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New Accuracy Metrics for

Target Volume Contouring in PET Image Guided
Radiation Therapy.

Tony ShepherdMember, IEEE Mika Teras,Member, IEEE Reinhard R. BeichelMember, IEEE
Ronald Boellaard, Michel Bruynooghe, Volker Dicken, MarkGbodingMember, IEEE Peter J Julyan,
John A. Lee, Sébastien Lefevre, Michael Mix, Valery NgoarXiaodong Wu, Habib ZaidSenior Member, IEEE
Ziming Zeng and Heikki Minn.

Abstract—The impact of PET on radiation therapy is held
back by poor methods of defining functional volumes of interst.
Many new software tools are being proposed for contouring
target volumes but the different approaches are not adequay
compared and their accuracy is poorly evaluated due to the H
definition of ground truth. This paper compares the largest ohort
to date of established, emerging and proposed PET contourin

radiation therapy (IMRT) [2] and on-going debates [3], [4]:
over the ability of the standardised uptake value (SUV) te
define functional volumes of interest (VOIS) by simple thres o
olding. Many new methods are still threshold-based, bbheeit =
automate the choice of SUV threshold specific to an image
[5], [6] or apply thresholds to a combination (eg ratio) ofs:

methods, in terms of accuracy and variability. We emphasise SUV and an image-specific background value [7], [8]. More:

spatial accuracy and present a new metric that addresses the

lack of unique ground truth. 30 methods are used at 13 differat
institutions to contour functional VOIs in clinical PET/CT and
a custom-built PET phantom representing typical problems n
image guided radiotherapy. Contouring methods are grouped
according to algorithmic type, level of interactivity and how they
exploit structural information in hybrid images. Experime nts

reveal benefits of high levels of user interaction, as well as

simultaneous visualisation of CT images and PET gradientsot
guide interactive procedures. Method-wise evaluation idetifies
the danger of over-automation and the value of prior knowledje
built into an algorithm.

|. INTRODUCTION

Positron emission tomography (PET) with the metabolfd
tracer *®F-FDG is in routine use for cancer diagnosis and
treatment planning. Target volume contouring for PET imag
guided radiotherapy has received much attention in rece
years, driven by the combination of PET with CT for treatme
planning [1], unprecedented accuracy of intensity moeualat

T. Shepherd, and H. Minn are with the Turku PET Centre, Turkivéfsity
Hospital, and Department of Oncology and Radiotherapyyéisity of Turku,
Finland. M. Teras in with the Turku PET Centre, Turku Unsigr Hospital,
Finland. R. Beichel is with the Department of Electrical & r@puter
Engineering and Internal Medicine, University of lowa, USAR. Boellaard
is with the Department of Nuclear Medicine & PET Research, Wiiversity
Medical Centre, Amsterdam, The Netherlands. M. Bruynooghevith
SenoCAD Research GmbH, Germany. V. Dicken is with FraunhdteVIS
- Institute for Medical Image Computing, Bremen, Germany.. JIMGooding
is with Mirada Medical, Oxford, UK. P. J. Julyan is with NoriNestern
Medical Physics, Christie Hospital NHS Foundation Trusgridhester, UK.
J. A. Lee is with the Belgian FNRS and the center for Molecuifaaging,
Radiotherapy, and Oncology (MIRO), Universite Cathodiqde Louvain,
Brussels, Belgium. S. Lefevre is with the VALORIA Reseatciboratory,
University of South Brittany, France. M. Mix is with the Depaent of Radi-
ation Oncology, University Freiburg Medical Centre, Genya V. Naranjo is
with the Labhuman Inter-University Research InstituteBayengineering and
Human Centered Technology, Valencia, Spain. X. Wu is withDiepartment
of Electrical & Computer Engineering, University of lowaSB. H. Zaidi
is with the Division of Nuclear Medicine and Molecular Imagi Geneva
University Hospital, Switzerland. Z. Zeng is with the Dejpagnt Computer
Science, University of Aberystwyth, UK.

segmentation algorithms are entering PET oncology from
the field of computer vision [9] including the use of images
gradients [10], deformable contour models [11], [12], nalitu s
information in hybrid images [13], [14] and histogram misgu s
models for heterogeneous regions [15], [16]. The explosion s
new PET contouring algorithms calls for constraint in order
to steer research in the right direction and avoid so-called
yapetism(Yet Another PET Image Segmentation Method)-
[17]. For this purpose, we identify different approaches an.s
compare their performance. 4
Previous works to compare contouring methods in PEE
oncology [18], [19], [20] do not reflect the wide range oOfas
roposed and potential algorithms and fall short of meaguri +
patial accuracy. [18] compare 3 threshold-based methssts u
n PET images of non-small cell lung cancer in terms of
¢ absolute volume of the VOlIs, ignoring spatial accuracy
the VOI surface that is important to treatment planninga
recoet al. [19] compare one manual and 3 threshold-based
segmentation schemes performed on PET images of head-and-
neck cancer. This comparison also ignores spatial accuraey
being based on absolute volume of the VOI obtained by
manual delineation of complementary CT and MRI. Veess
et al. [20] compare one manual, 4 threshold-based, one
gradient-based and one region-growing method in segngentin
PET gliomas and introduce spatial accuracy, measured by
volumetric overlap with respect to manual segmentation af
complimentary MRI. However, a single manual segmentation
can not be considered the unique truth as manual delineatian
is prone to variability [21], [22]. 6
Outside PET oncology, the society for Medical Images
Computing and Computer Assisted Intervention (MICCAI) hass
run a 'challenge’ in recent years to compare emerging method
in a range of application areas. Each challenge takes the
form of a double-blind experiment, whereby different metho es
are applied by their developers on common test-data and the
results analysed together objectively. In 2008, two exaspf 7
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pathological segmentation involved multiple sclerossidas Il. CONTOURING METHODS 127

@n MRI [23] and liver tumogrs in C_T [24]. Thes_e estS Thirteen contouring 'teams’ took part in the experiment. Wes
involved 9 an(_j 10 segmentation algorlthr_ns respectlvelgl, AlYentify 30 distinct ‘'methods’, where each is a unique coms
eya!llJaFed theflrr .accurzacy uzlng a gorrfwfb(quatmn of Ztgewp'%qnation of team and algorithm. Table | presents the methods
similarity coefficient [25] and Hausdorff distance [26] it along with labels (first column) used to identify them heteaf 1

respect to a single manual delineation of each VOI. In 20 bme teams used more than one contouring algorithm and
and 2010, the challenges were to segment the prostate in

MRI [27] and parotid in CT [28]. These compared 2 and 1015 g |: The 30 contouring methods and their attributes.
segmentation methods respectively, each using a combmati

of various overlap and distance measures to evaluate @yCural method | team | type || "o 2ty CT use
with respect to a single manual ground truth per VOI. The max | tign [ mid [ tow | none][ nign] tow | nond
MICCAI challenges have had a major impact on segmentation PL* 01 | PL A =
research in their respective application areas, but thie ty | WS* | 02 | WS A u
of large-scale, double-blind study has not previously bee PLI; A u
applied to PET target volume delineation for therapeuti E::d 03 | Pt : :
radiation oncology, and the examples above are limited by T T Y -
their dependence upon a single manual delineation to defineyga VD Ny -
ground truth of each VOI. Ta0 a a
. 04
T4 T4 A ]

This paper reports on the design and results of a largg-T4° A ™
scale, multi-centre, double-blind experiment to compdue t | MD®, , 05 | LMD A m
accuracy of 30 established and emerging methods of VOI con-RG* RG A u
touring in PET oncology. The study uses a new, probabilistic_HB 06 | HB A u
accuracy metric [29] that removes the assumption of unique WS | 07 | WS A .
ground truth, along with standard metrics of Dice similarit Tl: T1 4 =
coefficient, Hausdorff distance and composite metrics. ¥ée u Eb 08 : :
both a new tumour phantom [29] and patient images of heag—— T2 A -
and-neck cancer imaged by hybrid PET/CT. Experiments first w55~ Y -
validate the new tumour phantom and accuracy metric, thefrrge,,1 %° | R® 2 -
compare conceptual approaches to PET contouring by group-pLe A ™
. . . : L2 10 | PL
ing methods according to how they exploit CT information in| PL/ A ™
hybrid images, the level of user interaction and 10 distinc{ GR 11 | GR A m
algorithm types. This grouping leads to conclusions about MD® MD A u
general approaches to segmentation, also relevant tototsler | T1° T A =
not tested here. Regarding the role of CT, conflicting repiort T3Z 12 | T3 A .
the literature further motivate the present experimentsien E’d - < :
some authors found that PET tumour discrimination improves T T2 Y .
when incorporating CT visually [30] or nu_merif:a_llly [31], 3 1 PL 2 -
others report on the detremental effect of visualising CT o
accuracy [32] and inter/intra-observer variability [2122]. 12

Further experiments directly evaluate each method in tefmssome well-established algorithms such as thresholding wes
accuracy and, where available, inter-/intra operatoramlity. used by more than one team, with different definitions of the
Due to the large number of contouring methods, full detaifguantity and its threshold. Methods are grouped according:ts
of their individual accuracies and all statistically sijgant algorithm type and distinguished by their level of deperogen.ss
differences are provided in the supplementary material andon the user (section 1I-B) and CT data (section II-C) in-
summarised in this paper. the case of patient images. Contouring by methods’MDas
RG’ and RG was repeated by two users in the respective

