Multivariate copulas, quasi-copulas, and lattices
Juan Fernández-Sánchez, Roger B. Nelsen, Manuel Úbeda-Flores

To cite this version:

HAL Id: hal-00762905
https://hal.archives-ouvertes.fr/hal-00762905
Submitted on 9 Dec 2012

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Multivariate copulas, quasi-copulas, and lattices

Juan Fernández-Sánchez
Grupo de Investigación de Análisis Matemático, Universidad de Almería, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain
juanfernandez@ual.es

Roger B. Nelsen
Department of Mathematical Sciences, Lewis & Clark College, Portland, OR 97219, USA
nelsen@lclark.edu

Manuel Úbeda-Flores
Departamento de Estadística y Matemática Aplicada, Universidad de Almería, Carretera de Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain
mubeda@ual.es

Abstract
We investigate some properties of the partially ordered sets of multivariate copulas and quasi-copulas. Whereas the set of bivariate quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind-MacNeille completion of the set of bivariate copulas, we show that this is not the case in higher dimensions.

Keywords: Copula, Lattice, Quasi-copula.

1. Introduction
Copulas—multivariate distribution functions with uniform margins—have proven to be remarkably useful in statistical modelling and in the study of dependence and association of random variables. Quasi-copulas, a more general concept, share many properties with copulas. The set of copulas is a proper subset of the set of quasi-copulas, and both sets have a natural partial ordering. The purpose of this paper is to investigate some properties of those partially ordered sets (posets). In particular, the poset of bivariate quasi-copulas is a complete lattice, which is order-isomorphic to

Preprint submitted to Statistics & Probability Letters
April 6, 2011
the Dedekind-MacNeille completion of the poset of copulas in the bivariate case (Nelsen and Úbeda-Flores, 2005), but this last is not true in higher dimensions.

2. Preliminaries

Let $n \geq 2$ be an integer. An n-copula is a function $C: \mathbb{I}^n \rightarrow \mathbb{I} (= [0, 1])$ which satisfies the following properties:

(C1) For $\mathbf{u} = (u_1, u_2, \ldots, u_n)$ in \mathbb{I}^n, $C(\mathbf{u}) = 0$ if at least one coordinate of \mathbf{u} is 0, and $C(\mathbf{u}) = u_k$ whenever all coordinates of \mathbf{u} are equal to 1 except maybe u_k; and

(C2) the C-volume of any n-box $J = \times_{i=1}^n [a_i, b_i] \subset \mathbb{I}^n$ is nonnegative, i.e., $V_C(J) = \sum (-1)^{k(c)} C(c) \geq 0$, where the sum is taken over all the vertices $\mathbf{c} = (c_1, c_2, \ldots, c_n)$ of J (i.e., $c_k = a_k$ or $c_k = b_k$, for all $k = 1, 2, \ldots, n$); and $k(c)$ is the number of indices k such that $c_k = a_k$.

The importance of copulas in statistics is described in Sklar’s theorem (Sklar, 1959): Let H be a multivariate distribution function with univariate marginal distribution functions F_1, F_2, \ldots, F_n. Then there exists a copula C (which is uniquely determined on $\times_{i=1}^n \text{Range } F_i$) such that the following equality holds: $H(\mathbf{x}) = C(F_1(x_1), F_2(x_2), \ldots, F_n(x_n))$ for all $\mathbf{x} = (x_1, x_2, \ldots, x_n) \in [-\infty, \infty]^n$. Thus copulas link joint distribution functions to their univariate margins. For a complete survey on copulas, see Nelsen (2006).

We will use along this paper the fact that set of n-copulas \mathbf{C}^n is compact—see Durante et al. (2011) for a detailed study—and consequently any sequence of n-copulas $\{C_k\}_{k \in \mathbb{N}}$ contains a subsequence $\{C_{k(j)}\}_{j \in \mathbb{N}} \subseteq \{C_k\}_{k \in \mathbb{N}}$ which converges (point-wise) to an n-copula C.

