
HAL Id: hal-00764994
https://hal.science/hal-00764994v2

Submitted on 13 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

List Based Optimisers - Experiments and Open
Questions
Maurice Clerc

To cite this version:

Maurice Clerc. List Based Optimisers - Experiments and Open Questions. 2013. �hal-00764994v2�

https://hal.science/hal-00764994v2
https://hal.archives-ouvertes.fr

List Based Optimisers - Experiments and Open

Questions

Maurice Clerc

13th September 2013

Abstract

For any iterative stochastic optimisation algorithm, it is possible to replace
the Random Number Generator (RNG) that is used by a prede�ned short list of
numbers, used cyclically. We present here some experiments to check this approach.
The results show that it may indeed be interesting, for the same list can be used
for variants of a given problem, and even for di�erent problems. However, there
are still some important open questions, in particular about the possible methods
to built the lists, which are, for the moment, quite empirical.

1 Motivation and approach

In the real world, engineers and practitioners have often to solve the same kind of optimi-
sation problem, again and again, with just small variations. Also, for some applications,
a hardware implementation is needed, which should ideally be small, quick, and deter-
ministic. We show here that is possible to transform two simple iterative stochastic
methods, namely Particle Swarm Optimisation (PSO), and Adaptive Population-based
Simplex (APS), into even simpler ones that has these three features. To do that, we �rst
present the concept of list based optimiser, and then some experiments and their results,
which are quite good. Building �good� lists is however still challenging, and we suggest
some empirical and semi-empirical methods.

2 List Based Optimisers

Most of stochastic optimisers, make use of a coded random number generator (RNG),
like KISS [7], or Mersenne-Twister[8], or the ones that are embedded in a language like
C. As they are not based on a hardware system, they are in fact deterministic, at least
if we always keep the same seed. They generate a long list of pseudo-random numbers
(typically in [0, 1]), whose length is ideally far bigger than what we need to solve a
problem, even if the algorithm is ran several times. In such a case all runs are di�erent,
and we do hope that it improves the probability to �nd a good solution.

1

So, we can in fact consider we have a prede�ned list of numbers in [0, 1], say L =
(r1, r2 · · · , rn). During the optimisation process, whenever we need a �random� number,
we pick it sequentially and cyclically in L, i.e. we pick r1, then r2, ..., then rn, then again
r1, etc.. In order to avoid any confusion with true random numbers, from now on we will
call them l-random numbers. The idea here is to reduce as much as possible the length of
the list L, and on the same time, to improve the performance. So, we will speak of List
Based Optimiser (LBO) only when L is relatively small (typically at most one hundred
of l-random numbers for a 10D problem).

The length of the list L can be extremely short. For example, for the Tripod problem
(6.3.1), which is only two dimensional (but nevertheless not that easy), and a simple
List-based PSO, the minimal size is probably 4. A possible such �magic� list is

L4 = (0.30526339730324419941,
0.00779071032578351665,
0.66636005245184826151,
0.48627235377349220524)

with a classical RNG like KISS, the success rate is 97% (over 100 runs). With L4,
the run is successful. One could say that the �success rate� is 100%, but, of course, as
the process is completely deterministic, if we launch it again we will get exactly the same
result, so its �success rate� is either 0% or 100%. However, we could use the same list, but
by starting from another element. Then, there are at most |L| di�erent runs, where |L| is
the length of the list L. Some of them may be successes, and the others may be failures.
This way, we can de�ne a l-success rate, whose value is necessarily 100 k

|K| , where k is an

integer from [0, |L|]. Note that the meaning is not the same that the one of the classical
success rate. For the later, no matter how big is it, if you launch the algorithm just once,
you can not be completely sure that the run will be successful. On the contrary, as soon
as the l-success rate is not null, if you launch the |L| di�erent runs, you are absolutely
sure that at least one run will be successful.

In our example, it means we can have four di�erent runs. Here, the l-success rate is
100%. So, we could say that this list is perfect : no matter on which element you start,
the run is always successful. Having a perfect list may be interesting if we want to obtain
several acceptable solutions.

We will now present and comment more experiments. As we will see, what is really
interesting is that the same list is sometimes usable for several problems. Building such
a list is not always easy, and, for the moment, there are only empirical methods. Also,
it seems even more di�cult to �nd a list that is usable for several methods.

3 Experiments with LB-PSO

We start from an already simple PSO ([2]). We can easily transforming it into a list based
one. Also, the algorithm has been simpli�ed. The C source code is available on line [3].
Note that the code contains a lot of options (like two di�erent RNGs for comparison,

2

Table 1: For each quasi-real-world problem, it is possible to de�ne a short list that gives
results equivalent to the ones with a classical RNG. Sometimes it is also pretty good for
another problem but this is not the general case. When using KISS, the success rate is
over 100 runs. When using a list, the table presents the l-success rate.