The rest of this paper is organised as follows. Sectidaams, denoted by subscripts 1 and 2, and the corresponding
Il describes all contouring algorithms and their groupingsegmentations are treated separately in our experiments. 1
Section Ill presents the new accuracy metric and describesSome of the methods are well known for PET segmentation
phantom and patient images and VOIs. Experiments in sectiwhile others are recently proposed. Of the recently progpose:
IV evaluate the phantom and accuracy metric and companethods, some were developed specifically for PET segmen-
segmentation methods as grouped and individually. Sectition (e.g. GR, T2 and PLY) while some were adapted andus
V discusses specific findings about manual practices and titimised for PET tumour contouring for the purpose of thiss
types of automation and prior knowledge built into contogri study. The study actively sought new methods, developed
and section VI gives conclusions and recommendations for newly adapted for PET tumours, as their strengths aned
future research in PET-based contouring methodology faeaknesses will inform current research that aims to refine.o
image-guided radiation therapy. replace state of the art tools, whether those tools arededu s
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here or not. Many of the algorithms considered operate @nage. MethodsT2® & T2¢ automatically define thresholdszo
standardised uptake values (SUVs), whereby PET voxel imecording to different criteria. They both use the resufts s
tensity I is rescaled as SUV £x (3/ain) to standardise with method T as an initial VOI, and define local backgroundos
respect to initial activitya;, of the tracer inBq ml~' and voxels by dilation. Method T2uses two successive dilations:o
patient mass3 in grams [33]. The SUV transformation onlyand labels the voxels in the second dilation as background.
affects segmentation by fixed thresholding while methods thThe auto-threshold is then defined as 3 standard deviatiens
normalise with respect to a reference value in the image above the mean intensity in this background sample. Methad
apply thresholds at a percentage of the maximum value ar2° uses a single dilation to define the background and finds
invariant to the SUV transformation. the threshold that minimises the within-class variancevbeh s
VOI and background using the optimization technique in [364s
Finally, method T2 applies a closing operation to eliminate:r
any holes within the VOI, which may also have the effects
Manual delineation methods (MD)use a computer mouseof smoothing the boundary.Methd®? finds the RTL using 2w
to delineate a VOI slice-by-slice, and differ by the modes @he method of [6] in common with method T2but with 20
visualisation such as overlaying structural or gradierdges different parameters and initialisation. MethodT@&sumes a 2
and intensity windowing.MD® is performed by a board PSF of 7 mm full width at half maximum (FWHM) rather tharn:-
certified radiation oncologist and nuclear medicine phigsic estimating this value from the image. The RTL was initiadizezzs
who has over a decade of research and clinical experiencaiith background defined by a manual bounding box rather
PET-based radiotherapy planningD? is performed by two than clustering and foreground defined by methodl W&h a s
independent, experienced physicians viewing only PET enag0% threshold rather than 40 RTL. Adaptive thresholding 2
data. For each dataset, the grey-value window and level wenethod T2¢ starts with a manually defined bounding box:-
manually adjustedMD“ performed on the PET images by ahen defines the VOI by the iso-contour at a percentage .af
nuclear medicine physicist who used visual aids derivethfrothe maximum value within the bounding box. MethoB3* 2z
the original PET: intensity thresholds, both for the PET argl T3" are similar to T$, but incorporate local backgroundzz:o
the PET image-gradient, were set interactively for the psep intensity calculated by a method equivalent to that Daisae
of visual guidance. et al. [37]. A threshold value is then 44 and 504 of the 2
Thresholding methods (T1 - T4)are divided into 4 types maximum plus background value, respectively. Metfgtf 233
according to whether the threshold is applied to signal (T1 & an automatic SUV-thresholding method implemented in
T2) or a combination of signal and background intensity (Tthe 'Rover’ software [38]. After defining a search area that
& T4) and whether the threshold value is choserpriori, encloses the VOI, the user provides an initial thresholdcivhi 2
based on recommendations in the literature or the tearmssadjusted in two steps of an iterative process. The firg ste:
own experience (T1 & T3) or chosen for each image, eithestimates background intensify from the average intensity s
automatically according to spatial criteria or visually the over those voxels that are below the threshaltl within — 2s
user’s judgement (T2 & T4). Without loss of generalisatioa minimum distance of the VOI (above the threshold). The
the threshold value may be absolute or percentage (e.g.setond step re-defines the VOI by a new threshold &t 80 2
peak) intensity or SUVI1® & T1? employ the widely used the differencelmay — I, Where Iy is the maximum intensity 24
cut-off values of 2.5 SUV and 40 of the maximum in the in the VOI. MethodsT4® & T4¢ use the source-to-background:s
VOI, as used for lung tumour segmentation in [34] and [3&lgorithm in [8]. The user first defines a background region
respectively. Method T4 is the only method of all in table specific to the given image, then uses parameteasdb to 2
| that is directly affected by the conversion from raw PETefine the thresholtl= apvor+buss, whereuyo) +andugs are 2
intensity to SUVs. The maximum SUV used by method Tlthe mean SUV in the VOI and background respectively. The
was taken from inside the VOI defined by T1To calculate parameters are found in a calibration procedure by scanning
SUV for the phantom image, where patient weightis spherical phantom VOIs of known volume. As this calibrations
unavailable, all voxel values were re-scaled with respect was not performed for the particular scanner used in the
a value of unity at one end of the phantom where intensity jsesent experiments (GE Discovery), method$ &4d T4 2
near uniform, causing method T1o fail for phantom scan 2 use parameters previously obtained for Gemini and Biogragh
as the maximum was below 2.5 for both VOTEL® applies PET systems respectively. 253
a threshold at 5@ of the maximum SUV. Methodr2¢ is Region growing methods (RG)use variants of the classicalzsa
the thresholding scheme of [6], which automatically finds thalgorithm in [39], which begins at a 'seed’ voxel in thess
optimum relative threshold level (RTL) based an estimate ®0OI and agglomerates connected voxels until no more satisfy
the true absolute volume of the VOI in the image. The RTtriteria based on intensity. RG®, the user defines a boundings
is relative to background intensity, where background i&xesphere centred on the VOI, defining both the seed at the centre
are first labelled automatically by clustering. An initiaDV of the sphere and a hard constraint at the sphere surfacesto
is estimated by a threshold of 40RTL, and its maximum avoid leakage into other structures. The acceptance ioriteraso
diameter is determined. The RTL is then adjusted iterativeils an interactively adjustable threshold and the final VOI is
until the absolute volume of the VOI matches that of a sphenganually modified in individual slices if needed. Methods:
of the same diameter, convolved with the point-spread fanct RG® & RG¢ use the region growing tool in Mirada XD zss
(PSF) of the imaging device, estimated automatically from t (Mirada Medical, Oxford, UK) with seed point location andss

A. Method types and descriptions
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acceptance threshold defined by the user. I’ R@ly, the Second, an iterative procedure improves the segmentayionsh
results are manually post-edited using the 'adaptive btosh adaptive thresholding that uses the image statistics.dThir a.
available in Mirada XD. This 3D painting tool adapts in shapeegion growing method based on regional statistics is used.
to the underlying image. Also in method R@nly, CT images The interactive variant (Pl) uses a fast interactive tool foras
were fused with PET for visualisation and the informatioadis watershed-based sub-region merging. This interventionlig s
to modify the regions to exclude airways and unaffected bormeecessary in at most two slices per VOI. MethBH?Y is a s

Watershed methods (WS)use variants of the classicalnew fuzzy segmentation technique for noisy and low resmhutiss
algorithm in [40]. The common analogy pictures a gradientncological PET images. PET images are first smoothed usigg
filtered image as a relief map’ and defines a VOI as one arnonlinear anisotropic diffusion filter and added as a se¢com
more pools, created and merged by flooding a region withput to the fuzzy C-means (FCM) algorithm to incorporate.
water. MethodWS*®, adapted from the algorithm in [41] for spatial information. Thereafter, the algorithm integsatbe sss
segmenting natural colour images and remote-sensing Bnagetrous wavelet transform in the standard FCM algorithm te
makes use of the content as well as the location of uséandle heterogeneous tracer uptake in lesions [15]. ass
defined markers. A single marker for each VOI £33 or The Gradient based method (GR)method is the novel s
5 x 5 pixels depending on VOI size) is used along with adge-finding method in [10], designed to overcome the low
background region to train a fuzzy classification procedusggnal-to-noise ratio and poor spatial resolution of PET inss
where each voxel is described by a texture feature vectages. As resolution blur distorts image features such as ise
Classification maps are combined with image gradient and tbentours and gradient intensity peaks, the method combines
familiar ‘flooding’ procedure is adapted for the case of multedge restoration methods with subsequent edge detectian.
ple surfaces. Neither the method nor the user were spemialiEdge restoration goes through two successive steps, namely
in medical imaging. MethodlVS?, similar way to that in [42], edge-preserving denoising and deblurring with a deconva-
uses two procedures to overcome problems associated vittion algorithm that takes into account the resolution of @
local minima in image gradient. First, viscosity is added tgiven PET device. Edge-preserving denoising is achieved dy
the watershed, which closes gaps in the edge-map. Secontilateral filtering and a variance-stabilizing transford7]. s«
set of internal and external markers are identified, indigat Segmentation is finally performed by the watershed transfog.
the VOI and background. After initial markers are identifiedpplied after computation of the gradient magnitude. Oveis
in one slice by the user, markers are placed automaticallysagmentation is addressed with a hierarchical clustering :@
successive slices, terminating when the next slice is ddenike watersheds, according to their average tracer uptdke. Tso
no longer to contain the VOI according to a large drop iproduces a dendrogram (or tree-diagram) in which the user
the 'energy’, governed by area and intensity, of the segetenselects the branch corresponding to the tumour or target.
cross section. If necessary, the user interactively adesrthe User intervention is usually straightforward, unless thtake s
automatic marker placement. difference between the target and the background is very low

Pipeline methods (PL)are more complex, multi-step algo- TheHybrid method (HB) is the multi-spectral algorithm in ass
rithms that combine elements of thresholding, region gnogwi [14], adapted for PET/CT. This graph-based algorithm eitplosss
watershed, morphological operations and techniques if [4B1e superior contrast of PET and the superior spatial résalu ss-
[44], [15]. MethodPL“ is a deformable contour model adaptedf CT. The algorithm is formulated as a Markov Randoms
from white matter lesion segmentation in brain MRI. The maiRield (MRF) optimization problem [48]. This incorporates aass
steps use a region-scalable fitting model [45] and a globatergy term in the objective function that penalizes theiapa seo
standard convex scheme [46] in energy minimization based difference between PET and CT segmentation. 361
the 'Split Bregman’ technique in [43]. Metho®.® — PL? are
variants of the 'Smart Opening’ algorithm, adapted for PEE | evel of interactivity
from the tool in [44] for segmenting lung nodules in CT data. . - ) .

