D. Aregba-driollet, M. Briani, and R. Natalini, Asymptotic High-Order Schemes for $2\times2$ Dissipative Hyperbolic Systems, SIAM Journal on Numerical Analysis, vol.46, issue.2, pp.869-894, 2008.
DOI : 10.1137/060678373

G. Bretti, R. Natalini, and M. Ribot, A Numerical Scheme for a Hyperbolic Relaxation Model on Networks, AIP Conf. Proc. 1389, pp.1412-1415, 2011.
DOI : 10.1063/1.3637886

A. Chauviere and L. Preziosi, Mathematical framework to model migration of cell population in extracellular matrix, Chapter Cell mechanics. From single scale-based models to multiscale modeling, pp.285-318, 2010.

R. Dáger and E. Zuazua, Wave propagation, observation and control in 1-d flexible multi-structures, ) [Mathematics & Applications, 2006.

Y. Dolak and T. Hillen, Cattaneo models for chemosensitive movement, Journal of Mathematical Biology, vol.46, issue.2, pp.153-170, 2003.
DOI : 10.1007/s00285-002-0173-7

F. Filbet, P. Laurençot, and B. Perthame, Derivation of hyperbolic models for chemosensitive movement, Journal of Mathematical Biology, vol.5, issue.2, pp.189-207, 2005.
DOI : 10.1007/s00285-004-0286-2

A. Gamba, D. Ambrosi, A. Coniglio, A. De-candia, S. Di-talia et al., Percolation, Morphogenesis, and Burgers Dynamics in Blood Vessels Formation, Physical Review Letters, vol.90, issue.11, pp.118101-118102, 2003.
DOI : 10.1103/PhysRevLett.90.118101

M. Garavello and B. Piccoli, Traffic flow on networks, AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences (AIMS), vol.1, 2006.

L. Gosse, Asymptotic-Preserving and Well-Balanced scheme for the 1D Cattaneo model of chemotaxis movement in both hyperbolic and diffusive regimes, preprint, p.528684, 2010.

L. Gosse, Well-balanced numerical approximations display asymptotic decay toward Maxwellian distributions for a model of chemotaxis in a bounded interval, preprint, p.551675, 2011.

J. M. Greenberg and W. Alt, Stability results for a diffusion equation with functional drift approximating a chemotaxis model, Transactions of the American Mathematical Society, vol.300, issue.1, pp.235-258, 1987.
DOI : 10.1090/S0002-9947-1987-0871674-4

I. Guaraldo, Some analytical results for hyperbolic chemotaxis model on networks PhD Thesis, p.2012

F. Guarguaglini and R. Natalini, Nonlinear transmission problems for quasilinear diffusion problems. Networks and heterogeneous media, pp.359-381, 2007.

F. Guarguaglini, R. Natalini, C. Mascia, and M. Ribot, Stability of constant states and qualitative behavior of solutions to a one dimensional hyper-bolic model of chemotaxis, Discrete Contin. Dyn. Syst. Ser. B, pp.12-39, 2009.

T. Hillen, HYPERBOLIC MODELS FOR CHEMOSENSITIVE MOVEMENT, Mathematical Models and Methods in Applied Sciences, vol.12, issue.07, pp.1007-1034, 2002.
DOI : 10.1142/S0218202502002008

T. Hillen, C. Rohde, and F. Lutscher, Existence of Weak Solutions for a Hyperbolic Model of Chemosensitive Movement, Journal of Mathematical Analysis and Applications, vol.260, issue.1, pp.173-199, 2001.
DOI : 10.1006/jmaa.2001.7447

T. Hillen and A. Stevens, Hyperbolic models for chemotaxis in 1-D, Nonlinear Analysis: Real World Applications, vol.1, issue.3, pp.409-433, 2000.
DOI : 10.1016/S0362-546X(99)00284-9

O. Kedem and A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochimica et Biophysica Acta, vol.27, p.229246, 1958.
DOI : 10.1016/0006-3002(58)90330-5

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, Journal of Theoretical Biology, vol.26, issue.3, pp.399-415, 1970.
DOI : 10.1016/0022-5193(70)90092-5

. Gibson, Microarchitecture of Three-Dimensional Scaffolds Inuences Cell Migration Behavior via Junction Interactions, Biophysical Journal, vol.29, pp.4013-4024, 2008.

D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresber, Deutsch. Math.-Verein, vol.105, pp.103-165, 2003.

B. B. Mandal and S. C. Kundu, Cell proliferation and migration in silk broin 3D scaffolds, Biomaterials, pp.30-2956, 2009.

J. D. Murray, Mathematical biology. I. An introduction. Third edition II. Spatial models and biomedical applications, Interdisciplinary Applied Mathematics Interdisciplinary Applied Mathematics, vol.17, issue.18, 2002.

R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation laws, Communications on Pure and Applied Mathematics, vol.49, issue.8, pp.795-823, 1996.
DOI : 10.1002/(SICI)1097-0312(199608)49:8<795::AID-CPA2>3.0.CO;2-3

R. Natalini and M. Ribot, Asymptotic High Order Mass-Preserving Schemes for a Hyperbolic Model of Chemotaxis, SIAM Journal on Numerical Analysis, vol.50, issue.2
DOI : 10.1137/100803067

URL : https://hal.archives-ouvertes.fr/hal-00765703

B. Perthame, Transport equations in biology, Frontiers in Mathematics, 2007.

L. A. Segel, A Theoretical Study of Receptor Mechanisms in Bacterial Chemotaxis, SIAM Journal on Applied Mathematics, vol.32, issue.3, pp.653-665, 1977.
DOI : 10.1137/0132054

C. Spadaccio, A. Rainer, S. De-porcellinis, M. Centola, F. De-marco et al., A G-CSF functionalized PLLA scaffold for wound repair: An in vitro preliminary study, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, 2010.
DOI : 10.1109/IEMBS.2010.5626796

J. Valein and E. Zuazua, Stabilization of the Wave Equation on 1-d Networks, SIAM Journal on Control and Optimization, vol.48, issue.4, pp.2771-2797, 2009.
DOI : 10.1137/080733590