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Abstract

Quasi-flat zones are morphological operators which segment the image into ho-

mogeneous regions according to certain criteria. They are used as an image

simplification tool or an image segmentation pre-processing, but they induced

a very important oversegmentation. Several filtering methods have been pro-

posed to deal with this issue but they suffer from different drawbacks, e.g., loss

of quality or edge deformation. In this article, we propose a new method based

on existing approaches which achieves better or similar results than existing

approaches, does not suffer from their drawbacks and requires less computation

time. It consists of two successive steps. First, small quasi-flat zones are re-

moved according to a minimal area threshold. They are then filled through the

growth of remaining zones.
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1. Introduction

Quasi-flat zones are morphological operators which partition the image into

homogeneous regions according to certain criteria. They are mainly used for

image simplification and image segmentation (through a pre-processing). How-

ever quasi-flat zones induce a very important oversegmentation which is mostly

due to tiny quasi-flat zones composed of a few pixels. As these small regions

do not improve the quality of the QFZ partition, several methods have been

proposed to filter them. These methods reduce the oversegmentation but suffer

from different drawbacks : loss of quality, edge deformation, etc. So, there is

still a need of an efficient method for quasi-flat zones filtering. Here, we propose

such a method by inspiring from existing approaches while achieving better or

similar results, not suffering from the known drawbacks and requiring a lower

computation time. It consists of two successive steps. First, small quasi-flat

zones are removed according to a minimal area threshold. They are then filled

through the growth of remaining zones. This paper is organized as follows. In

the next section, we present the paradigm of quasi-flat zones, their applications

to image analysis and processing, and their related issues. Sec. 3 is dedicated to

a early introduction of the evaluation protocol which will be used thorough our

paper. We then given an overview of the state-of-the-art in Sec. 4. In Sec. 5, we

introduce our proposal which outperforms current approaches as shown by the

experiments in Sec. 6. We finally conclude in Sec. 7 and indicate some future

directions.

2. Background

2.1. Quasi-Flat Zones

Flat zones [10] have been studied within the field of Mathematical Morphol-

ogy and are seen as elements with interesting properties. Indeed, a flat zone is

defined as a connected set of pixels having the same value. Since object frontiers

in digital images are mostly located between pixels of different values, object

frontiers are expected to be included in frontiers between flat zones. However,
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flat zones are often only a few pixels wide so the resulting partition is an ex-

treme oversegmentation and is hardly exploitable. Less constrained definitions

have thus been proposed, leading for instance to the Quasi-Flat Zones (QFZ)

and more precisely the Cα (see [12] for a survey on QFZ).

The Cα of a pixel p is defined as the connected set of pixels which can

be reached through (at least) one path verifying the following condition: the

difference between values of successive pixels within the path is less or equal to

a given parameter α (α = 0 being the case of flat zones). However, segmenting

an image into Cα with α > 0 may result in an undersegmentation phenomenon.

If α is set too high, it will lead to a so-called chaining effect, which may even

result in a single QFZ for the whole image. In order to counter this problem,

several new QFZ definitions based on Cα have been elaborated (see [12] for

more details). These definitions have been subsequently unified by Soille and

Grazzini [11, 14], who propose a theoretical framework called logical predicate

connectivity.

In this new framework, a QFZ (noted CP1,...,Pn here) is expected to satisfy

all the n logical predicates Pi. We will denote by Pi(S) the fact that a predicate

Pi is valid over a set S. Various predicates may be involved, such as the global

range predicate which is true if and only if the difference between minimal and

maximal pixel values within a QFZ is less or equal to a given threshold ω. The

CP1,...,Pn thus consists in finding, for each pixel p, the largest Cα which satisfies

all the predicates. Moreover, since the following property holds:

∀α′ ≤ α, Cα
′
(p) ⊆ Cα(p) (1)

an iterative computation scheme may be involved. Indeed, when predicates are

not verified for a given value of α, α is decremented and a new evaluation of the

predicates is performed. This loop is repeated until finding the maximal value

of α for which all the predicates are verified:
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CP1,...,Pn(p) =
∨Cα′

(p)

∣∣∣∣ ∀k ∈ {1, ..., n}, ∀α′′ ≤ α′, ∀q ∈ Cα′
(p)

Pk

(
Cα

′
(p)
)

= true and Pk

(
Cα

′′
(q)
)

= true


(2)

In the following we will use Cα which only relies on local range predicate α,

and Cα,ω which relies on both local range predicate α and global range predicate

ω.

Some clues to define QFZ in multivariate images have also been given by

Soille [12], where α is assumed to be a vector with the same value in all compo-

nents. Thus αmay be easily ordered through a total ordering (e.g., decrementing

α = (3, 3, 3) gives α = (2, 2, 2)). Global range predicate is processed similarly,

and is true only if it is verified marginally for all bands.

2.2. QFZ-based image analysis

Quasi-flat zones are mainly used as an image simplification tool and as a

first step within a segmentation process.

