Estimation of volatility functionals: the case of a square root n window

Abstract : We consider a multidimensional Ito semimartingale regularly sampled on [0,t] at high frequency 1/\Delta_n, with \Delta_n going to zero. The goal of this paper is to provide an estimator for the integral over [0,t] of a given function of the volatility matrix, with the optimal rate 1/\sqrt{\Delta_n} and minimal asymptotic variance. To achieve this we use spot volatility estimators based on observations within time intervals of length k_n\Delta_n. In [5] this was done with k_n tending to infinity and k_n\sqrt{\Delta_n} tending to 0, and a central limit theorem was given after suitable de-biasing. Here we do the same with k_n of order 1/\sqrt{\Delta_n}. This results in a smaller bias, although more difficult to eliminate.
Type de document :
Pré-publication, Document de travail
2012
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-00762969
Contributeur : Mathieu Rosenbaum <>
Soumis le : lundi 10 décembre 2012 - 00:55:07
Dernière modification le : mardi 11 octobre 2016 - 15:19:52
Document(s) archivé(s) le : lundi 11 mars 2013 - 12:10:46

Fichiers

JR-PrePub-LPMA.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-00762969, version 1
  • ARXIV : 1212.1997

Collections

PMA | INSMI | UPMC | IMJ | USPC

Citation

Jean Jacod, Mathieu Rosenbaum. Estimation of volatility functionals: the case of a square root n window. 2012. <hal-00762969>

Partager

Métriques

Consultations de
la notice

164

Téléchargements du document

83