, . . Levels of interactivity are defined on an ordinal scale afs

In contrast to CT lung lesions, the threshold used in region -,

: L C ; max’, high’, 'mid’;low’ and 'none’, where 'max’ and 'noe’ s
growing can not be set priori and is instead obtained fromreferto fully manual and fully automatic methods respesyjiv
the image interactively. Method Plwas used by an operator y y PESV acs

with limited PET experience. The user of method¢Fiad Methods with a ’high’ level involve user initialisation, v s

. . . .locates the VOI and/or representative voxels, as well as rua
more PET experience and, to aid selection of boundary points . -
time parameter adjustment and post-editing of the contouss

close to steep PET gradients, also viewed an overlay of IOCgiid’-level interactions involve user-initialisation aneither seo

maxima in the edge-map of the PET image. Finally, methc}un-time parameter adjustment or other run-time infororati sz

such as wrongly included/excluded voxels. 'Low’-levelent sn

the dilated region, and thresholding the gradient at theieuruedamtlon refers.to |n|t.|aI|sat|op or mwymal procedures t.G. rér
start an algorithm with new information such as an additionas

of these local maxima. Method®_® & PL/ use the so-called LS

) s - . . ... mouse-click in the VOI. 374
poly-segmentation’ algorithm without and with post edgi

respectively. PE is based on a multi-resolution approach,

which segments small lesions using recursive thresholdifrg Level of CT use a7
and combines 3 segmentation algorithms for larger lesionsWe define the levels at which contouring methods explait
First, the watershed transform provides an initial segatéori. CT information in hybrid patient images as ’high’, 'low’ ors~

362

PL? took the results of method Pland performed extra pro-
cessing by dilation, identification of local gradient maazirn
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none’, where *high’ refers tanumericaluse of CT together TABLE Ill: Properties of VOI and background (BG) data
with PET in calculations. The 'low’ group makesualuse of (volumes in cm are estimated as in section Ill-C

CT images to guide manual delineation, post-editing or rothg image initial volume | source of

interactions in semi-automatic methods. The 'none’ groupvo! alet;VIty 1 (cm®) | ground truth

refers to cases where CT is not used, or is viewed incidgntal! (kBq mI"")

but h infl ¢ . th | ithm is f I”tumour phantom 8.7 (VOI) 6.71 thresholds

ut has no influence on contouring as the algorithm is fullynoge scan 1 4.9 (BG) -5 of

automatic. None of the methods operated on CT images alon&mour | phantom | 10.7 (VOI) 6.71 simultaneous
node scan 2 2.7 (BG) 7.45 CT image
tumour ) 5 35.00 multiple

I11. EXPERIMENTAL METHODS ~ode patient 1 | 2.4 x10 SEq expert
A. Images tumour | patient 2 | 3.6 x10° 2.35 delineations

We use two images of a new tumour phantom [29], man-
ufactured for this study and two clinical PET images of

different head-and-neck cancer patients. The test images a E 3 7p2§2§:m
available on-line [49], along with ground truth sets ddsed §
in section IlI-C. All imaging used the metabolic tractyr- .\\ 52
Fluorodeoxyglucose (FDG) and a hybrid PET/CT scanner ' g1
]

(GE Discovery), but CT images from phantom scans were
omitted from the test set. Table Il gives more details of each
image type. The tumour phantom contains glass compartment
of irregular shapes shown in figure 1 (top row), mimicking Phantom tumour patient tumour tumour PET profiles
real radiotherapy target volumes. The tumour compartment

. 10 20 30
distance along profile (mmn

T—E‘ ---phantom
=3 T ---patient
- m SN
=<3
-~ 5 o '

r y

510

2L
OO, 10 20 30
distance along profile (mm

phantom node patient node node PET profiles

Fig. 2: Axial PET images of phantom and real tumour (top)
and lymph node (bottom) VOIs with profile lines traversing
each VOI. Plots on the right show the image intensity profiles
sampled from each image pair.

(@) (b)

For patient images, head and neck cancer was chosen as it
Fig. 1: (a) tumour and (b) nodal chain VOIs of the phantonposes particular challenges to PET-based treatment pignnis
Top: Digital photographs of glass compartmersddle: PET  due to the many nearby organs at risk (placing extra demand.an
images from scan 1 (sagittal viewjottom 3D surface view GTV contouring accuracy), the heterogeneity of tumourBss as
from an arbitrary threshold of simultaneous CT, lying withi and the common occurrence of lymph node metastasis. A large
the glass wall. tumour of the oral cavity and a small tumour of the larynx were:
selected from two different patients, along with a metéstatis
(@) has branches to recreate the more complex topology @hph node in the first patient (figure 3). These target volsimes
some tumours. This and the nodal chain compartment (b) &ere chosen as they were histologically proven and have.a
based on cancer of the oral cavity and lymph node metastagifige of sizes, anatomical locations/surroundings argetara

respectively, manually segmented from PET images of twgpes (tumour and metastasis). Details of the 3 patient VOis
head and neck cancer patients and formed by glass blowigge given in the last 3 rows of table III. 23

The phantom compartments and surrounding container were

filled with low concentrations of FDG and scanned by a hybrid .

device (1, middle and bottom rows). Four phantom VOIs restff €ontouring 424
from scans 1 and 2, with increasing signal to background rati With the exception of the hybrid method (HB) that does nets
achieved by increasing FDG concentration in the VOIs. Detaapply to the PET-only phantom data, all methods contoures
of the 4 phantom VOIs are given in the first 4 rows of tablall 7 VOIs. In the case of patient VOIs, participants had-
[ll. Figure 2 shows the phantom VOIs from scan 1, confirmintipe option of using CT as well as PET, and were instructed
qualitatively the spatial and radiometric agreement betweto contour the gross tumour volume (GTV) and metastatis
phantom and patient VOIs. tissue of tumours and lymph node respectively. All contogiri 4z
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TABLE II: Details of phantom and patient PET/CT images.

Image PET (18F FDG) CT

type frame length] width/height | depth pixel size | slice depth|| width/height | depth pixel size | slice depth
(min) (pixels) (slices) | (mm) (mm) (pixels) (slices) | (mm) (mm)

phantom | 10.0 256 47 1.17x1.17 3.27 512 47 0.59<0.59 3.75

patient 3.0 256 33,37 2.73x2.73 3.27 512 42,47 0.98x0.98 1.37

ROC (I-ROC). The I-ROC method removes the assumption af
unigue ground truth, instead using a setpddrbitrary ground ass
‘ ’ truth definitions{G7,;},i € {1...p} for each VOI. While
uniquely correct ground truth in the space of the PET image
would allow deterministic and arguably superior accuracy
evaluation, the I-ROC method is proposed for the case here,
and perhaps all cases except numerical phantoms, where such
truth is not attainable. The theoretical background of IER® 2
(a) (b) (c) given in Appendix A and shows that the area under the curve
(AUC) gives a probabilistic measure of accuracy provided th.z.
the arbitrary set can be ordered by increasing volume and
share the topology and general form of the (unknown) true
surface. The power of AUC’ as an accuracy metric also relies
on the ability to incorporate the best available knowledfe @s
ground truth into the arbitrary set. This is done for phantom
methods were used at the sites of the respective teams using patient VOIs as follows. 480
their own software and workstations. Screen-shots of eachFor phantom VOIs, the ground truth set is obtained by:
VOI were provided in axial, sagittal and coronal views, witlincrementing a threshold of Hounsfield units (HU) in the CT:
approximate centres indicated by cross-hairs and theielvoxiata from hybrid imaging (figure 4). Masks acquired for all
coordinates provided to remove any ambiguity regarding the
ordering of axes and direction of increasing indices. Nepth

Fig. 3: Axial neck slices of®F-FDG PET images overlain on
simultaneous CT. (&% (b) Oral cavity tumoui lymph node
metastasis in patient 1 (c) Laryngeal tumour in patient 2.

min

form of ground truth was provided. Teams were free to refine CT threshold

EEEDED

their algorithms and practice segmentation before aaogpti
final contours. This practicing stage was done without any
knowledge of ground truth and is considered normal practice
Any contouring results with sub-voxel precision were down-
sampled to the resolution of the PET image grid and any
results in mm were converted to voxel indices. Finally, all
contouring results were duplicated to represent VOIs fiyst b
the voxels on their surface, and second by masks of the solid
VOI including the surface voxels. These two representations
were used in surface-based and volume-based contour eval
ation respectively.