Problem D FEmax ε RNG L4 L9 L17

Lennard-Jones 15 30000 10−2 99% 0% 0% 100%

Gear Train 4 20000 10−11 15% 0% 11.111% 5.882%

Compression Spring 3 20000 10−10 56% 0% 0% 35.294%

Pressure Vessel 4 30000 10−6 71% 0% 88.889% 70.588%

Frequency Identi�cation 6 50000 10−6 24% 0% 0% 11.765%

di�erent kinds of initialisation, di�erent topologies, etc.), just for test purpose. So it is
longer that it could be. In short, the main points of the basic algorithm are:

• no RNG, but a list of l-random numbers, used cyclically, as said;

• the topology is the old classical bi-directional ring (not a variable one like in more
recent PSO versions);

• the swarm size is 40 (not adaptive as in some PSO versions);

• the initial velocity of each particle is set to zero.

The table 1 gives the results for �ve classical quasi-real-world problems (the lists that are
used are given in the 6). On the one hand, one may note that there is no clear relationship
between the dimension and the list size, but, on the other hand, nothing proves that the
lists used here are the shortest possible ones. Whether such a relationship does exist
or not (or with the number of local minima, or with the relative sizes of the attraction
basins) is an open question. We can see that the same list L17 can be used for the �ve
problems. Moreover, if this list is used �as it is�, i.e. just once by starting from the
beginning, the run is successful for each function. Another good news, from a practical
point of view, is that when a given problem is slightly modi�ed, the same list may be
still valid as seen on the table 2.

4 Experiments with LB-APS

For PSO, we have specially written a simpli�ed version. Let us try now to start from
an existing stochastic method, based on a very di�erent principle. APS (Adaptive
Population-based Simplex) is in fact already a simpli�cation of the method described
in [6]. The C code used here is exactly the one available on [1], except that the RNG
is replaced by a list. In particular it means that the population size is automatically
computed, depending on the dimension of the problem. In such a case, it is probably
better to use two lists: one for initialisation, and one for the search itself.

3

Table 2: A list is really interesting when it is valid for several variants of a given problem.
Here, for the Gear Train problem, L9 is usable with di�erent β and γ values. The l-success
rate is given over the nine possible runs. In all cases, the �rst run (i.e. starting from the
beginning of the list) is successful.

β γ L9 Best solution x∗ f (x∗)

6.0 2 100% (30, 12, 36, 60) 8.57× 10−35

3.5 100% (30, 12, 36, 60) 2.41× 10−60

6.931 2 11.111% (17, 21, 55, 45) 2.7× 10−12

3 100% (15, 21, 56, 39) 1.14× 10−13

3.5 100% (24, 13, 45, 48) 5.78× 10−14

7.2 2 88.889% (12, 25, 48, 45) 3.80× 10−35

2.5 100% (23, 16, 50, 53) 9.44× 10−44

7.5 2 100% (16, 29, 60, 58) 3.45× 10−36

Table 3: A list that works for LB-PSO does not necessarily work for LB-APS, and
vice-versa.

Problem RNG L4 L9 L17 L25 L25 with LB-PSO

Tripod 96% 25% 0% 58.824% 16% 88%

Lennard-Jones 58% 0% 0% 0% 8% 0%

Gear Train 52% 0% 0% 0% 20% 4%

Compression Spring 80% 0% 0% 0% 8% 0%

Pressure Vessel 100% 0% 0% 0% 68% 4%

Frequency Identi�cation 47% 0% 0% 0% 4% 0%

4

4.1 Generating �good� lists

For the moment, there is no sure way to build a �good� list, i.e. valid for several kinds
of problems, at least for a given method. Here are the ones that have been used for this
study. For each method, the most tedious point is to �nd the right size for the list. We
have to try a lot of di�erent ones.

4.1.1 Purely empirical methods

Let |L| be the length of the list we are looking for. We divide]0, 1[(i.e. without 0, and
without 1) into |L| intervals, and in each interval we choose a number at random. Then
we randomly permute these |L| numbers to build the list. For these two phases, �random�
means �according to any decent RNG� (in this study, Mersenne Twister). The intervals
may be of the same length. However, experimental results suggests that the �rst one and
the last one should be smaller than the other ones. For example, for a two dimension
problems, we can de�ne the four intervals {]0, 0.2[, [0.2, 0.5[, [0.5, 0.8[, [0.8, 1[}.

