Multiplicative Noise Removal via a Learned Dictionary

Abstract : Multiplicative noise removal is a challenging image processing problem, and most existing methods are based on the maximum a posteriori formulation and the logarithmic transformation of multiplicative denoising problems into additive denoising problems. Sparse representations of images have shown to be efficient approaches for image recovery. Following this idea, in this paper, we propose to learn a dictionary from the logarithmic transformed image, and then to use it in a variational model built for noise removal. Extensive experimental results suggest that in terms of visual quality, peak signal-to-noise ratio, and mean absolute deviation error, the proposed algorithm outperforms state-of-the-art methods.
Type de document :
Article dans une revue
IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2012, 21 (11), pp.4534-4543. <10.1109/TIP.2012.2205007>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00765087
Contributeur : Lionel Moisan <>
Soumis le : vendredi 14 décembre 2012 - 10:24:31
Dernière modification le : mardi 11 octobre 2016 - 14:12:16

Identifiants

Collections

Citation

Yu-Mei Huang, Lionel Moisan, Michael Ng, Tieyong Zeng. Multiplicative Noise Removal via a Learned Dictionary. IEEE Transactions on Image Processing, Institute of Electrical and Electronics Engineers, 2012, 21 (11), pp.4534-4543. <10.1109/TIP.2012.2205007>. <hal-00765087>

Partager

Métriques

Consultations de la notice

125