of failure detector histories that it permits, as specified by

the following two properties of completeness and accuracy.

(STRONG COMPLETENESS) Eventually every faulty

process is permanently suspected by all correct processes.

(EVENTUAL STRONG ACCURACY) There is a time after

which correct processes are never suspected by any correct

process.

Accrual failure detectors, such as those defined in (Defago, et

al, 2003), output values from a range R = (R+)∏ (infinite

range). In their case history is defined as H(q,t)(p) = slqp(t).

The failure detector module outputs non-negative real values,

with each value corresponding to a process and representing

the current suspicion level of that process.

Quality of service metrics for failure detectors. The authors

in (Chandra&Toeug, 1996) define metrics for the quality of

service of failure detectors. Quality of service quantifies how

fast a failure detector detects failures (completeness) and how

well it avoids wrong suspicions (accuracy). For example,

assuming the asynchronous model consisting of only two

processes, p and q, the defined metrics are:

• Detection time TD is the time that elapses since the crash

of p and until q begins to suspect p permanently. • Mistake recurrence time TMR measures the time

elapsed between two consecutives mistakes. • Mistake duration TM measures the time it takes for the

detector to correct a mistake. • Average mistake rate λM measures the rate at which a

failure detector makes mistakes. • Query accuracy probability PA is the probability that

the failure detector’s output is correct at a random time. • Good period duration TG measures the length of a good

period, in which a process is not suspected.

4. ARCHITECTURE OF THE FAILURE DETECTOR

The proposed architecture (see Figure 2) is based on the idea

of making the fault detector available as a service to

applications. such that any distributed application could then

use the failure detection capabilities of the failure detector.

The architecture is based on the idea of fault detection oracles

(Chandra&Toueg, 1996).

The architecture is composed of several failure detection

services running inside the distributed system. Each service is

responsible with monitoring only a subset of the processes

running inside the large scale distributed system and

provides, in the form of service functionality, information to

upper-level applications regarding the current suspected

processes. The architecture is composed of three layers.

Fig. 2. The architecture of the failure detection service.

A first layer of the architecture is represented by the

monitoring function of the detection scheme. At this layer

each failure detector is responsible with gathering

information about different processes running inside the large

scale distributed system. By process we mean either another

failure detector or a separate thread running inside a

distributed process of a larger application. The monitoring

capability is based on sending heartbeat messages to which

the remote process must respond. For that, each failure

detector sends heartbeat messages to gather information

about the state of the distributed processes. More details on

the implementation of the monitoring capability of a failure

detector process are presented in the next section.

In order to cope with the large nature of the underlying

distributed system, the failure detection services are grouped

in clusters, each failure detection service being responsible

with monitoring all or only a subset of the entire set of

processes running inside that particular cluster. The detection

scheme uses the advantages of accrual detectors, being able

to cope both with the changes in the underlying network, as

well as to the dynamic requirements of the applications using

the service capabilities of the failure detectors.

However, the failure of a process as detected by a particular

daemon can be attributed to several factors: the daemon does

not have a direct link anymore with the monitored process,

there is an increased background traffic that results in an

increase in the time needed for the process to respond back to

the daemon, the host on which the process runs experience a

high load and, for that, the process fails to respond in time,

etc. In order to cope with these problems we introduce a

second layer of functionality in the architecture. In order to

increase the level of confidence, at various moments of time

the detectors exchange information between them, using a

gossip-based approach, each one informing other detectors of

their current knowledge of suspected processes. Upon receive

of such an update a failure detector updates the local

suspicious levels. For example, a process wrongly suspects a

process of being failed because it does not have, from some

moment of time forward, a direct network connection with

that particular process. However, it further receives updates

from another failure detection daemon in which he is

informed that the process is still alive as it responds well to

the second detector.

The gossip-based approach ensures that the system is able to

detect errors such that: a failure detection service fails to

directly communicate with a monitored process, there is an

increased background networking traffic that results in an

increased time needed for the process to respond back, etc. At

various moments of time the detectors exchange information

between them, using a gossip-based approach, each one

informing other detectors of their current knowledge of

suspected processes. Upon receive of such an update a failure

detector updates the local suspicious levels.