For a given small problem, this method may be enough. For example, for the Tripod
problem, you can easily �nd that with the following list

L4b = (0.915702,
0.394833,
0.514620,
0.013374)

the performance is 100%, as with the L4 seen in the section 2. We can also de�ne
just three intervals, namely �small�, �middle�, and �high� values. For example, L17, which
gives a perfect result with LB-PSO for the �ve problems used here (and also for Tripod),
has been de�ned by combining three random (uniform) selections: six numbers in]0, 2ε],
six numbers in]0.5− ε, 0.5 + ε] , and �ve numbers in]1− 2ε, 1[, with ε = 0.01. And
then, again, all these numbers have been randomly permuted. More generally, it seems
that using a non-uniform distribution is more e�cient.

4.1.2 Semi-empirical methods

If we have a look at a �good� list obtained by some of the previous methods, we can see
that they are oscillating in]0, 1[between small and high values, as shown on the �gure
4.1

Therefore, it is tempting to apply a mathematical formula that generates similar lists.
An easy way is to build an arithmetic progression by starting from a irrational1 value
smaller than 1, say d, which can be also the di�erence, and then �split� it into]0, 1[{

r0 = d
ri+1 = if (ri + d) > 1 then (ri + d− 1) else (ri + d)

(4.1)

1With an irrational value we are sure to never generate twice the same number.

5

Figure 4.1: An empirical �good� list (L17).

For example L25 has been built with d =
√
2
2 . Note that if you built this way L24 and

L26, they are both not as good (null l-success rate for some of our �ve problems). For
Tripod and LB-APS, the same method �nds a list of size three. With

L3 = {0.12132, 0.70710, 0.41421}

the l-success rate is 66.67% (i.e. 2/3, the third run, starting from 0.041421, fails). The
�rst run �nds an acceptable solution (error 2.08 × 10−5) after 2565 �tness evaluations.
Actually, as the only number we need to de�ne is d, what could say that to solve the
problem just one number is enough (see the Annexe for more examples).

4.1.3 Meta-optimisation

We consider the search space]0, 1[
|L|
. Each point of this search space is a possible list,

which de�nes a list based optimiser when replacing the RNG of our stochastic optimiser.
We apply it many times to all the problems of the benchmark, in order to compute an
averaged performance, which can be �mean l-success rate AND inverse of variance of the
l-success rates�. The aim of this meta-optimisation is to �nd the point of the search space
(i.e. the list) that maximises this performance. Of course, this process is very computer
time consuming, but we have to do it just once. At least, we can more easily apply this
method to just one problem. For example, for Tripod, it �nds L4, which is then probably
one of the shortest possible perfect lists for this problem and LB-PSO.

5 Open questions

The above experiments (and more not presented here) raise several questions, theoretical
and practical. We assume that we have a set of methods (stochastic algorithms) and a

6

Figure 4.2: Semi-empirical list (L25), generated thanks to an arithmetical progression

whose di�erence is
√
2
2 .

set of problems (benchmark).

• if the original method is successful at least once on a problem, it means that the
set of lists that can successfully replace the RNG for this problem is not empty.
But what is the size of the shortest list(s) of this set? And how to build such a
list?

• for a given method, is there a list that can successfully replace the RNG on the
whole benchmark? If so, how to build such a list? If not, how to build at least a
�good� list (successful on as many problems as possible)?

• it is not rare that even if a list L is not very good, a sub-list (of consecutive numbers)
is better. But to �nd such a sub-list is there a clever way than exhaustive search?

6 Appendix

6.1 When one number (and a formula) is enough

We have seen that thanks to an arithmetical progression de�ned by just one number

d =
√
2
2 , and the formula 4.1, we can generate a very short list (|L| = 3) which is enough

for LB-PSO to solve the Tripod problem. Here are a few more examples. Some problems
are coming from the CEC 2005 benchmark [11]. They all are shifted. Note that in their
de�nitions the maximum number of �tness evaluations is linearly increasing with the
dimension. As we can see on the table 4, even for relatively di�cult problems short lists
are usable. For example exactly the same list of length six can be used for the four �rst

7

problems. It is not shown here, but similar results can be obtained with some other
�seeds�, for example d = e

10 .

Table 4: Some results with LB-PSO and �nite lists generated by an arithmetical progres-

sion based on d =
√
2
2 , and used cyclically. The table gives the length |L| of the smallest

list for which the l-success rate is not null, and this l-success rate itself. Remember that
it may nevertheless be null for a longer list. D is the dimension of the search space for
the CEC 2005 problems.

(a) CEC 2005 problems.