In the context of image simplification, QFZ are interesting since they produce

connected sets of homogenous pixels (according to a certain criterion). The key

idea is to set a unique intensity value for all pixels belonging to the same quasi-

flat zone, for instance its mean intensity [12]. Other works aim at not only

spectrally simplifying the image but also simplifying shapes in the image to

ease its subsequent vectorization [4]. Such image simplifications are used for

compression purpose or image filtering before segmentation.

Indeed, quasi-flat zones can also be considered as a first segmentation step.

The resulting partition can then be refined by merging close and similar quasi-

flat zones [3] or using representative quasi-flat zones as seeds in a seeded seg-

mentation process like watershed [17] or seeded region merging [6]. They have

also been used to speed up interactive video segmentation [15], by considering

quasi-flat zones instead of pixels as partition elements.

In this article, we will deal with this last application case and consider quasi-

flat zones from a segmentation point-of-view.
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2.3. The case of transition regions and isolated pixels

All QFZ definitions suffer from the transition region problem. These regions

are border regions between two objects where there is a stair effect (cf. Fig. 1.b).

This effect is due to the image discretization and the interpolation of pixel values

induced. It leads to an oversegmentation close to this border which is then

composed of tiny QFZ (cf. Fig. 1.c).

a b c

Figure 1: Transition region problem: a) original image, b) Stair effect in the

white square of the original image, c) Cα,ω using α = ω = 100.

This local oversegmentation might be very important and needs to be low-

ered in order the QFZ partition to be meaningful. This can be achieved without

any loss of quality in the resulting segmentation since the oversegmented areas

of the image are located on the border between objects.

Transition regions are not the only cause of oversegmentation. In fact, they

account only for those on contrasted borders (see Fig. 1 where transition regions

are located between the light shoulder of Lenna and her dark hairs). Indeed,

we may also observe numerous QFZ made of a single pixel inserted in a wider

QFZ (see Fig. 2). These QFZ are due to isolated pixels (pixels surrounded by a

homogeneous neighbourhood). Such QFZ are not useful for image segmentation

or simplification, and must be filtered. Moreover, we can also observe that

there are regions which are segmented into too many QFZ (for instance Lenna

shoulder in Fig. 2, whatever the values of the parameters α and ω considered).

It is obviously necessary to filter these regions to keep oversegmentation reduced

and thus still useful.
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a b c

Figure 2: Oversegmentation on lenna : a) Original image, b) Cα,ω using α =

ω = 50 (58,219 QFZ), c) Cα,ω using α = ω = 100 (34,651 QFZ).

To achieve oversegmentation reduction, dedicated filtering methods are re-

quired to specifically address small QFZ and transition regions. Before reviewing

these methods, we deal in the next section with the problem of their evaluation.

3. Evaluation protocol

Before describing quasi-flat zone filtering methods in the following sections,

we introduce our evaluation protocol which will be used thorough our paper to

compare the different methods.

We have considered here the Berkeley Segmentation Dataset [8]. It con-

tains 300 color images of size 481×321 pixels and 3269 reference segmentations,

realized by 28 distinct experts. The relatively high number of reference segmen-

tation maps per image is significant in the context of our experiments. Indeed,

it enables a more objective comparison between our results and real-world prac-

tical requirements. A sample of the collection along with reference segmentation

maps is provided in Fig. 3.

The comparison between filtering methods is achieved quantitatively by

means of a segmentation task. Segmentation being an ill-posed problem, its

evaluation is still an issue (multiple ground truths are possible depending on

the expert involved). Simple criteria as the number of regions is definitely

insufficient. In order to strengthen the objectivity of the experiment under con-

sideration, we thus employ here two evaluation criteria: the oversegmentation
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(a) (b) (c) (d)

(e) 31 regions (f) 6 regions (g) 40 regions (h) 20 regions

(i) 14 regions (j) 6 regions (k) 30 regions (l) 7 regions

Figure 3: Images from the Berkeley Segmentation Dataset: the original images

(top) along with two reference segmentation maps (middle and bottom).

ratio (OSR) [5] and maximal precision (MP ) [7]. The former is defined as:

OSR =
# quasi-flat zones

# reference regions
(3)

This ratio directly expresses the degree of over-segmentation. It provides us

somehow with the merging degree required to achieve a segmentation as closest

to the reference as possible.

The latter rather focuses on pixel-based accuracy by comparing the reference

segmentation and the built quasi-flat zones. More precisely, each quasi-flat

zone is associated with a given reference region for which it shares the highest

number of pixels. It results in the best possible segmentation we can obtain

by an optimal merging of QFZ. We then measure a pixel-based precision by

computing the ratio of well-segmented pixels:

MP =
# well-segmented pixels

total # pixels
(4)

For instance, MP = 0.8 means that we have achieved 80% pixel-based accuracy
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w.r.t. the ground-truth. Hence, by using both MP and OSR, an effective

evaluation and comparison might be achieved, with the ultimate goal being

both the minimization of OSR and maximization of MP .