. . CT threshold
C. Contouring evaluation P Max

Accuracy measurement generally compares the contour be- (a) (b)
ing evaluated, which we denotg with some notion of ground g4 4. () 3D visualisation of phantom VOI from CT thresh-

truth, denotedg7. We use a new probabilistic metric [29]5|4eq at a density near the internal glass surface. (b) it

denoted AUC’, as well as a variant of the Hausdorff distancgo,ng truth masks of the axial cross section in (a), from 50
[26] denoted HD’ and the standard metric of Dice similarity,esholds of HU.

coefficient [25] (DSC). AUC’ and HD’ are standardised to the

range0...1 so that they can be easily combined or compared , . 483
with DSC and other accuracy metrics occupying this range! Slices in the following steps: o4
[50], [51], [52]. Treated separately, AUC’, HD’ and DSC (i) reconstruct/down-sample the CT image to the same
allow performance evaluation with and without the assuampti pixel grid as the PET image 486
of unique ground truth, and in terms of both volumetric (ii) define a bounding box in the CT image that completely,
agreement (AUC’ and DSC) and surface-displacement (HD’) encloses the glass VOI as well s a8
with respect to ground truth. (iii) threshold the CT image at a value HU 489

AUC’ is a probabilistic metric based on receiver operating (iv) treat all pixels below this value as being ’liquid’ andso
characteristic (ROC) analysis, in a scheme we galerse- all above it as 'glass’ s01
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(v) label all 'liquid’ pixels that areinside the VOI as mask that has the closest absolute volume to the mean ofsall

positive, but ignore pixels outside the VOI. Nexpertsx Noccasionsraw expert manual delineations. 541
(vi) repeat forp thresholds HY i ¢ {1...p} between HD’ first uses the reference surfaGd ™ to calculate the
natural limits HUnin and HUpax Hausdorff distance HD, being the maximum for any point on

This ground truth set is guaranteed to pass through thenatert€ surfaceC of the minimum distances from that point to
surface of the glass compartment and exploits the inheréhy point on the surface ¢7". We then normalise HD with
uncertainty due to partial volume effects in CT. It followd€SPect to a length scateand subtract the result from 1

from derivations in Appendix A.2-3 that AUC is equal to _, 1 -min(HD,r)

. .
the probability that a voxel drawn at random from below thE/® . 0<HD" < 1= maximum accuracy
unknown CT threshold at the internal glass surface, lieislins ()

the contourC being evaluated. wherer = W%vol(gT*) is the radius of a sphere having the..

For patient VOIs, the ground truth set is the union ofame volume ag§7* denoted valG7 ™). Equation 2 trans- s
an increasing number of expert manual delineations. Egpeidrms HD to the desired range with 1 indicating maximum.
contoured GTV and node metastasis on PET visualised wahcuracy. 545
co-registered CT. In the absence of histological resectian DSC also uses the reference surfa@Z¢™ and is calculated
assume that the best source of ground truth information by
manual PET segmentation by human experts at the imaging 2Neng T _
site, who have experience of imaging the particular tumouRSC= No g Noes? 0 < DSC< 1= maximum accuracy
type and access to extra information such as tumour stage, ¢ gT* ©)
treatment follow-up and biopsy where available. However, Wyhere N, denotes the number of voxels in volumedefined s
take the view that no single manual segmentation providgg contours or their intersect. .
the unique ground truth, which therefore remains unknown.Composite metrics are also used. First, we calculate a

In total, 3 delineated each VOI on 2 occasions (denotegnthetic accuracy metric from the weighted sum
Nexperts = 3 and Noccasionsz 2) Wlth at |eaSt a Week |n
between. The resulting set @f= Nexpersx Noccasionsground A* =0.5 AUC’ +0.25 DSC+0.25 HD', 4)

truth estimates were acquired to satisfy the requirementsyjhich, in the absence of definitive proof of their relatives
Appendix A.3 as follows: power, assigns equal weighting to the benefits of the proba-
(i) define a bounding box in the CT image that completelgilistic (AUC’) and deterministic approaches (DSC and HD'}so
encloses all Nexpens X Noccasions manual segmentationsBy complementing AUC’ with the terms using the best guess

{GT:} and the contou€ being evaluated of unique ground truth, A* penalises deviation from the &ru ss
(i) order the segmentations;7;} by absolute volume in absolute volume, which is measured with greater confidense
cm? than spatial truth. Second, we create composite metriasdbas.
(i) use the smallest segmentation @3 on the relative accuracy within the set of all methods. Three
(iv) form a new VOI from the union of the smallest andcomposite metrics are defined in table IV and justified as
the next largest VOI in the set and use thisGag; follows: Metric n(n.s.d) favours a segmentation tool that i
(v) repeat until the largest VOI in the set has been used

in the union of all Nexperts* Noccasions VOIS TABLE IV: Composite accuracy metrics that condense ranking
(vi) create homogeneous masks &F; andG7,, having and significance information.

all negative and all positive contents respectively. n(n.s.d) the number between 0 and 4, of accuracy metrics AUC’, DSC,

; ; I HD and A*, for which a method scores an accuracy of no sigmifica
The patient ground truth set encodes uncertainty from-inter difference (n.s.d) from the best method according o thatimcy

lintra-expert variability in manual delineation and AUCte n(>u+o): the number between 0 and 4, of accuracy metrics AUC, DSC,
probability that a voxel drawn at random from the unknown HD and A*, for which a method scores more than one standaritiew

manual contour at the true VOI surface, lies inside the aanto (¢) @bove the meary of that score achieved by all 32 methods (33 in
. . ' the case of patient VOIs only)
C being evaluated. Finally, we rescale AUC to the rang€median rank: the median, calculated over the 4 accuracy metrics, of

{0...1} by the ranking of that method in the list of all 32 methods (33 fatient
VOIs only) ordered by increasing accuracy
AUC - 0.5

AUC' = —05 0 < AUC’ < 1= maximum accuracy

557
(1) as good as the most accurate in a statistical sense and, insthe

Reference surfaceghat profess to give the unique groungresence of false significances due to the multiple comparisss
truth are required to measure the Hausdorff distance anel Diffect, gives more conservative rather than falsely hightet  seo
similarity. We obtain the ’best guess’ of the unique grounmletric n(>u+c) favours the methods in the positive tails ofe
truth, denoted;7* from the sets of ground truth definitionsthe population, which is irrespective of multiple compans s
introduced above. For each phantom VOI we select the @&ffects. The rank-based metric is also immune to the maltipks
threshold having the closest internal volume in3cto an compatrison effect and we use the median rather than mean
independent estimate. This estimate is the mean of thmamk to avoid misleading results for a method that ranksliighsss
repeated measurements of the volume of liquid contained imyonly one of the metrics AUC’, DSC, HD and A*, consideredss
each glass compartment. For patient VQJ9,” is the union an outlier. 567
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Intra-operator variability was measured by the raw Haus- 1
dorff distance in mm between the first and second seg-
mentation result from repeated contouring (no ground truth >
necessary). However, this was only done for some contouring ©
methods. For fully automatic methods, variability is zeso b
design and was not explicitly measured. Of the remaining & 0.6
semi-automatic and manual methods, 11 were used twice by
the same operator: MR, MD%;, RG?, HB, WS, RG',,
RG’;, RG;, RG%, GR and MD and for these we measure
the intra-operator variability which allows extra, diremim-
parisons in section IV-E.

Ml patient VOIs
Il phantom VOIs

[

0.8

cur

0.607 0.618
0.54

normalis
o
N

o
[N

IV. EXPERIMENTS 0

AUC’ DSC HD’

This section motivates the use of the new phantom and
accuracy metric (IV-A), then investigates contouring aacy Fig. 5: Contouring accuracy in phantom and patient images,
by comparing the pooled accuracy of methods grouped d¥¢bere =" indicates significant difference.
cording to their use of CT data (section IV-B), level of user
interactivity (section 1V-C) and algorithm type (sectiovD).
Section IV-E evaluates methods individually, using corsteh ~ Figure 5 also supports the use of the new metric AUG:
accuracy metrics in table IV. With the inclusion of repeatefilthough values are generally higher than DSC and HD, whieh
contouring by methods Mh RG® and RG by a second May be explained by the involvement of multiple ground truth.
operator, there are a total of n = 33 segmentations of eadfinitions increasing the likelihood that a contour agneis e
VOI, with the exception of phantom VOIs where n = 32 by th@ny one in the set, the variance of accuracy scores is grfeatef:s
exclusion of method HB. Also, method Tfailed to recover AUC’ than the other metrics (table V), which indicates highez
phantom VOIs in scan 1 as no voxels were above the p@ansitivity to small differences in accuracy between ang twes
defined threshold. In this case a value of zero accuracy¢thods.