Problem D = 5 D = 10 D = 30

Sphere (F1) 6 (100%) 11 (100%) 31 (100%)
Schwefel (F2) 6 (100%) 11 (27.27%) 37 (83.78%)

Schwefel +noise (F4) 6 (83.33) 19 (47.37%) >100
Rosenbrock (F6) 6 (33.33%) 19 (5.26%) 37 (2.70%)
Rastrigin (F9) 11 (18.18%) >100 >100

(b) Other problems used in this study.

Problem |L| (l-success rate)
Tripod 3 (33.33%)

Lennard-Jones 11 (100%)
Gear Train 13 (7.69%)

Compression Spring 6 (16.66%)
Pressure Vessel 7 (100%)

Frequency Identi�cation 18 (5.56%)

Actually, using one number as �seed�, and then a formula to generate pseudo-random
numbers is exactly what are doing all coded RNGs. However, they use very complicated
formulae so that the generated numbers seem to be as random as possible. But it may
be not necessary in the context of stochastic optimisation. This is a bit out of the scope
of this paper, so we just present a few results in the table 5. For some problems the
performance is signi�cantly better than with a classical RNG (see table 1). But also
sometimes signi�cantly worse. Nevertheless it suggests it may be worth investigating
this approach.

6.2 Some lists

L9 (empirical)

0.9046044347 0.4113702427 0.5567391497 0.8074334206 0.2958179712

0.7310219268 0.377415836 0.0002342685 0.5491584423

8

Table 5: Some results with LB-PSO and in�nite lists generated by an arithmetical pro-

gression based on d =
√
2
2 . Here the success rate is the classical one, estimated over 100

runs.

(a) CEC 2005 problems.

Problem D = 5 D = 10 D = 30

Sphere (F1) 100% 100% 100%
Schwefel (F2) 100% 100% 99%

Schwefel +noise (F4) 100% 0% 0%
Rosenbrock (F6) 11% 4% 0%
Rastrigin (F9) 39% 0% 0%

(b) Other problems used in this study.

Problem Success rate

Tripod 100%
Lennard-Jones 98%
Gear Train 7%

Compression Spring 11%
Pressure Vessel 3%

Frequency Identi�cation 14%

L17 (empirical)

0.015736 0.496893 0.500413 0.990438 0.495484 0.490454 0.982801

0.018933 0.000385 0.495026 0.997142 0.005010 0.498098 0.014213

0.990877 0.1989995 0.991221

L25 (generated by an arithmetic progression)

0.7071067812 0.4142135624 0.1213203436 0.8284271247 0.5355339059

0.2426406871 0.9497474683 0.6568542495 0.3639610307 0.0710678119

0.7781745931 0.4852813742 0.1923881554 0.8994949366 0.6066017178

0.3137084990 0.0208152802 0.7279220614 0.4350288425 0.1421356237

0.8492424049 0.5563491861 0.2634559673 0.9705627485 0.6776695297

6.3 Test problems

6.3.1 Tripod (2D)

The function to minimise is

9

f (x) = 1−sign(x2)
2 (|x1|+ |x2 + 50|)

+ 1+sign(x2)
2

1−sign(x1)
2 (1 + |x1 + 50|+ |x2 − 50|)

+ 1+sign(x1)
2 (2 + |x1 − 50|+ |x2 − 50|)

with {
sign (x) = −1 if x ≤ 0

= 1 else

The search space is [−100, 100]2 ,and the solution point is (0,−50), on which the
function value is 0. This function has also two local minima. In this study, the maximum
number of �tness evaluations (when using a RNG) is 10,000, and the acceptable error is
10−4. Any run that �nds this error value (or a smaller one) is said to be successful.

6.3.2 Lennard-Jones

For more details, see for example [5]. The function to minimise is a kind of potential
energy of a set of N atoms. The position Xi of the atom i has tree coordinates, and
therefore the dimension of the search space is 3N . In practice, the coordinates of a point x
are the concatenation of the ones of the Xi. In short, we can write x = (X1, X2, . . . , XN),
and we have then

f (x) =

N−1∑
i=1

N∑
j=i+1

(
1

‖Xi −Xj‖2α
− 1

‖Xi −Xj‖α

)

In this study N = 5, α = 6, and the search space is [−2, 2]15. The objective value is
-6, and the acceptable error 10−2.

6.3.3 Gear Train

For more details, see[10, 9]. The function to minimise is

f (x) =

∣∣∣∣ 1β − x1x2
x3x4

∣∣∣∣γ
The search space is {12, 13, . . . , 60}4. In the original problem, β = 6.931, and γ = 2.

The objective value is 0, although it can not be reached, and the acceptable error is
10−11.