Between clusters the information is propagated using

specially designated failure detection services, located at the

border of the cloud. In order to minimize the number of

exchanged messages, the information is propagated only on

requests coming from upper-level applications. This is

motivated by the current functionality of large scale

distributed applications. If we refer to Grid systems, a

distributed application is decomposed into several tasks that

are scheduled for execution using batching systems in one (or

few) clusters. This is because tasks generally communicate

mostly between them or with certain localized services and,

by scheduling the tasks of an application inside one cluster

(or a small number of closely situated clusters), the

communication delays are minimized. For large scale

distributed application the preferred way is to use a meta-

scheduler, but even in this case an application is scheduled

for execution in several clusters (if the application is big

enough) that are closely localized. In case of cloud

computing, an application is generally executed inside one

cloud, which in our approach will constitute one cluster.

Based on these observations, it is sufficient to let a failure

detection services monitor only other services located inside

the same cluster.

When an application or process needs information regarding

the suspicion level that a certain process from another cluster

failed it issues a request to a local failure detection service.

This service then forwards the request to a border failure

detection service from the second cluster (in our approach we

use a DNS-based naming approach for finding border

detectors) and obtains the value that he then sends back to the

application. This approach has two major advantages. By

using a propagation-on-request approach we minimize the

number of messages being exchanged. Then, by monitoring

only processes located in the same clusters, the probability of

failure detections due to long delivery delays is reduced.

Also, a solution in which each failure detector service

maintains states regarding all the processes inside a

distributed system is not practically feasible because the

failure detection services run on hosts having limited

amounts of resources (memory, cpu, etc.). The proposed

failure detection architecture also scales well because each

module is responsible with keeping only a small list of

confidence levels for several processes.

Fig. 3. The interoperability between the failure detection

service, application and various middleware services.

Finally, the last layer is represented by the service

capabilities being provided to various applications running on

top of the large scale distributed system. As in case of accrual

failure detectors (Defago, et al, 2005), we provide a complete

decoupling between monitoring and interpretation. The

failure detection architecture follows the SOA approach,

applications being able to send requests regarding current

suspicious levels of failures for certain processes from the

failure detectors services using a standardized service

approach. Also, this approach has the advantage of coping

well with various existing service-based middleware

platforms, providing several functionalities as presented in

Figure 3.

The solution is designed to interact with various services

provided by a possible underlying middleware services. For

example, in order to query and obtain the confidence level of

some process from another cluster a failure detector can use a

transport service provided by the middleware (such as the

GridFTP service provided by the Globus Toolkit), and in

order to obtain accurate results on the reasons for a process

failure it could interact with a monitoring service (such as

MDS4 service provided by Globus Toolkit).

The architecture is designed to scale well and provide timely

detection. For that, we combine the advantages of several

proposed failure detection solutions. We believe that, in order

to cope with the large scale nature of today’s distributed

systems, a failure detector must scale well and also the

probability of false detections must not be influence by the

number of monitored processes. For that, a gossip-based

protocol provides several advantages (a formal demonstration

is provided in (van Renesse, 1998): the probability that a

member is falsely reported as having failed is independent of

the number of processes; the algorithm scales in detection

time and in network load, and for large networks the

bandwidth used in the subnets is approximately constant.

We combine these properties with those introduced by the

accrual detectors. Such detectors provide a lower-level

abstraction that avoids the interpretation of monitoring

information (see Figure 4).

Fig. 4. Structure of the accrual failure detectors. Monitoring

and interpretation are decoupled. Applications interpret a

common value based on their own interpretation.

Some value is associated with each process that represents a

suspicion level, which is then left to the application to be

interpreted. In this way a real-time application could take

quicker decision on processes being considered failed, while

application requiring a high-level of confidence in their

decisions (such as a data warehouse synchronization service)

might require higher level of confidence that a process really

failed. By setting an appropriate threshold, applications can

then trigger suspicions and perform appropriate actions.

Alternatively, applications can directly use the value output

by the accrual failure detector as a parameter to their actions.

5. IMPLEMENTATION DETAILS

The building block for implementing the failure detection

monitoring capability is the accrual detector construction

(Defago, et al, 2005). An accrual failure detector outputs

values from a range R = (R+)∏ (infinite range). In their case

history is defined as H(q,t)(p) = slqp(t). The failure detector

module outputs non-negative real values, with each value

corresponding to a process and representing the current

suspicion level of that process.