recorded for two out of 4 phantom VOIs. TABLE V: Variance of AUC and standard accuracy metrics

calculated for all 7 VOIs (second column), and for the 4 and

A. Phantom and AUC’ 3 VOIs in phantom and patient images respectively.
This experiment investigares the ability of the phantom [ metric [ all VOIs [ phantom | patient |

to pose a realistic challenge to PET contouring, by testing gl;(é’ g-gﬁ 8-8?8 8-8?;

the null-hypothesis that both phantom and patient VOIs lead = 0011 0:010 0011

to the same distribution of contouring accuracy across all
methods used on both image types. First, we take the mean 62
accuracy over the 4 phantom VOIs as a single score for each

contouring method. Next, we measure the accuracy of the same ) _

methods used in patient images and take the mean over theR0le of CT in PET/CT contouring 620
3 patient VOIs as a single score for each method. Finally, For contouring in patient images only, we test the benefit ef
a paired-samples t-test is used for the difference of meamloiting CT information in contouring (phantom VOIs ares
between accuracy scores in each image type, with significambitted from this experiments as the CT was used for grourd
difference defined at a confidence levelyof 0.05. Figure 5 truth definitions and not made available during contouring)
shows the results separately for accuracy defined by ‘AUChis information is in the form of anatomical structure irethess
DSC and HD. There is no significant difference betweertase of visual CT-guidance (low’ CT use) and higher-leveks
accuracy in phantom and patient images measured by’ AU@age texture information in the case of method HB with-
or DSC. A significant difference is seen for HDwhich ’high’ CT use. The null-hypothesis is that contouring a@myr ess
reflects the sensitivity of HD’ to small differences betweeis not affected by the level of use of CT information. 639
VOI surfaces. In this case the phantom VOIs are even moréWe compare each pair of groupsand j that differ by CT e«
difficult to contour accurately than the patient images,althi use, using a t-test for unequal sample sizesumd ry, where e
could be explained by the absence of anatomical contexttite corresponding samples have mean accyra@ndy; and  ea
these images, used by operators of manual and semi-automstiindard deviationr; and o;. For the " group containing s
contouring methods. A similar experiment found no significa nmethogsCONtouring methods, each segmentiggntargets, the e
difference between phantom and patient VOIs in terms sample size N= Nmethodsx Nvois andy; ando; are calculated ess
intra-operator variability. On the whole we accept the nulbver all npethods X Nvolis accuracy scores. We calculate thes
hypothesis meaning that the phantom and patient images psigmificance level from the t-value using the number of degres.
the same challenge to contouring methods in terms of acgurat freedom given by the Welch-Satterthwaite formula for unas
and variability. equal sample sizes and sample standard deviations. Sagiificss
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differences between groups are defined by confidence iteraad ; that differ by level of interactivity, using a t-test fores
of p < 0.05. For patient images only,vais = 3 and for the unequal sample sizes as above. For the grouping accordiag
grouping according to CT use in table kdhogs= 1, 6 and 26 to level of interactivity in table I, groups with interacity e
for the groups with levels of CT use ’high’, 'low’ and 'none’level 'max’, 'high’, 'mid’, "low’ and 'none’ have mnethods = o83
respectively (methods RGn the low’ group and MDY & RG® 4, 3, 7, 13 (12 for phantom images by removal of methag
in the "'none’ group were used twice by different operators iHB) and 6 respectively (methods MPRGMD® and RGMD' s
the same team). We repeat for 4 accuracy metrics ADSC, in the 'max’, 'high’ and 'mid’ groups respectively were usedss
HD’ and their weighted sum A*. Figure 6 shows the resultsvice by different operators in the same team). We repeat fer
for all groups ordered by level of CT use, in terms of eaghatient images (s = 3), phantom images (8is = 4) and s

accuracy metric in turn.

the combined set (s = 7) and, as above, for each of thess
4 accuracy metrics. Figure 7 shows all results for all groups

ordered by level of interactivity. 601
The trends for each of phantom, patient and all VOls
1 1 are consistent over all metrics. The most accurate metheds
§0.8 were those in the ’high’ and 'max’ groups for phantom and.
0.6 patient images respectively. For patient images, the 'max
0.4 group is significantly more accurate than any other and this
0.2

trend carries over to the pooled accuracies in both image
types despite having less patient VOIs (n = 3) than phantem

none low,

high
level of CT use

@) (b) VOIs (n = 4). For phantom VOIs, with the exception of HD’pe

none low, high
level of CT use

there are no significant differences between "high’ and "maxo
groups and these both significantly out-perform the ’lowd arve
'none’ groups in all metrics. For HD’ alone, fully manuake

o . . . delineation is significantly less accurate than semi-aatam o

T 8'? < 8'? methods with ’high’ levels of interaction. This may reflelaet 7.

0'4 0'4 lack of anatomical reference in the phantom images, whieh

04 04 is present for patient VOIs and guides manual delineatios.

0 : 0 ) s high levels of interaction still appear most accurate, tho
none ow, high none ow, high . .

level of CT use levelof CTuse  reduced accuracy of fully manual methods is not considered

(©) (d)
Fig. 6: Effect of CT use on contouring accuracy in patie
images, measured by (a) AUGb) DSC, (c) HD and (d) A*,
where *7" denotes ignificant difference between two level
of CT use.

likely to be caused by a bhias of manual delineations toward

anual ground truth, given the levels of inter-user valigbi 7o
rglverall, we conclude that manual delineation is more adeurau
ghan semi- or fully-automatic methods, and that the acquoéc
semi-automatic methods improves with the level of intéoact s
built in. 714

With the exception of AUC’ the use of CT as a visua
guidance ('low’), out-performed the ’high’ and 'none’ gros!
consistently but without significant difference. The fawtithe ~ This experiment compares the accuracy of different ats
’h|gh’ group (method HB On|y) Significanﬂy Out-performedgorithm typeS, defined in section II-A. The null hypotheSiﬁ7
the lower groups in terms of AUC’ alone indicates that this that contouring accuracy is the same for manual or any
method had good spatial agreement with one of the union-timerical method regardless of the general approach they
experts masks for any given VOI, but this union mask did nétke. We compare each pair of groupsand j that differ o
have absolute volume most closely matching the independgtalgorithm type, using a t-test for unequal sample sizes as
estimates used in calculations of DSC and HD'. We conclud@®oVve. For the grouping according to algorithm type in taple
that the use of CT images as visual reference (low’ us8ethods= 4,3,5,2,3,5,2,1,1 (0 for phantom images by removat
generally improves accuracy, as supported by the consistehmethod HB) and 7 for algorithm-types MD, T1, T2, T3z
improvement in 3 out of 4 metrics. This is in agreement4, RG, WS, GR, HB and PL respectively (methods MB s
with experiments in [30] and [31], which found the benefitthe MD, and RG & RG* in the RG group were used twice byzs
of adding CT visually and computationally, in manual anéifferent operators in the same team). As above, we repeat o

automatic tumour delineation and classification respelgtiv  Patient images (s = 3), phantom images (8is = 4) and 7z
the combined set (s = 7), and for each of the 4 accuracy:s

metrics. Figure 8 shows the results separately for all image
sets and accuracy metrics. 731
This experiment investigates the affect of user-intevégti Plot (b) reproduces the same anomalous success of the
on contouring performance. The null hypothesis is that cohybrid method (HB) in terms of AUC’ alone, as explaineck:
touring accuracy is not affected by the level of interatyivi above. Manual delineation exhibits higher accuracy thaerot 7z
in a contouring method. We compare each pair of groupsalgorithm types, ranking in the top 3 for any accuracy metrie

b. Accuracy of algorithm types 715

C. Role of user interaction
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Phantom VOIs Patient VOlIs All VOIs

none low medium high,  max none low medium high,  max none low medium high, max
level of user interaction level of user interaction level of user interaction
(a) (b) (c)
* \
* \
[
1 1 — 1
2 3 2
2 0.8 2 0.8 a 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 X y ; . 0 ; .
none low medium high,  max none low medium high,  max none low medium high,  max
level of user interaction level of user interaction level of user interaction
(d) (e) ®
1
[a)
F 0.8
0.6
0.4
0.2
0
none ow medium max none ow medium max none low medium
IeveI of user |nteract|on IeveI of user |nteract|on level of user |nteract|on
(9) (h) 0)
. ‘ ‘
* \
1 1 1
% 0.8 % 0.8 %038
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 , , , . 0
none low medium high,  max none low medium high,  max none low medium high
level of user interaction level of user interaction level of user interaction
0) (k) 0)

Fig. 7: Effect of user interaction on contouring accuracyasaed bytop row: AUC’ for (a) phantom, (b) patient and (c) both
VOI types,second row:DSC for (d) phantom (e) patient and (f) both image tygksd row: HD’ for (g) phantom, (h) patient

and (i) both image types, arabttom row: A* for (j) phantom, (k) patient and (I) both VOI types. Sigmiint differences

between any two levels of user interaction are indicatediy”.
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Fig. 8: Contouring accuracy of all algorithm types measurgdop row: AUC’ for (a) phantom, (b) patient and (c) both VOI
types,second row:DSC for (d) phantom (e) patient and (f) both image tyghid row: HD’ for (g) phantom, (h) patient and
(i) both image types antottom row: A* for (j) phantom, (k) patient and (l) both VOI types. Sigrifint differences between

any two algorithm types are indicated by*'.
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in phantom images and the top two for any metric in patiefdw accuracy for patient VOIs, being significantly less aete 7
images. The pooled results over all images reveal mantian the manual methods Mzand MDY, (see supplementary 7o
delineation as the most accurate in terms of all 4 metricgh Wimaterial). Their high accuracy in phantom images alonedoub.
the exception of T4 in terms of HD’ (patient and combinee explained by methods Tland RG being particularly s
image sets), the improvement of manual delineation over aswited to the relative homogeneity of the phantom VOIs. 7
of the thresholding variants T1 - T4 is significant, despite Methods WS, T1¢ and T3 have the 3 lowest accuraciess
these being the most widely used (semi-)automatic metlfodsby mean A* across all 3 image sets. The poor performanee
promising semi-automatic approach is the gradient-baS&) ( of method WS could be explained by its origins (colourss
group (one method), which has the second highest accurptytography and remote-sensing) and user having no roets
by all metrics for the combined image set and significamr specialism in medical imaging. Threshold methods Ta
difference from manual delineation. Conversely, the veited and T3 give iso-contours at 30 of the local peak intensity so
group of methods that also rely on image gradients exhilifthout and with adjustment for background intensity re&spess
consistently low accuracy. This emphasized the problem wfely. Their poor performance in all image types highlightse
poorly-defined edges and noise-induced false edges typitted limitations of thresholding. 805
of PET gradient filtering, which in turn suggests that edge- Table VI presents the composite metrics explained in sectigs
preserving noise reduction by the bi-lateral filter playsu@é 11I-C along with intra-operator variability where availeb(last so
part in the success of method GR. two columns), measured by the Hausdorff distance in num
between two segmentations of the same VOI, averaged oumer
the 3 patient or 4 phantom VOIs. This definition of intraso
operator variability gives an anomalously high value iftve  su
The final experiments directly compare the accuracy gégmentations resulting from repeated contouring of theesas:
all methods. Where two algorithms have arguably minarOl do not have the same topology, as caused by an interaal
difference, as in the case of Pland PL? which differ by hole in the first contouring by method RG Notably, we find .
an extra processing step applied by?Pthese are treated asno correlation between intra-operator variability and el s
separate methods because the change in contouring resultsf iinteractivity of the corresponding methods. The same ds
notable and can be attributed to the addition of the proogssirue for inter-operator variability (not shown) calculdtey 7
step, which is informative. Repeated segmentations by twlee Hausdorff distance between segmentations by different
different users in the cases of methods MB, RG’; » and users of the same method (applicable to methods MBE® e
RG‘; » are counted as two individual results so there are a totald RG). This finding contradicts the general belief thato
of n = 32 'methods’, or n = 33 for patient VOIs in PET/CTuser input should be minimised to reduce variability. Table
only by inclusion of hybrid method HB. The null hypothesig/| reaffirms the finding that manual delineation is the most
is that all n cases are equally accurate. We compare each paiturate method type, with examples KMand Mljﬁ,g Scoring s
of methods: and j that differ by method, using a t-test forhighly in all metrics. The most consistently accurate Nnoma
equal sample sizes; r'F n; = nyois, Where mean accuracymanual methods are the semi- and fully-automatic methags
w; and p; and standard deviation; and o; are calculated PL® and PL¢. More detailed method-wise comparisons ares