Having established OSR and MP as evaluation criteria, we proceeded to

apply various quasi-flat zone filtering methods on the entire Berkeley Dataset (cf.

Fig. 8). Multiple references for each image are used individually for evaluation

and combined to obtain a mean evaluation for each image. The plotted results

are the mean of the evaluations obtained on the whole dataset.

4. Comprehensive review of related work

Several approaches have been proposed to deal with the problems of transi-

tion regions and isolated pixels. The goal of this section is to provide a compre-

hensive review of these methods.

Soille and Grazzini [14] define the transition regions as QFZ that contain only

transition pixels. A transition pixel is a pixel which is not a local extremum,

i.e. which is not surrounded by either lower or higher values only.

The approach proposed by Soille and Grazzini consists in removing all the

QFZ which are transition regions, i.e. regions without local extremum. The

resulting incomplete image partition is then corrected by using a region-merging

algorithm (here the Seeded Region Growing (SRG) [1]). The remaining QFZ are

used as seeds and grow until the partition of the image is complete. The authors

also proposed an extension of their approach dedicated to color images. The

key idea is to consider that a pixel is a transition pixel only if it is a transition

pixel in every color band of the image.

Fig. 4 illustrates this approach both in grayscale and color case, and pro-

vides final as well as intermediary results. Amounts of QFZ are heavily reduced

(60.7% in grayscale and 36.8% in color) but the oversegmentation is still impor-

tant after the filtering of transition regions. While transition pixels account for

most of the image pixels, transition regions represent only a much smaller part of

the image because of their strict definition. In fact, local extrema, even if fewer
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a b c d

e f g h

Figure 4: Transition region filtering : (top) grayscale, a) Cα,ω using α = ω = 100

(31,385 QFZ), b) Transition pixels mask (82% of the image), c) Transition region

mask (19 073 transition regions representing 17% of the image), d) QFZ after

filtering (12,313 QFZ); (bottom) color, e) Cα,ω using α = ω = 100 (34,651

QFZ), f) Transition pixels mask (57% of the image), g) Transition region mask

(12,743 transition regions representing 9% of the image), h) QFZ after filtering

(21,909 QFZ).
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than transition pixels, are well distributed in the image. Due to the stricter

definition of color transition pixels, we can observe the difference between color

and greyscale transition regions. This approach does not need any parameter

thanks to a precise definition of transition region. However, many regions made

of few pixels remain after the transition region filtering. These regions do not

fit the transition region definition but induce an important oversegmentation,

as noticed in Sec. 2.3.

Soille [13] proposed a preprocessing of the original image instead of a postpro-

cessing of the QFZ. This preprocessing consists in an image contrast reinforce-

ment based on local extrema. First, local extrema of the image are extracted

(cf. Fig. 5.a). Then, these extrema are used as seeds in a region growing pro-

cess in order to obtain a partition of the image called mosaic of local extrema

(cf. Fig. 5.b). Each pixel is then valued by the value of the local extremum

used as seed for its region. This leads to a new image which contrast has been

reinforced (cf Fig. 5.c). This preprocessing strengthens the edges in the image

thus limiting the stair effect responsible of the majority of transition regions.

Finally, QFZ are built from this image (cf Fig. 5.d).

a b c d

Figure 5: Filtering by local extrema mosaic: a) local extrema mask (43% of

the image), b) local extrema mosaic (112,461 regions), c) original image with

reinforced contrast, d) Cα,ω using α = ω = 100 on reinforced contrast image

(8,045 regions).

The filtering by local extrema mosaic induces an image simplification which

let the subsequent QFZ partition to be far less oversegmented. However, we

can still notice numerous QFZ made of a single pixel which prevent the overseg-

10



mentation to be considered as acceptable. Moreover, the contrast reinforcement

modifies the edges of the processed image. This can be observed on the edges

of Lenna’s mirror (cf. Fig. 2 and 5.d). This modification has a direct impact on

the quality of the QFZ partition in terms of boundary accuracy.

To accurately deal with isolated pixels, some authors have introduced filter-

ing methods based on a minimal area threshold. Angulo [2] proposed to merge

QFZ with an area lower than a threshold. QFZ are mapped to a region adja-

cency graph (RAG) where nodes represent QFZ and are valued by their mean

color and area. Every vertex represents the adjacency link between two QFZ

and is valued by the difference of mean colors of these two QFZ. The filtering

proceeds by reducing this graph until all remaining QFZ have an area greater or

equal to the threshold. The merging process is the following : the smallest QFZ

is merged with the most chromatically similar adjacent QFZ, then the RAG is

updated (node and vertex values). This process is repeated until no QFZ has an

area lower than the minimal area threshold. Even a small threshold value leads

to removing few pixels QFZ and transition regions. However, as small QFZ

are merged with adjacent QFZ, it is possible that these adjacent QFZ are also

small QFZ and then, the filtering can produce QFZ greater than the threshold

but only composed of small QFZ such as transition regions (cf. Fig. 6). Since

boundaries are generally present in such QFZ (especially transition regions), it

might alleviate the partition accuracy.