As such, the monitored process p sends heartbeats at regular

intervals to the monitoring process q. Upon a query, the

detector at q simply returns the time that elapsed since the

reception of the last heartbeat. Unlike previous solutions, we

assume that processes can fail by crashing permanently, but

also that they can only experience temporary crashing, due to

high loads for example (in practice, a process that can not

respond for a certain amount of time is also considered failed,

since a process can not use any functionality provided by the

process). Informally, if p crashes, it stops sending heartbeats,

and this triggers an increase on a suspicion level associated

with that process. The suspicion level function satisfies the

following two properties (Defago, et al, 2003):

Property 1. (Accruement) If process p is faulty, then

eventually, the suspicion level slqp(t) is monotonously

increasing at a positive rate.

Property 2. (Upper bound) If process p is correct, then the

suspicion level slqp(t) is bounded.

The first property translates into the following. When p stops

sending heartbeats the suspicion level associated with it by

process q increases forever. In contrast, if p is correct, it is

possible to compute an upper bound on the maximal time

elapsed between any two consecutive heartbeats (property 2),

based on the characteristics of the execution.

Fig. 5. Information flow in the proposed implementation of

the failure detector.

Our implementation of the heartbeat accrual failure detector

works as follows. Each heartbeat that was not received

contributes partly to the suspicion level of the failure

detector. The contribution of a heartbeat H increases from 0,

meaning that H is not yet expected, to 1, meaning that H is

considered lost. The suspicion level is calculated as a sum of

all contributions. But, unlike previously other existing

implementations of accrual detectors, the suspicious level in

this case is not computed only from the local heartbeat

contributions, but also from contributions received from other

failure detectors located in the local cluster.

The contribution function is computed as follows. Each

failure detector maintains a local suspicious level value

slqp(t). The heartbeat messages are sampled by the detector in

order to estimate the time when the next heartbeat is expected

to arrive. For that the detector can use any of several

prediction methods. The predicted value for the next arrival

of a heartbeat message is further used for computing slqp(t):

}1(log,0max{)(10 +−= prednowqp tttsl (1)

This means that, as time passes and the heartbeat message fail

to arrive, slqp(t) will come closer to 1. This strategy is

described in Figure 5.

We next evaluated the accuracy of several prediction

algorithms using a Java class for each method. The program

runs as a background thread providing real time prediction

for sampling of the heartbeat values.

Simple Moving Average. A simple prior moving average

(SMA) is the unweighted mean of the previous n values. For

example, a 5-minute simple moving average of the heartbeat

is the mean of the previous 5 sampling values. Considering

the values are Lt, Lt-1, ..., Lt-4, the formula is

5

4321 −−−− ++++= ttttt LLLLL
SMA

.
(2)

While it is easy to implement and requires no additional

overhead, SMA’s performance is marginally satisfactory. By

the nature of the calculation, this algorithm produces results

that are both delayed and dampened. The algorithm has a

tendency to flatten local peaks as a result of the averaging

function, but the result generally follows the real trends.

Fig. 6. Heartbeat interarrival real times (red) and predicted

(blue) values using a restricted moving average.

Restricted Moving Average. Experimental results have shown

that the behavior of the simple moving average prediction

algorithm is not the desired one. The predicted value is

sometimes an increasing value, and the real value is actually

decreasing. To eliminate this behavior, a restriction on the

moving average algorithm has been introduced. If the

predicted value is higher than the last value, the predicted

value will become the last real value that has been provided.

When using this algorithm, the peak sensitivity problems

persist and the restriction itself is a big source of errors,

especially in the case of fast, high amplitude variations. In

some cases the predicted values and the real ones show

opposite trends (e.g. the real value increases but the predicted

value is lower than the previous one).

Weighted Moving Average. A weighted moving average

(WMA) is an average that has multiplying factors to give

different weights to different data points. The weights are

decreasing arithmetically as the values are older in time. In an

n-value weighted moving average, the last value has weight

n, the value before the last has weight n - 1, and so on.

12345

2345 4321 ++++
++++= −−−− ttttt LLLLL

WMA
.

(3)

Although this prediction algorithm is giving extra weight to

more recent data points, the predicted values are not very

accurate. The reason is that the recent past may not offer

sufficient information with regard to the next value of the

monitored parameter. The weighting procedure assumes that

more recent data is more significant, which in some cases

may not be the case, for example for rapid fluctuations.