E. Accuracy of individual methods

over all VOIs and there arnyois — 2 degrees of freedom. made in the next section. 827
As above, we repeat for all image sets and accuracy metrics.
Figure 9 shows the results separately for phantom, patreht a V. DISCUSSION w28

combined image sets in terms of A* only. Full results for all

metrics and significant differences between methods aengivo e+ segmentation methods ranging from fully manual to fully

in the supplementary material. . : .
L automatic and representing the range from well established
The generally low values of A* in figure 9 and other P 9 9

trics in th | ; terial hiahliaht th bl to never-before tested on PET data. Region growing and
metrics In the stpplementary matenal nighiig € PTObIe,\atershed algorithms are well established in other areassof
facing accurate PET contouring. These results also rédter.

th | finding that | " b edical image processing, while their use for PET target
€ general inding that manual practices can be more aecur\%lume delineation is relatively new. Even more novel apss
than semi- or fully-automatic contouring. For patient iraag

and the combined set, the most accurate contours are m;anu%rl aches are found in the ‘pipeline group and the two distinss:
delineated by method MD Also for these image sets the orithms of gradient-based and hybrid segmentation. The

. radient-based method [10] has already had an impact in the
secobnd and th'm! most accu_rat(? are gnother mgnual_ metr?ggiation oncology community and the HB method [14] is on&
(MD .2) and .th.e smart opening’ algorithm (P)with mid- of few in the literature to make numerical use of the struadtursso
level interactivity. information in fused PET/CT. The multispectral approacimis s.

I;olr phlantcim VOIs _or_1|y, methois R@nd Tfi W'thhh'gh' common with classification experiments in [13] that showegk
and low-level interactivity, out-perform manual metho MDfavourabIe results over PET alone. oo

with no significant difference. Method RGs based on SRG

with post-editing by the adaptive brush and showed low ) )

accuracy for patient VOIs with RG being significantly less A- Manual delineation 844
accurate than the manual method Mikee supplementary Free-hand segmentation produced among the most aceu-
material). Method T4 is based on thresholding and showedate results, which may be counter-intuitive. One explanat s

We have evaluated and compared 30 implementationssnf
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Phantom VOlIs

PL® WS* PL? PL¢ PL¢ T2¢ MD*T4* T4 T4¢ MD; MD; RG* WS T1¢ T1b ’EQS T2¢ RGY i 5 PL® PLf GR MD°T1¢ T3* T3 T2¢ T2¢ PLY
metho

Patient VOIs

PL® WS*PLY PL¢ PL4 T2% MD®T4* T4 T4¢ MD]MD3RG* HB WS T1¢ T1° T20 T2¢ RG} RG3 RG] RG; PL¢ PL/ GR MD°¢T1¢ T3% T3 T2¢ T2¢ PLY

method

All VOIs

PL® WS* PL? PL¢ PL¢ T2 MD*T4* T4 T4¢ MD; MD3; RG* WS T1¢ T1° ’EQS T2¢ RG} RG) RGY{ RGS PL¢ PLf GR MD¢T1¢ T3* T3 T2¢ T2¢ PLY
metho

Fig. 9: Mean accuracy measured by A*, of each method used ntoao VOIs in phantom (top), patient (middle) and the
combined image set (bottom).

comes from the incorporation of prior knowledge regardin@rms of user group, that the delineator of M®as a nuclear s
the likely form and extent of pathology. In the case of thmedicine physicist while the other users, in common with the
patient images alone, bias toward MD may be suspectedeagerts providing ground truth estimates, were experi@nce
the ground-truth set is also built up from manual delinestio physicians. However, while users of MDand MD’; » only e
However, this does not explain the success of manual methedsved the PET images during delineation, the physicistgiSis~
as they performed better still for phantom VOIs where théD¢ also viewed an overlay of the PET gradient magnitude
ground truth comes from CT thresholds. The use of multipknd, in the case of patient images, simultaneous CT. These
ground truth estimates by I-ROC may falsely favour manuadodes of visual guidance could in part compensate for the
delineation due to its inherent variability. However, thi® relative lack of clinical experience, although no concreta
does not explain the success of manual methods as they alsoclusion can be made as clinical sites may disagree on the
perform well in terms of DSC and HD’ that use a uniquesorrect segmentation. 883
'best-guess’ of ground truth (at least one MD is among the
5 highest DSC and HD for each of the patient phantom VOI i i
sets). These observations challenge the intuition, thatuma B. Automation vs. user guidance o
delineation is less accurate. Although many (semi-)autmma Two method comparisons provide evidence that too mueh
methods out-perform free-hand delineation in the litegtu automation in a semi-automatic algorithm is detrimental te
the inherent bias toward positive results among publishattw contouring accuracy. First, we compare the accuracy of meth
makes this an unfair basis for intuition. ods PI¢ and PL¢. Method PLl¢ starts with the same seg-es
Of the 4 manual delineations (MD MD%;, MD’, and mentation achieved by PL then performs extra steps iness
MD*€), method MD out-performed the rest in all of n(n.s.d)the automatic pipeline intended to improve on the results
n(> p+o), median rank and intra-operator variability wherélowever, these extra steps reduce the final accuracy. Secead
known, with significant improvement over MQQ in terms of we compare the accuracy of methods bR,(js and RG1 2. s
AUC’ for patient VOIs (although the multiple comparison efThese differ in that RG , also employs post-editing by theses
fect can mean that one or more of these differences areyfalsatlaptive brush tool. While the adaptive brush may improve
detected as significant). The obvious difference betweeseth accuracy for phantom VOIs, accuracy is reduced for patiest
4 is the user. It is interesting, and indicative of no bias iWOls indicated by n(n.s.d) and median rank. This suggesis
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TABLE VI: Summarised accuracy and variability of phantomyeractive post-editing by user-defined watershed markes
(ph.) and patient (pt.) contouring by all methods orderethas g sup-regional merging. Method £l consistently more s
table | and using ranked and other composite accuracy et rate than PLover all 12 combinations of accuracy metricor
in section IlI-C. Data are not ava|IabIe.(n/a).for. method HB g image type. A second example comes from comparingss
in phantom results and most methods in variability resuns-thresholding schemes used at the same institution (team 13)