6.3.4 Compression Spring

For more details, see[10, 4, 9]. There are three variables

x1 ∈ {1, . . . , 70} granularity 1
x2 ∈ [0.6, 3]
x3 ∈ [0.207, 0.5] granularity 0.001

10

and �ve constraints

g1 :=
8CfFmaxx2

πx3
3

− S ≤ 0

g2 := lf − lmax ≤ 0
g3 := σp − σpm ≤ 0

g4 := σp − Fp

K ≤ 0

g5 := σw − Fmax−Fp

K ≤ 0

with

Cf = 1 + 0.75 x3

x2−x3
+ 0.615x3

x2

Fmax = 1000
S = 189000
lf = Fmax

K + 1.05 (x1 + 2)x3
lmax = 14

σp =
Fp

K
σpm = 6
Fp = 300

K = 11.5× 106
x4
3

8x1x3
2

σw = 1.25

and the function to minimise is

f (x) = π2x2x
2
3 (x1 + 1)

4

The best known solution is (7, 1.386599591, 0.292) which gives the �tness value 2.6254214578.
This is the objective here, and the acceptable error is 10−10. To take the constraints into
account, a penalty method is used.

6.3.5 Pressure Vessel

Just in short. For more details, see[10, 4, 9]. There are four variables

x1 ∈ [1.125, 12.5] granularity 0.0625
x2 ∈ [0.625, 12.5] granularity 0.0625
x3 ∈]0, 240]
x4 ∈]0, 240]

and three constraints

g1 := 0.0193x3 − x1 ≤ 0
g2 := 0.00954x3 − x2 ≤ 0
g3 := 750× 1728− πx23

(
x4 +

4
3x3
)
≤ 0

The function to minimise is

11

f (x) = 0.6224x1x3x4 + 1.7781x2x
2
3 + x21 (3.1611x4 + 19.84x3)

The analytical solution is (1.125, 0.625, 58.2901554, 43.6926562) which gives the �tness
value 7,197.72893, which is therefore the objective. The acceptable error is 10−6. To take
the constraints into account, a penalty method is used.

6.3.6 Frequency modulation sound parameter identi�cation

For more details, see for example [5]. The function to minimise is

f (x) =

100∑
t=0

(y (t)− y0 (t))2

with θ = π/50, and{
y (t) = x1 sin (x2tθ + x3 sin (x4tθ + x5 sin (x6tθ)))
y0 (t) = sin (5tθ + 1.5 sin (4.8tθ + 2 sin (4.9tθ)))

The search space is [−6.4, 6.35]6. Obviously, a solution point is x∗ = (1, 5, 1.5, 4.8, 2, 4.9),
with f (x∗) = 0, but there are in fact several ones, for example x∗ = (−1,−5, 1.5,−4.8,−2, 4.9).
They all are quite di�cult to �nd. The acceptable error is 10−6.

References

[1] APS. Adaptive Population-based Simplex, http://aps-optim.info.

[2] D. Bratton and J. Kennedy. De�ning a standard for particle swarm optimization.
In IEEE Swarm Intelligence Symposium, pages 120�127, June 2007.

[3] Maurice Clerc. Math Stu� about PSO, http://clerc.maurice.free.fr/pso/.

[4] Maurice Clerc. Particle Swarm Optimization. ISTE (International Scienti�c and
Technical Encyclopedia), 2006.

[5] S. Das and P. N. Suganthan. Problem De�nitions and Evaluation Criteria for CEC
2011 competition on testing evolutionary algorithms on real world optimization
problems. Technical report, Jadavpur University, Nanyang Technological Univer-
sity, 2010.

[6] Changtong Luo and Bo Yu. Low dimensional simplex evolution: a new heuristic for
global optimization. Journal of Global Optimization, 52(1):45�55, January 2012.

[7] G. Marsaglia and A. Zaman. The KISS generator. Technical report, Dept. of Statis-
tics, U. of Florida, 1993.

12

[8] M. Matsumoto and T. Nishimura. Mersenne Twister: a 623-dimensionally equidis-
tributed uniform pseudo-random number generator. ACM Transactions on Modeling

and Computer Simulation, 8 (1):3�30, 1998.

[9] Godfrey C. Onwubolu and B. V. Babu. New Optimization Techniques in Engineer-

ing. Springer, Berlin, Germany, 2004.

[10] E. Sandgren. Non linear integer and discrete programming in mechanical design
optimization, 1990. ISSN 0305-2154.

[11] PN Suganthan, N Hansen, JJ Liang, K Deb, YP Chen, A Auger, and S Tiwari.
Problem de�nitions and evaluation criteria for the CEC 2005 special session on real
parameter optimization. Technical report, 2005.

13