Zanoguera [17] proposed an approach based on a similar principle. It also

aims at removing QFZ with an area lower than a given threshold. To obtain a

complete partition of the image, remaining QFZ are used as markers for marker-

based watershed algorithm [9]. These QFZ are then extended in the space

from which small QFZ have been removed. Contrary to Angulo’s approach,

there is no risk to obtain QFZ only composed of transition regions. However,

the watershed is applied on pixels, so the removed QFZ information and the

data reduction they induce are lost. It calls for an improvement by applying

watershed on QFZ instead of pixels. Such an extension would preserve QFZ

information (particularly their accurate boundaries) and speedup the filtering
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a

b

c

d

e

Figure 6: Enlargement of small QFZ after filtering on magnified top of lenna.

a) original, b) Cα,ω with α = ω = 100, c) Angulo’s method (area threshold =

5), d) Iterative area filtering (area threshold = 5), e) Zanoguera’s method (area

threshold = 5) (no small QFZ enlargement).

by working on the reduced data.

Crespo et al. [6] dealed with flat zones. The idea is to select the n most

significant flat zones (depending to some criteria) as seeds in a region growing

process applied on flat zones. Thus a precise over-segmentation reduction is

obtained as the desired number of remaining flat zones has to be set. Moreover,

the region growing is not applied on pixels but rather on flat zones. This ensures

to keep accurate borders from flat zones and to limit computation cost since the

region growing algorithm is applied on a reduced data volume. This method

may be adapted to QFZ, but the parameter n is rather hard to be set since it

is strongly image dependent.

Brunner and Soille [4, 13] proposed an iterative area filtering method. Sim-

ilarly to previous methods, it aims at removing QFZ with area lower than a

threshold. However, instead of removing all these QFZ in a single step, the re-

moval is done by iteratively increasing the area threshold until the final thresh-

old:
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1. Area threshold is set to 2;

2. QFZ with area lower than the threshold are removed;

3. Partition is completed using remaining QFZ as seeds in a SRG algorithm;

4. If the current area threshold is not the final threshold, it is increased and

the process go back to step 2, otherwise the filtering is achieved.

Since filtering is progressive, it avoids poor results induced by the fact that

remaining QFZ (i.e. larger than the threshold) represent a small part of the

image in case of a high threshold value. This approach thus filters few pixel

QFZ and transition regions, but is also able to significantly reduce the over-

segmentation when considering a high threshold value. In our example, we

observe on Fig. 7 that the over-segmentation is further reduced w.r.t. other

methods. However, we can notice that all transition regions have not been

removed. Indeed, some have been enlarged by integrating pixels from removed

QFZ and thus having an area greater than the final threshold. This leads to

the production of transition regions wider than the original region transitions,

while their filtering was expected (cf. Fig. 6). Moreover, the region growing

process is applied on pixels: as it has been suggested for the previous method,

applying such a process directly on QFZ looks more relevant.

Existing QFZ filtering approaches allow to reduce the important oversegmen-

tation induced by QFZ. However, the oversegmentation is still high especially

with non-parametric methods which mainly aim at filtering transition regions.

Filtering approaches based on minimal area threshold reduce more efficiently

the oversegmentation effect. Nevertheless, these approaches also suffer from

some drawbacks: transition regions may be enlarged by aggregating small QFZ

or parts of them, small QFZ may be removed while loosing their related infor-

mation and the data compression power. Moreover, a minimal area threshold

has to be set. Its value depends on the image content. In the case of an image

with a wide (resp. small) object of interest, the threshold should be set high

(resp. low). This is is illustrated in Fig. 8 where we can observe that the para-

metric approaches (iterative area filtering, Angulo’s and Zanoguera’s methods)
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a b c d

e f g h

Figure 7: Iterative area filtering with Cα,ω: (top) α = ω = 50 a) non-filtered

QFZ (58,219 QFZ), b) threshold=5 (11,423 QFZ), c) threshold=10 (6,335 QFZ),

d) threshold=15 (4,528 QFZ), (bottom) α = ω = 100 e) non-filtered QFZ

(34,651 QFZ), f) threshold=5 (6,381 QFZ), g) threshold=10 (3,386 QFZ), h)

threshold=15 (2,411 QFZ).
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lead to a greater oversegmentation reduction. Nonetheless, we also notice that

a improving the oversegmentation reduction through the use of a higher thresh-

old often comes at the cost of a lower maximal precision (cf. Fig. 9). So the

threshold has to be set carefully and this is far from being trivial. We address

these various issues in the next section.