n(n.s.d) || nGu+o) || median intra-operator Methods TZ, T3 and T3 use intensity thresholds of 30 o
method rank HD (mm) maximum and 4% & 50% of maximum-plus-background, o::
ph.[ pt. || ph.[ pt. [[ ph. [ pt. [ ph. | pt while T2¢ and TZ use thresholds chosen to match an estimate
PL* || 4 |3 ||[0O |O 17 | 19 n/a n/a of the VOI's absolute volume and the user’s visual judgemest
ws* 0 |0 |JO |0 |J15 |15 | na n/a of VOI extent respectively. Of these five, T most highly o
PL> |4 |4 ]JO [3 ||24 |315]| na n/a influenced by the user and ranks consistently higher than
PL® |4 |3 |1 |1 ||235]27 | nfa n/a the other 4 in all 12 combinations of accuracy metric ang
PLY I3 |2 JO JO Jl105] 125 | n/a na image set, significantly out-performing Tbnce, T3 twice o
T2 Jo |1 4o o 4 |7 na na and TZ three times (notwithstanding the possibility of false:w
MDe [[ 4 |4 |[2 |0 | 285] 23 n/a n/a - : .
1o 1o o To 16 5 A A significance by the mult|ple_ comparison effec_t). 019
T 7 1 o 1o 185 155 | na a Fully au.tomated contouring has th_e potentlal_ to reqluce the
T 7 12 1o 11 1751 205 [ n/a va user-time involved, whereas contouring speed is not ireduds:
MDY, 3 |3 |lo |1 | 135] 255 3.9 1.4 in the present evaluation strategy. This study focuses on-acs2-
+0.9 +1.2 racy, given that even fully automatic results can in priteip s
MDP2|| 3 [ 3 [[0 |3 | 205 315 4.1 5.6 be edited by medical professionals, who ultimately deciol& h s
_ 1.7 =18 much time is justified for a given treatment plan as well a$ juss
RG SO I el io7.6 iél where the final contours should lie. The CPU-time of the mose
0B Twal3 Twaltl T na 112 1 na 56 computationally expensive algorithms could be quantified a-
+0.6 the subject of further work, but its relevance is debatablery o
wst [[2 |2 o |1 |[85 |26 33 7.4 that CPUs have different speeds and large data sets canqbe
£3.0 | +6.7 processed off-line, allowing the medical professional kv o
2 |3 o |1 js 23 || n/a na on other parts of a treatment in parallel. oa1
T1® 4 |1 1 |0 [ 28511 n/a n/a
T2b 4 [3 ||o |oO 135 | 14 n/a n/a
T2° 3 |1 ]Jo ]o 11.5| 16.5 || n/a n/a C. Building prior knowledge into contouring 032
RG' 4 13 [la o st |7 i‘:‘,;gg 1258 As already seen from figure 9 method Wgonsistently s
RG, || 4 | 2 4 1o 315 8 45 33 gave the lowest accuracy. This method was adapted fromo.an
24 +2.0 algorithm designed for segmenting remote sensing imagesy
RG, |3 |4 O 10 |20 | 205] 15 1.0 and its user declared no expertise in medical image analysis
1.7 1.5 Conversely, two methods were adapted for the applicatien
RG21[ 4 [4 [[o [0 [[25 | 225] 26 2.7 o
2.0 £04 of PET oncology, from other areas of medical image segs
Ple 12 12 1o o 120 |12 na na mentation. Method PL has origins in white matter lesionsss
PLY 4 |3 0 |o 275 | 14 n/a n/a segmentation in brain MRI and method 'Pis adapted from e«
GR 4 o |lo Jo [[25 |23 1.2 2.3 segmentation of lung nodules in CT images. These two exam-
+0.0 +0.7 ples far out-perform method WSwith method PP having e
MDe |4 |4 |11 |4 | 285325 i-& i-182 the joint second highest median ranking for patient imagels a.:
I 7 To o o 13 35 T no significant dlffgrence from the most accurate methods dn
T3« 113 11 To |o 105 | 2 a a terms of any metric for any image set. _ 05
T2 T2 1o lo o 45 135 1 na na Some methods were designed for PET oncology, incorporat-
7 1o 2 o 1o 7 75 1 n/a na ing numerical methods to overcome known challenges. Exam-
T2¢ 4 | 3 0 | 1 185 | 26 n/a n/a ples are method GR that overcomes poorly defined gradients
Py [[3 [ 4 [[o |3 | 85 |295] na n/a around small volumes due in part to partial volume effeatsd, ass

method P allows for regional heterogeneity that is knownso

to confound PET tumour segmentation. These methods rank

reasonably highly, in patient images, ranking similarlyald s>

that, where post-editing by unconstrained manual delioeat manual delineations and the semi-automatic 'smart opéning
generally improves accuracy in other methods, the autamatgigorithm (PL°), despite neither GR nor PLhaving any user s
component of the adaptive brush may influence the editingervention or making any use of simultaneous CT. Methad
procedure, and this influence may be detrimental in cases’ performs relatively poorly in phantom images, where thes
where underlying image information is less reliable. problem of tissue heterogeneity is not reproduced. 057
Conversely, two comparisons give a clear example of theThe benefits of prior knowledge are also revealed by
benefits of user-intervention. First, methods®Pand P/ comparing 3 thresholding schemes®T4&4* and T4 used s
are almost the same with the difference that’ Rimploys by the same institution (team 04). Of these, method T4
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1 was considerably less accurate in terms of both n(n.s.d) adface of such VOIs is precisely known due to their geormetii-
w2 median rank. Methods P4and T4 were calibrated using form, but many segmentatiuon algorithms are confounded:fy
s phantom data to build in prior knowledge of the imagingregular surfaces and more complex topology such as braneh
e« device. Even though the two devices used to calibrate Tihg seen in clinical cases and in the new phantom presenied
ws and T4 are from different vendors (Siemens and Biographere. Another limitation of phantom images including those
es devices) than the one that acquired the test images (@&ed here is the difficulty of mimicking heterogeneous of
o7 Discovery), they are consistently more accurate than ndethmulti-focal tumours as seen in some clinical data. 1023
s T4% implemented at the same site, which does not learn fromDigital images of histological resection can in some cases
w9 Scanner characteristics but instead has an arbitrary géeamprovide unique ground truth, removing the need to combiae
oo (39%). Methods T4 and T4 also out-perform the majority multiple estimates. A recent example demonstrates this fer
o Of the other low-interactivity thresholding schemes, gitng PET imaging of prostate cancer [57]. While this approach
o2 that the calibration is beneficial and generalises acroagiimy could provide the standard for accuracy evaluation whese
o3 devices. This apparent generalisation is further eviderge available, histology-based accuracy measurement is ratlyrreiss
o NO significant differences between methods” Bad T4 in  limited as described in [58], with errors introduced by de=o
o5 any individual metric for patient or phantom VOIs. formation of the organ and co-registration of digital images:
o76 Finally, thelow accuracy of methods T4and T4 may be (co-registration in [57] required first registering mary&b an 02
o7 due toerroneousprior knowledge. These two implementationsntermediate CT image). Furthermore, tumour excision 1§ Ofbss
os  Of the same algorithm [6] inherently approximate the volumappropriate for some applications. For head-and-neckerangss
oo Of interest as a sphere. Both perform poorly, with mediak+anthe location of the disease often calls for non-invaswejtro 1ss
s0 ing from 4 - 7 over all 4 metrics in contouring both phantontreatment by radiotherapy and in such cases the proposeddsise
1 and patient VOIs. These low accuracies are likely to arigd multiple ground truth estimates may provide a new stathdass.
s from the spherical assumption rather than the initialisabf Neither deterministic metrics with flawed, unique grounds
s the method, as the low accuracies are similar despite differtruth (DSC and HD) nor probabilistic methods like 1-ROGss
s« Methods of initialisation described in section Il. or STAPLE, measure absolute accuracy. However, the relativ
accuracy of methods or method groups is of interest to our aim
of guiding algorithm development. For this purpose, a large
and varied cohort of segmentation methods is desirable, and
@  Accuracy measurement is fundamentally flawed in manpie composite metrics based on method ranking, distribstiau.
«r medical image segmentation tasks due to the ill-definitibn ef accuracy scores n(+c) and the frequency of having nQos
« the true surface of the VOI. It is most common to estimatsignificant reduction in accuracy with respect to the mast
0 the ground truth by manual delineation performed by a singégcurate n(n.s.d) become more reliable as the numben.of
w0 expert (e.g. [53], [19], [54]). However, even among expertgontouring tools increases. However, without a simultaiseaos
w1 inter- and intra-operator variability are inevitable an@lw increase in the number of VOIs, significance tests of the
e documented in PET oncology [21], [22]. The new metrigifference in accuracy of any one pair of methods becomes
w3 AUC’ exploits this variability in a probabilistic framewky less reliable due to multiple comparison effects. 1051
s« and we have also defined a single 'best guess’ ground truth, fo
es  Use with traditional metrics of DSC and HD, from the union
w6 Of a sub-set of expert contours. For patient VOIs, the I-ROC
sz Scheme incorporates knowledge and experience of multipleThe multi-centre, double-blind comparison of segmentatioss
ws experts as well as structural and clinical information intmethods presented here is the largest of its kind completed
e9 accuracy measurement and rewards the ability of an algoritfior VOI contouring in PET oncology. This application hasss
w0 t0 derive the same information from image data. The I-RO&n urgent need for improved software given the demands
wan method considers all ground truth estimates to be equatly modern treatment planning. The number and variety :6f
w02 Vvalid a priori, and any one estimate can become the operatiogntouring methods used in this paper alone confirms the need
w0  point on the I-ROC curve built for a given contour undefor constraint, if the research is to converge on a small remiass
w4 evaluation. This is in common with the Simultaneous Trutbf contouring solutions for clinical use. 1060
s and Performance Level Estimation (STAPLE) algorithm by We found that structural images in hybrid PET/CT, now
s Warfield et al. [55]. Theirs is also a probabilistic method,commonly available for treatment planning, should be used e
w007 Which uses maximum likelihood estimation to infer both theisual reference during semi-automatic contouring while tioess
1008 accuracy of the segmentation method under investigatidn asenefits of high-level CT use by multispectral calculatianes 1oss
000 a@n estimate of the unique ground truth built from the initialevealed only by the new accuracy metric. We also concluded
1010  Set. that higher levels of user interaction improves contouring
1011 Other authors have evaluated segmentation accuracy usacguracy without increasing intra- or inter-operator ability. 107
102 phantoms. The most common phantoms used in PET imagingeed, manual delineation overall out-performed all semis
013 contain simple compartments such as spherical VOIs, attemgr fully-automatic methods. However, two methods {E&d 16
014 iNg to mimick tumours and metastases in head and neck canekf) with a low-level of interactivity and two automatic methroro
s [10], [12], lung nodules [56] and gliomas [20] and cylindtic ods (PL* and PLY) are characterized by accuracy scores that
e VOIS, attempting to mimick tumours [37]. The ground truttare frequently not significantly different from those of thest 107

s D. Accuracy evaluation

VI. CONCLUSIONS 1052
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manual method. Contouring research should pursue a sesiinple data classification problem and explain the extensigs

automatic method that achieves the same level of accuracyt@sopological ground truth for contour evaluation. 1129
expert manual delineation, but must strike a balance betwee 1130
(i) guiding manual practices to reduce levels of variapilitA.1 Conventional ROC: multiple decision makers 131