Exponential Moving Average. In an exponential (weighted)

moving average (EMA) algorithm, the applied weights are

decreasing exponentially. In this way, a more recent heartbeat

arrival time is given much more importance than the

weighted moving average algorithm. In the same time the

algorithms does not discard older observations entirely. The

constant smoothing factor is the degree of weighing decrease

and is a number between 0 and 1. If the value at the time t is

Lt and the vales assigned to EMA at the same time is St, then

S1 will be undefined and S2 will be initialized as the average

of the first 5 values. The formula for calculating the

exponential moving average at any time periods t ≥ 2 is

11)1(−− ×−+×= ttt SLS αα
. (4)

Depending on the constant Į, older values have more or less

importance in the sum. If the smoothing factor is higher, the

older observations are discounted faster. While the

performance is generally better than the one expected from a

simple moving average algorithm, this method fails to

produce very accurate results when there is a significant

difference between values at consecutive time points. Good

results can be achieved by tuning the smoothing factor, if the

general behavior of the signal is known. For completely

random interarrival times, the results are only slightly better

than the ones produced by the moving average technique,

with the greatest error being produced mostly when the signal

varies abruptly after a period of little or no change.

In terms of behavior, when the network is stable, i.e., few

messages are lost, only one single heartbeat contributes to the

suspicion level significantly, and thus the suspicion level

reflects the contribution function. If the contribution function

adapts well to the variability in arrival times (as in case of

using an exponential moving average function), so will the

applications using the failure detector. On the other hand,

when the network is unstable with a lot of message losses, or

if the monitored process crashes, contributions for all missed

heartbeats but one will likely be close to 1. In this case, the

failure detector will give a count of missed heartbeats, and

the shape of the contribution function will be nearly

irrelevant. In order to cope with that situation, we introduced

another construction.

The construction is based on the use of a gossip-style

approach. In this approach, a failure detector forwards

information to other randomly chosen members of the group.

Each member occasionally broadcasts its list in order to be

located initially and also to recover from network partitions

(van Renesse, et al, 1998). In the absence of a broadcast

capability, the network could be equipped with a few gossip

servers, that differ from other members only in that they are

hosted at well known addresses, and placed so that they are

unlikely to be unavailable due to network partitioning. This

step ensures that the detectors know at least a subset of the

entire group of failure detectors running in the local cluster

(detectors themselves can fail, for this reason we state subset

in this statement).

Whenever the suspicion level slqpt reaches a certain threshold

value TV, the failure detectors randomly selects several other

failure detectors (for example, by tossing a weighted coin

(van Renesse, et al, 1998) and sends its current value. It does

not continue to increase the suspicion level computed using

the accrual algorithm previously described until a certain

condition occurs.

Fig. 7. The gossip-based information flow of local suspicious

level values slqp(t).

The gossiping has the role of eliminating false positives. A

failure detector q sends out a message saying he suspects

process p of being failed. Another failure detector q’

eventually returns back an answer (or submits a message that

its suspicion level for the same process crossed the threshold

TV) containing its currently computed suspicion level slq’pt.

At any moment of time the current suspicion level is

considered to be the minimum value from the set of values

obtained in this algorithm (the values received from other

detectors, together with the locally computed suspicion level

value). At some time a failure detector might receive again a

heartbeat message from the suspected process. In this point

the suspicion level starts to decrease, meaning the value again

crosses the suspicion level TV. Again, it selects a random

number of failure detectors and sends a message containing

the current slqpt value.

As demonstrated in (van Renesse, et al, 1998), this protocol

does not impose a significant amount of load on the network

bandwidth and is resilient against network partitions.

However, unlike a basic gossip-based failure detector, it does

not suffer from the disadvantage that failures have a negative

influence on the number of rounds needed for information to

be disseminated through the system, and hence on failure

detection times across subnets and domains (because each

detector already know a local level of confidence previously

computed).

In order to better understand the behavior of the presented

failure detection approach we analyze two cases. Assuming

two detectors monitor the same process. When a link fails

between the first detector and the process the value slqpt will

increase from 0 to 1. In the same time the suspicion level, in

case of the second detector, will remain somewhere around 1.

When the two detectors exchange information they will result

in both knowing that one process still reaches the process

and, thus, the process is still alive.

Next, we consider the case when a process runs on a

workstation that becomes increasingly loaded. In this case the

error is transient. All failure detectors will correctly suspect

the process of being failed, as it will not send heartbeats

anymore. When the workstation becomes free again the

process will eventually start sending heartbeat messages. In

this case the first detector that receives a heartbeat message

will inform the other the process is alive, thus the time taken

by the detectors to correctly detect the good health of the

process is reduced compared to other existing detection

approaches.

5. CONCLUSIONS

As society increasingly becomes dependent of distributed

systems (Grid, P2P, network-based), it is becoming more and

more imperative to engineer solutions to achieve reasonable

levels of dependability for such systems. Failure detection

constitutes a fundamental abstraction for fault tolerant

distributed systems.