0.9 0.95 1

MP

300

1000

3000

O
S
R

Non filtered QFZ [12]

Transition region filtering [14]

Filtering by local extrema mosaic [13]

Filtering by Angulo, threshold=5 [2]

Filtering by Zanoguera, threshold=5 [17]

Iterative area filtering, threshold=5 [4]

Figure 8: Existing QFZ filtering approaches comparison using C(α,ω) on Berke-

ley Segmentation Dataset.

0.9 0.925 0.95 0.975

MP

100

300

1000

O
S
R

Filtering by Angulo, threshold=5

Filtering by Angulo, threshold=10

Filtering by Angulo, threshold=15

Filtering by Zanoguera, threshold=5

Filtering by Zanoguera, threshold=10

Filtering by Zanoguera, threshold=15

Iterative area filtering, threshold=5

Iterative area filtering, threshold=10

Iterative area filtering, threshold=15

Figure 9: Filtering approaches based on minimal area threshold comparison

using C(α,ω) on Berkeley Segmentation Dataset with different values of minimal

area threshold.
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5. Proposed method

In this section, we propose an original approach for QFZ filtering called area

filtering by merging. We also evaluate the interest of working on QFZ rather

than on pixels, give some clues to set the area threshold more easily and finally

discuss the drawbacks and the advantages of our approach w.r.t. the state-of-

the-art.

5.1. Definition

While failing to achieve accurate and effective oversegmentation reduction,

existing approaches bring relevant features which are worth being considered.

Thus we also consider the use of an area threshold. A merging process is also

considered, thus leading to a 2-step approach:

(1) Removal of QFZ which area is less to the area threshold;

(2) Growing of the remaining QFZ using a SRG on the removed QFZ.

Instead of applying the partition completion on pixels, we apply it on QFZ in

order to keep related information. Thus, the SRG is applied on the reduced

data made from QFZ.

Fig. 10 illustrates the filtering process. Here QFZ are represented by mean

colors of their pixels (Fig. 10.a). Small QFZ are removed but their spatial

definition (i.e. the covered pixels) and mean color are kept (cf Fig. 10.b, removal

of QFZ 3, 4 and 5). The SRG algorithm is then applied directly on QFZ using

remaining QFZ as seeds (cf Fig. 10.c-e). At the end of the filtering process,

remaining QFZ represent a complete image partition.

Fig. 11 illustrates our filtering approach applied on C(α,ω). The overseg-

mentation is greatly reduced even with small area threshold values. Compared

to iterative area filtering results (Fig. 7), we observe that our method reduces

more significantly the oversegmentation. Indeed, our approach does not face the

problem of iterated QFZ aggregation stated in Sec. 4. In case of high threshold

values, our method may induce some undersegmentation of some parts of the
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1

2
3

4

5

a b

c d e

Figure 10: QFZ area filtering by merging : a) original QFZ, b) Removal of QFZ

which area is less to the area threshold, c) first SRG iteration: QFZ 1 ⊃ QFZ

3, d) second SRG iteration: QFZ 1 ⊃ QFZ 4, e) last SRG iteration: QFZ 2 ⊃

QFZ 5.

a b c d

e f g h

Figure 11: QFZ area filtering by merging on C(α,ω): (top) α = ω = 50; a) origi-

nal QFZ (58, 219 QFZ); b) area threshold=5 (8, 014 QFZ); c) area threshold=10

(3, 572 QFZ); d) area threshold=15 (2, 219 QFZ); (bottom) α = ω = 100; e)

original QFZ (3, 4651 QFZ); f) area threshold=5 (4, 600 QFZ); g) area thresh-

old=10 (2, 051 QFZ); h) area threshold=15 (1, 252 QFZ).
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image while the iterative area filtering keeps too many regions and may enlarge

transition regions.

5.2. QFZ-based reconstruction vs. pixel-based reconstruction

We are proposing to fill removed QFZ through a QFZ-based approach rather

than pixelwise. Thus we are able to keep QFZ related information and to deal

with reduced data (QFZ instead of pixels). We evaluate here such a strategy,

both qualitatively and computationally.

0.9 0.925 0.95 0.975

MP

50

100

200

500

O
S
R

Area filtering by merging QFZ, threshold=5

Area filtering by merging pixels, threshold=5

Area filtering by merging QFZ, threshold=10

Area filtering by merging pixels, threshold=10

Area filtering by merging QFZ, threshold=15

Area filtering by merging pixels, threshold=15

Area filtering by merging QFZ, threshold=20

Area filtering by merging pixels, threshold=20

Figure 12: Comparison between filling removed QFZ using an SRG over QFZ

and over pixels, using the proposed filtering approach with C(α,ω) on Berkeley

Segmentation Dataset with different values of minimal area threshold.

