Characterization of barycenters in the Wasserstein space by averaging optimal transport maps

Abstract : This paper is concerned by the study of barycenters for random probability measures in the Wasserstein space. Using a duality argument, we give a precise characterization of the population barycenter for various parametric classes of random probability measures with compact support. In particular, we make a connection between averaging in the Wasserstein space as introduced in Agueh and Carlier (2011), and taking the expectation of optimal transport maps with respect to a fixed reference measure. We also discuss the usefulness of this approach in statistics for the analysis of deformable models in signal and image processing. In this setting, the problem of estimating a population barycenter from n independent and identically distributed random probability measures is also considered.
Type de document :
Pré-publication, Document de travail
2015
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-00763668
Contributeur : Jérémie Bigot <>
Soumis le : jeudi 3 mars 2016 - 10:16:04
Dernière modification le : mardi 8 mars 2016 - 01:05:57
Document(s) archivé(s) le : samedi 4 juin 2016 - 10:31:50

Fichiers

barycenter_optimal_transport_r...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00763668, version 6
  • ARXIV : 1212.2562

Collections

Citation

Jérémie Bigot, Thierry Klein. Characterization of barycenters in the Wasserstein space by averaging optimal transport maps. 2015. <hal-00763668v6>

Partager

Métriques

Consultations de
la notice

100

Téléchargements du document

84