In this paper we presented a robust failure detection

architecture that combines the power of existing approaches:

fast propagation of information as offered by gossip-based

failure detection approaches together with the decoupling of

monitoring and interpretation as offered by the accrual failure

detection solutions. The solution is based on several

prediction functions and a new alternative of computing the

contribution function. The approach has several advantages,

among which we mention a better estimation of the

interarrival times of heartbeat messages and an increase level

of confidence in the suspicions of processes being lost.

The approach considers both the various networking

conditions of large scale distributed systems and the different

QoS detection requirements coming from various

applications. In our approach the interpretation of the

suspicion level is left to the distributed application using it. In

this way multiple applications, having different QoS

requirements, use the same failure detectors in different

ways. The application could take either conservative (slow

and accurate) or aggressive (fast, but inaccurate) decisions.

In order to cope with the large scale and dynamic nature of

contemporary distributed systems, our solution considers a

clustering of the detection functionality, with detectors being

responsible with only subsets of the entire monitored

processes of the underlying large scale distributed system.

In order to cope with transient errors, but also with the failure

of network links we presented a solution in which we

combined the detection function with an approach in which

the detector exchange information using a gossip-style

approach. The solution was further extended with a

hierarchical information dissemination approach, in which

information belonging to other clusters can be propagated

from cluster-to-cluster when requested by applications. In

this way, our solution has also the advantage of imposing a

limited number of messages being exchanged in the network,

mostly only on local levels, such that to be as non-intrusive

as possible regarding the functionality of the entire

distributed system.

In order to be of better use, the proposed failure detection

offer capabilities to various applications as a service. This

means that the framework can be easily incorporated in

various existing distributed systems, and also can use the

capabilities offered by various middleware architectures

(such as it could use the transport capabilities offered by a

transport service or can adapt the suspicion levels based on

monitoring results obtained from a monitoring service, or can

output current suspicion levels in a monitoring repository).

In the future, we aim to fully deploy this solution in various

existing system and compare the obtained performances

against various existing solutions. We also plan to extend the

architecture in order to include not only detection

capabilities, but also means to allow application to

automatically asses various recovery and masking

(redundancy) mechanisms.

REFERENCES

Chandra, T.D., Toueg, S. (1996). Unreliable failure detectors

for reliable distributed systems. J. ACM, 43(2), pp. 225--

267. ACM.

Defago, X., Hayashibara, N., Katayama, T. (2003). On the

Design of a Failure Detection Service for Large-Scale

Distributed Systems. Intl. Symp. Towards Peta-bit Ultra

Networks (PBit 2003), pp. 88--95, IEEE Computer

Society.

Defago, X., Urban, P., Hayashibara, N., Katayama, T. (2005).

Definition and Specification of Accrual Failure

Detectors. 2005 International Conference on Dependable

Systems and Networks (DSN’05). IEEE Computer

Society.

Stelling, P., Foster, I., Kesselman, C., Lee, C., von

Laszewski, G. (1998). A fault detection service for wide

area distributed computations. 7th IEEE Symp. on High

Performance Distributed Computing, pp. 268—278.

IEEE Computer Society.

van Renesse, R., Minsky, Y., Hayden, M. (1998). A gossip-

style failure detection service. Middleware’98, pp. 55--

70, IEEE Computer Society.

Fetzer, C., Raynal, M., Tronel, F. (2001). An adaptive failure

detection protocol. 8th IEEE Pacific Rim Symp. on

Dependable Computing, pp. 146--153, IEEE Computer

Society.

Chen, W., Toueg, S., Aguilera, M. K. (2002). On the quality

of service failure detectors. IEEE Transactions on

Computers, 51(2), pp. 13--32, IEEE Computer Society.

Bertier, M., Marin, O., Sens, P. (2002). Implementation and

performance evaluation of an adaptable failure detector.

Intl. Conf. on Dependable Systems and Networks

(DSN’02), pp. 354--363, IEEE Computer Society.

Hayashibara, N., Defago, X., Katayama, T. (2004). Flexible

Failure Detection with K-FD. Research Report IS-RR-

2004-006.

Khanna, G., Laguna, I., Arshad, F.A., Bagchi, S. (2007).

Stateful Detection in High Throughput Distributed

Systems. 26th IEEE Intl. Symp. on Reliable Distributed

Systems, pp. 275--287, IEEE Computer Society.