In Fig. 12, we compare results obtained with both strategies. Surprisingly,

we can observe that, for a given threshold value, the two strategies lead to sim-

ilar quality while we would have expected the pixel-based reconstruction to be

the most accurate. This is probably true for high value of the area threshold,

but such values are not mandatory: indeed, a low threshold (here between 5 and

20) leads to a good trade-off between oversegmentation reduction and filtered

QFZ accuracy. In such a setup, the reconstruction mainly consists of filling

small holes composed of a few pixels only. Proposed strategy relying on recon-

struction over QFZ is thus particularly relevant.

This observation is further strengthened when observing computation time.

Indeed, we can observe, as expected, that the QFZ-based reconstruction achieves
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Table 1: Average computation time comparison between filling removed QFZ

using an SRG over QFZ and over pixels, using the proposed filtering approach on

Berkeley Segmentation Dataset with different settings for α/ω and area thresh-

old. Computation times correspond to a Java implementation of the algorithms

performed on Intel Core i7 Q 720 CPU (1.60GHz).

α/ω Area Thresh.
Computation time (ms)

QFZ-based reconstruction Pixel-based reconstruction

50

5 62 126

10 65 132

15 67 128

20 69 142

100

5 56 92

10 51 70

15 51 155

20 52 160

the best results (cf. Table 1) since it operates on reduced data.

To sum up, using QFZ rather than pixels as elements on which to fill the

removed QFZ has been prove to be the best strategy. It ensures a similar quality

compared to pixelwise approach, while lowering the computational cost.

5.3. Area threshold selection

Our filtering approach requires a single parameter to be set, in order to

define the minimal area of QFZ. While this parameter is simple and easily un-

derstandable, its setting might be far from intuitive. Moreover, it has to be set

empirically since the “best” minimal area depends on the image content: a too

low (resp. high) value may lead to undersegmentation (resp. oversegmentation)

effects. This threshold thus depends on both image properties and user needs.
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In the context of image segmentation, small details might only be extracted

through a great oversegmentation. On the contrary, coarse and efficient seg-

mentation of a wide object will require a weak oversegmentation. Setting the

minimal area threshold is complex and not so intuitive.

To overcome this problem, we propose two alternative and more intuitive

parameters from which we can set the minimal area threshold:

(1) Amount of remaining QFZ after filtering (similar to [6] for flat zones);

(2) Simplification ratio (i.e., percentage of QFZ to keep after filtering).

Let us note that these two parameters are linked and may be deduced one

from the other:

percentage of QFZ to keep =
number of remaining QFZ

total number of QFZ
(5)

and they represent somehow a compression ratio of the QFZ partition.

The minimal area threshold is set to the highest area which satisfies the

constraint (e.g., number of remaining QFZ).

These parameters are more intuitive to set for a user and do not depend

anymore on the image spatial resolution. Nevertheless, an automatic setting is

still hardly achievable, while the optimal threshold is related to the user goal

and the image content. Furthermore, the need of keeping small details may lead

to very small area threshold values (thus lowering the impact of the proposed

approach). However, we have not observed such a need on real scenarios where

most often details remain after filtering. To illustrate, Fig. 13 shows the detail

conservation even with relatively high area threshold values. We can also ob-

serve that the segmentation quality is more sensitive to α/ω than to the area

threshold. Our filtering method only filters transition regions, isolated pixel and

very small QFZ. Image details (even as small as Lenna’s eyes) are too large to

be filtered. In practice, selecting a area threshold value between 10 and 20 lead

to satisfying results since it ensures an important oversegmentation reduction

while keeping important details such as Lenna’s eyes.
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Magnification of Lenna’s eyes

Cα,ω with α/ω = 50 Cα,ω with α/ω = 75 Cα,ω with α/ω = 100

Area filtering by merging with area threshold=5

Area filtering by merging with area threshold=10

Area filtering by merging with area threshold=15

Area filtering by merging with area threshold=20

Figure 13: Illustration of detail conservation with the example of Lenna’s eyes

and different area threshold and α/ω values.
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5.4. Discussion

Existing approaches suffer from several drawbacks: (1) enlargement of tran-

sition regions, (2) inability to remove small QFZ, (3) spatial shift of edges, (4)

loss of QFZ information, and (5) parameter settings. In Tab. 2, we provide

a survey of the state-of-the-art (including also our contribution) w.r.t. these

drawbacks. It clearly shows that the only drawback of our approach is the need

of parameter settings, while other methods face more cons. Indeed, transition

regions are not enlarged with our method since QFZ removal is not an iterative

process based on threshold area incrementation. Moreover, small QFZ made of

few pixels are not kept as all QFZ smaller than the area threshold are removed.

Furthermore, image edges are not shifted since we rely on QFZ edges, which are

part of image edges. Finally, our method performs the reconstruction process

on QFZ rather than pixels, ensuring thus to keeps QFZ-related information.

Drawbacks
Methods

[14] [13] [2] [17] [4] Ours

Enlargement of transition regions X X

Inability to remove small QFZ X X

Spatial shift of edges X

Loss of QFZ information X X X

Parameter settings X X X X

Table 2: Qualitative analysis of QFZ filtering methods.