and (i) not over-influencing the expert or overriding his or Receiver operating characteristic (ROC) analysis is wel
her knowledge. To strike this balance, techniques that shegtablished in medical imaging as a means of evaluating
promise are (i) visual guidance by both CT and PET-gradiefgion- and voxel-wise data classification [60]. Data comes
images, (i) model-based handling of heterogeneity and®tll in the form of N = N, + N_ measurements, comprisingss
edges that characterise oncological VOIs in PET and (i), ’positive’ data with truth labels+1 and N. ’'negative’ 1
departure from the reliance on the SUV transformation amgta with labels-1. A binary classifier divides allV data s
iso-contours of this parameter or another scalar multifle mto positive and negative sets, and has at least one imteraa
PET intensity, given its dependence on the imaging tinfrarameter that affects this division. ROC analysis is perém s
window and countless other confounding factors. by varying an internal parameter jnincrements. In threshold:o
These results go a long way towards constraining subsgassification, the threshold is the internal parameterdatd 1.
quent development of PET contouring methods, by identifyimabove the threshold are counted as either true positive ¢ P
and comparing the distinct components and individual nathofalse positive (FP) according to agreement or otherwist) Wius
used or proposed in research and the clinic. In addition, wee ground truth labels. Similarly, true negative (TN) olséa 11
provide detailed results and statistical analyses in supph- negative (FN) classifications are counted below the thidshe.s
tary material for use by others in retrospective compassoihe counts Np, Ngp, Nty and Ney, of true/false positives andius
according to criteria or method groups not attempted hexe, igegatives yield the true positive ratio TPRnd false positive w4
well as access to the test images and ground truth sets [@9] #fatio FPR for the i threshold and the paf TPR; , FPR} 1us
can be used to evaluate other contouring methods in thesfutusecomes a single point on a ROC curve. The whole curve.is
While our tests focused on head-and-neck oncology, only thenerated by varying the internal parameter between Hatusa
fixed threshold method Tlmade any assumptions about théimits. For the threshold classifier in figure 10, the limite aus:
tracer or tumour site so results for the remaining methogse minimum and maximum value in all N data. The fixag:
tested here provide a benchmark for future comparisoggound truth in figure 10 are drawn from Gaussian distringiouss
Recently proposed methods in [11], [12] and [59] would bgith 1, = 3.0, u_ = -3.0 ando, = o_ = 2.5. 1154
of particular interest to test. However, if the number otéds  The ROC curve occupies the range...1} in both TPR uss
methods increases without increasing the number of VO&s, thnd FPR and has two limiting cases. The first limit is thes
chance of falsely finding significant differences betweeia p diagonal line {- in figure 10) which has an area unders:
of methods increases due to the multiple comparison eftectthe curve (AUC) of 0.5 and indicates failure to classify datas
the composite metrics are favoured over pair-wise COMPAsis petter than random assignment of labels. The second wus
for such a benchmark. limiting case (- - in figure 10) has AUC = 1 and indicatesso
Future work using the data from the present study shoyl@rfect classification. As a result, AUC is commonly used as
categorise the 30 methods in terms of user-group and compafi@easure of classifier accuracy. ROC analysis simultaheous
segmentation methods in more head and neck VOIs. Futyiglds the operating point of the classifier, defined as the
work with a larger set of test data (images and VOIs) igternal parameter setting (e.g. threshold) that minimi$e s
expected to provide more statistically significant findiagel combined cost of false positives and false negatives. 1165
should repeat for VOIs outside the realm of FDG in head- |f posjtive and negative ground truth are normally dis-
and-neck cancer and for images of different signal/baakio {ripyted, the ROC curve has exponential form and AUC can
quality. For this purpose the experimental design inclgdihe calculated by fitting an analytic function and integrgtin
phantom, accuracy metrics and the grouping of contemporgiween the limits 0 to 1. In this case, AUC is a monotonic
segmentation methods, will generalise for other tumouesypsnction 2! of the distance between the means . of the

and PET tracers. true distributions, scaled by their standard deviationss_,
where
VII. ACKNOWLEDGEMENTS _ M+ T B
. ) #(AUC) = Nz ()
For retrospective patient data and manual ground truth oy +oZ

sﬂell&eTLon’ tk(ljeHau,t/T_ors V\t"f;] tthhanI: S, ?u;lago, ||< L@ht'é%nd AUC is equal to the Gaussian probability that a measure-
- Viokka and m. Minn at the Department of ©ncology anG, oy qrawn at random from the positive set will be correctly;

Radiotherapy, Turku _Un_|verS|ty Hospital, Flnla_md. Thisdy classified. If the assumption of normally distributed dega iies
was funded by the Finnish Cancer Organisations. relaxed the probabilistic interpretation still holds, widhe 1
probability is that sought by a Wilcoxon signed ranks test afino

APPENDIX AUC is evaluated using the trapezium rule [61]. 171

In order to derive the new accuracy metric and explain its In summary, AUC is a probabilistic measure regardless.of
probabilistic nature, we recall the necessary componehtstbe underlying distributions and ROC analysis can be used.as
conventional receiver operating characteristic (ROC)yamig a metric combining sensitivity and specificity. 1174
then demonstrate the principlesiaferse-ROQI-ROC) for a 1175
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Fig. 10: Conventional ROC analysis of a threshold classifi€ig. 11: I-ROC analysis of a threshold classifier performed b
performed by fixing the ground truth labelling and varyingarying the ground truth distributions ip = 19 increments
the threshold irp = 19 increments (top) to form a ROC curvewhile the threshold is fixed (top) and plotting the corregpon

(bottom). The operating point is marked green. ing {TPR; , FPR} pairs to form a ROC curve (bottom). The
operating point is marked green.

A.2 I-ROC: multiple ground truth representations classifier being evaluated, 1107

The new ROC technique is referred to aserse as, A.2(iii) incorporate the best knowledge of the uniques
rather than unique ground truth labelling and various eahbjt (unknown) ground truth, and 1100
decision makers, it assumes a single classification anés/ari  A.2(iv) 'pass through’ the unique (unknown) ground truthw
the definition of ground truth. Figure 11 demonstrates this as closely as possible. 1201

for the example of threshold classification. In common Witﬁequirement A.2(iii) is realised by fixing the difference afo
figure 10, data being classified in figure 11 are a mixture ﬁfeansm — u_ and havingp increase withu.,. Requirement 2o
Gaussians with means. and 1., separated by 6 units anda 2(iv) means that there exist labelling§ 7} and {GT 41}  10s
standard deviations_ = o, = 2.5, and the total number of with ;,, and N, (similarly g and N_) either side of the iz
data is fixed at N + N_ = 2 x 10%. To simulate a change operating point. 1206
in ground truth labelling for the same underlying data, the Tpe shape of the ROC curve in figure 11, the operating
means of the positive and negative distributions are shifie point and, within the accuracy of the trapezium integratians
0; SO thaty— = =3.0+4; and . = 3.0+9;, whereg; increases the AUC are the same for the 1-ROC as for the equivalent
from an arbitrary (negative) minimum to an arbitrary (P98l analysis in figure 10 by virtue of the choice of parameters,
maximum inp = 19 increments, and the proportignof data \yhich merely serves to illustrate the ability to perform.
in the positive set decreases as 1 -i/p. To classify data equivalent ROC analyses by shifting decision maker (ROG)

that has thet ground truth labelling, we fix the thresholdor ground truth labelling (I-ROC). 1213
at T=0 for alli € {1...p}. In line with the requirements of 1214
conventional ROC, the multiple ground truth definitions area 3 |-ROC with topographic ground truth 1215

A.2(i) ordered by monotonically (in-) de-creasing N In the context of VOI contouring, the notion of 'positivesize

A.2(ii) obtained by independent means, not the threshaldfers to voxels inside a contour, which is a spatial diskmc 1217
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and may or may not correspond to voxel values above6éa) holds if requirement A.3(i) is met and 6(b) is satisfigd ks

threshold. Truth labels in turn are separated by a surfacetlre
image space, and stored as a binary maskzdf}. We refer
to {GT.} as a contour or mask interchangeably. The I-ROC
method evaluates the accuracy of a fixed result of a contgurin
algorithm denoted”, using a set of arbitrary ground truth [1]
masks{GT,;},i € {1...p}. The term 'arbitrary’ refers to the
fact that no single mask in the set is closagpriori to the
unknown, unique ground truth and does not mean that their
shapes are arbitrary. Following from the requirements lier t
shifting threshold in A.2, the natural limit§7; and G7, [2
contain none and all of the image voxels (inside a bounding
box) respectively and the s€g7T,},ic{1...p} 3]
A.3(i) is ordered monotonically by volume whe®T;
completely enclose§7T;_1, [4]
A.3(ii) is obtained independently of the contouring algo-
rithm under evaluation,
A.3(iii) incorporates the best available knowledge of
ground truth, and
A.3(iv) 'passes through’ the un-known, unique ground
truth surface as closely as possible.

Requirement A.3(i) can always be met by defining egdh
as the union of contours from an original set. Requirementé!
A.3(ii) and (iii) can also always be met, whereby suggested
sources of independent information are complementary-imag
ing or clinical information unseen to the tool under evamt (8l
Requirement A.3(iv) means that topology and general shape
are conserved within the set as in the analogy of inflating a
novelty balloon, and can also always be met by the procedure
used to obtaine alf7;, such as the suggested use of unior‘[g]
masks.

If the general shape common to &f7;} is representative
of the unknown ground truth then AUC is higher whe|?lo
the contour under evaluation shares this shape. Figure 15

(5]

(6]

1270

fixed bounding box enclosing the &7 ;}.
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Fig. 12: Inverse-ROC analysis of a fixed contour (red cirgejformed by varying ground truth contours as squares (a) or
circles (c) of increasing size. ROC curves in (b) and (d) ar# from the corresponding true and false counts that |lsde
or outside the't ground truth contour. Operating points are shown in green.
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