Besides having less drawbacks, our approach also presents some great ad-

vantages. Indeed, performing the reconstruction on QFZ rather than pixelwise

leads to a strong decrease of the computation time. This does not come with a

lower quality of the resulting QFZ. This property is of first importance in the

context of image segmentation, as it will be shown in the next section.
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6. Experiments

To evaluate the effectiveness of our filtering approach, we performed an

extended experimental comparison with related work, following the protocol

given in Sec. 3.

0.9 0.925 0.95 0.975

MP
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300

600

1000

O
S
R

Iterative area filtering, threshold=5

Area filtering by merging, threshold=5

Filtering by Zanoguera, threshold=5

Filtering by Angulo, threshold=5

Figure 14: Comparison of our approach (area filtering by merging) and existing

filtering methods based on an area threshold using Cα,ω on the Berkeley Dataset.

Since parametric approaches have been shown to provide the best results

among existing filtering methods (Fig. 8), we consider them as a fair represen-

tative of the state-of-the-art. The quantitative evaluation using MP and OSR

on the whole Berkeley dataset is given in Fig. 14 and some qualitative results are

shown in Fig. 15 for a visual evaluation. We can observe that, for a given level

of precision, our method is able to achieve greatest oversegmentation reduction.

Nevertheless, the quality is only slightly better than with Zanoguera’s approach,

and our method fails to achieve highest levels of precision. This might be ex-

plained by the fact that our method does not modify QFZ boundaries, while

iterative area filtering is able to correct them by filling the removed QFZ on

a pixel basis. Nevertheless, assuming initial QFZ ensure sufficient accuracy,

our approach greatly decreases the computational cost by working on the QFZ

rather than on the pixels. Furthermore, it is not based on an iterative merg-

ing process like Angulo’s approach (having a higher precision but also a higher

oversegmentation).
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a

154,401 pixels

b

24,911 CCs 28,916 CCs 25,784 CCs

c

3,227 CCs 4,395 CCs 3,618 CCs

d

3,367 CCs 4,638 CCs 3,846 CCs

e

1,763 CCs 2,574 CCs 1,960 CCs

f

1,763 CCs 2,574 CCs 1,960 CCs

Figure 15: Visual illustration of results obtained by parametric approaches using

Cα,ω on the Berkeley Dataset with α/ω = 50 and an area threshold=10. a)

original image ; b) unfiltered QFZ ; c) iterative area filtering ; d) Angulo’s

approach ; e) Zanoguera’s approach, f) area filtering by merging (proposed

approach) 24
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Iterative area filtering, threshold=5

Iterative area filtering, threshold=10

Iterative area filtering by merging, threshold=5

Iterative area filtering by merging, threshold=10

Filtering by Angulo, threshold=5

Filtering by Angulo, threshold=10

Figure 16: Comparison of the iterative version of our approach, iterative area

filtering and Angulo’s approach with Cα,ω on the Berkeley Dataset.

In order to achieve a fully fair comparison with iterative approaches, we

also designed an iterative version of the proposed filtering approach. Results

are given in Fig. 16 and show a similar behavior with the two existing iterative

approaches (Iterative area filtering and Angulo’s method). Thus, applying the

SRG on QFZ instead of pixels does not significantly influence the result quality

while lowering the computation time (cf. Tab. 3). We can conclude that our

approach and its iterative version are more relevant than the existing iterative

filtering methods. We nevertheless suggest the use of the non-iterative defini-

tion, since it makes possible to work on reduced data (cf. Fig. 14 and Fig. 16)

and thus comes with a lower computational cost (cf. Tab. 3).

0.9 0.925 0.95 0.975

MP
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Area filtering by merging, threshold=5

Filtering by Zanoguera, threshold=5

Area filtering by merging, threshold=10

Filtering by Zanoguera, threshold=10

Area filtering by merging, threshold=15

Filtering by Zanoguera, threshold=15

Figure 17: Comparison of our approach and Zanoguera’s approach with Cα,ω

on the Berkeley Dataset.
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Zanoguera’s filtering method has been shown to provide only slightly lower

results when compared to our method. So, we further compare these two meth-

ods using different threshold values, see Fig. 17. We can observe that our

approach always comes first, but the difference becomes negligible when the

threshold value increases. Still, computational complexity stays an advantage

of our method when compared to Zanoguera’s (cf. Tab. 3).

Table 3: Comparison of average computation times obtained for Berkeley

dataset images, with the proposed approach, its iterative version and the para-

metric existing approaches through different combinations of α/ω and area

threshold. Computation times correspond to a Java implementation of the

algorithms performed on Intel Core i7 Q 720 CPU (1.60GHz).

α/ω Min area
Computation time (ms)

Proposed Iterative Zanoguera Angulo Proposed

Area Filt. (iterative)

50

5 62 292 160 131 199

10 65 368 165 188 202

15 67 448 123 190 291

20 69 519 146 189 379

100

5 56 285 112 161 92

10 51 347 109 190 175

15 51 400 135 189 250

20 52 469 140 194 329

The experimental evaluation and comparisons with state-of-the-art approaches

described in this section support the relevance of our contribution which outper-

forms existing approaches (both from a quality and computation point-of-view).

While we aim in this paper to introduce a new QFZ filtering method and to
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Figure 18: QFZ-based video segmentation on a sample frame of the carphone

video sequence: a) Original frame, b) Markers provided by the user, c) QFZ

(α = ω = 50), d) Filtered QFZ (area threshold=20), e) Segmentation result

using QFZ, f) Segmentation result using filtered QFZ

show how it outperforms related work, we also illustrate the relevance of this

approach in the context of image segmentation. To do so, we rely on previous

works [15, 16] where interactive video segmentation has been achieved using

filtered QFZ as a pre-segmentation step, leading to better results while decreas-

ing the computation time. Fig. 18 illustrates the relevance of QFZ filtering in

the context of QFZ-based interactive segmentation. While QFZ filtering only

slightly improve the visual quality of the segmentation, it has a great impact on

the overall computation time. Indeed, the segmentation process requires 9, 401

ms when operating on the whole set of QFZ, but only 150 ms if filtered QFZ are

considered. This is of course due to the strong reduction in the amount of QFZ,

from 432, 596 QFZ before filtering to 6, 316 after. Moreover, we also compare

QFZ-based and filtered QFZ-based segmentation on the Berkeley segmentation

dataset. Sample results are provided in Fig. 19 and confirm on still images
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the conclusions driven from segmentation on video sequences. Using filtered

QFZ leads to results of similar (or slightly better) quality but greatly decreases

the computation time as already indicated. Within an interactive segmentation

framework, the computation time required by the segmentation process is of

first importance. Thus the filtering method proposed in this paper is of high

interest in this context.

The QFZ filtering step also brings some noise robustness to QFZ, which

are critically sensitive to such artifcats. In fact, the QFZ parameter α is de-

fined as a local difference between pixel values. Such kind of distance is very

sensitive to noise, especially to salt & pepper noise. Salt & pepper noise in-

duces local extrema composed of isolated pixels, which are completely filtered

by our approach. Fig. 20 illustrates this advantage and also shows a compar-

ison of interactive segmentations of a noisy image when relying on initial vs.

filtered QFZ. As expected, many small QFZ are produced from the noisy im-

age (25, 842 QFZ). They are all filtered by our approach, leading to a very low

number of QFZ (179 QFZ). Moreover, the interactive segmentation based on

the filtered QFZ is faster (14 ms vs. 448 ms) and more accurate than the one

based on unfiltered QFZ. Indeed, in the image of Fig. 20, the tallest tree is not

correctly segmented using the QFZ, due to noise effects, while it is correctly

segmented using filtered QFZ. This example illustrates the relevance of our fil-

tering approach in the presence of noise, allowing in such a case the QFZ-based

interactive segmentation process to achieve better results.

7. Conclusion

QFZ are connected sets of homogeneous pixels, which might be further ag-

gregated to achieve image simplification or image segmentation. However, all

QFZ definitions inherently lead to oversegmentation effects. While several fil-

tering methods have been proposed in the literature to tackle this problem, none

of them has be shown totally satisfying. Thus we have proposed in this paper

28



a new QFZ filtering method based on an area threshold removing small QFZ,

followed by a filling of removed parts by remaining QFZ. A way to intuitively

set the area threshold as a compression ratio has also been introduced. Finally,

an experimental comparison with the state-of-the-art has been performed to

highlight the relevance of our proposal.

Future works will focus on the metrics used to merge the QFZ in the SRG

step. Furthermore, we currently select the QFZ to be removed using an area

criterion. In some cases, one might want to remove large QFZ while keeping

some small ones. A deeper study on possible criteria will improve the filtering

process and allows to reduce more efficiently the oversegmentation without loss

of accuracy.
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Markers QFZ-based Filtered QFZ-based

25, 429 QFZ (494 ms) 1, 030 QFZ (21 ms)

45, 292 QFZ (545 ms) 617 QFZ (48 ms)

28, 719 QFZ (644 ms) 1, 161 QFZ (43 ms)

29, 022 QFZ (498 ms) 956 QFZ (26 ms)

25, 705 QFZ (536 ms) 1, 195 QFZ (30 ms)

Figure 19: QFZ-based segmentation on sample images from Berkeley Dataset.

Each segmentation is provided by the initial number of QFZ and the computa-

tion time required by the marker-based segmentation.
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Figure 20: QFZ-based image segmentation on a noisy image: a) Original im-

age, b) Noisy image (salt & pepper on 10% of pixels) with markers provided

by the user, c) Unfiltered QFZ (α = ω = 50), d) Filtered QFZ (area thresh-

old=20), e) Segmentation result using unfiltered QFZ, f) Segmentation result

using filtered QFZ.
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