The concept of a quasi-copula is a more general notion than that of a copula, and was introduced by Alsina et al. (1993) in the bivariate case, and Nelsen et al. (1996) for the general case, in order to characterize operations on distribution functions that can or cannot be derived from operations on random variables defined on the same probability space.

An n-quasi-copula is a function $Q: \mathbb{I}^n \rightarrow \mathbb{I}$ which satisfies condition (C1) for n-copulas, but in place of (C2), the weaker conditions:

(Q1) Q is non-decreasing in each variable; and
(Q2) the Lipschitz condition $|Q(v) - Q(u)| \leq \sum_{i=1}^{n} |v_i - u_i|$ for all u, v in I^n

(see Cuculescu and Theodorescu, 2001). While every copula is a quasi-copula, there exist proper quasi-copulas, i.e., quasi-copulas which are not copulas. If Q^n denotes the set of n-quasi-copulas, $Q^n \setminus C^n$ will denote the set of proper n-quasi-copulas. In this note we will also consider Q-volumes when Q is an n-quasi-copula. Similarities and differences between n-copulas and proper n-quasi-copulas can be found, for instance, in De Baets et al. (2002, 2010), and Rodríguez-Lallena and Ubeda-Flores (2009).

For any quasi-copula Q we have $W^n(u) = \max(0, \sum_{i=1}^{n} u_i - n + 1) \leq Q(u) \leq \min(u_1, u_2, \ldots, u_n) = M^n(u)$ for all u in I^n. M^n (for every $n \geq 2$) and W^n are copulas; however, for every $n \geq 3$, W^n is a proper n-quasi-copula. We will use the following notation: Given two n-quasi-copulas Q_1 and Q_2, $Q_1 \leq Q_2$ denotes the point-wise inequality $Q_1(u) \leq Q_2(u)$ for all u in I^n.

Aggregation of pieces of information coming from different sources is an important task in expert and decision support systems, multi-criteria decision making, and group decision making. Aggregation operators (Calvo et al., 2002) are precisely the mathematical objects that allow this type of information fusion. Aggregation operators include copulas, quasi-copulas, triangular norms (or t-norms)—associative copulas are continuous t-norms—, and semi-copulas—a generalization of the concept of t-norm)—see Durante and Sempi (2005) and Klement et al. (2000).

We will also need some notions from lattice theory (Davey and Priestley, 2002). Given two elements x and y of a poset (P, \leq), let $x \vee y$ denote the join (or the least upper bound) of x and y (when it exists); similarly for $\vee S$, where S is a subset of P; $x \wedge y$ denotes the meet (or the greatest lower bound) of x and y (when it exists); and similarly for $\wedge S$. In particular, for any pair Q_1 and Q_2 of quasi-copulas (or copulas), $Q_1 \vee Q_2 = \inf\{Q \in Q^n \mid Q_1 \leq Q, Q_2 \leq Q\}$ and $Q_1 \wedge Q_2 = \sup\{Q \in Q^n \mid Q \leq Q_1, Q \leq Q_2\}$. If the join or meet is found within a particular poset P, we subscript $\vee_P S$. Given two posets A and B, we say that A is join-dense (respectively, meet-dense) in B if for any D in B, there exists a set $S \subseteq A$ such that $D = \vee_B S$ (respectively, $D = \wedge_B S$). A poset $P \neq \emptyset$ is a lattice if for every x, y in P, $x \vee y$ and $x \wedge y$ are in P; and P is a complete lattice if for every $S \subseteq P$, $\vee S$ and $\wedge S$ are in P. If $\varphi: P \rightarrow L$ is an order-imbedding (i.e., order-preserving injection) of a poset P into a complete lattice L, then we say that L is a completion of P. Finally, if φ maps P onto L, φ is an order-isomorphism (i.e., order-preserving
bijection).
We also have the following definition (Davey and Priestley, 2002):

Definition 1. A completion C of a lattice L is called a Dedekind-MacNeille completion of L if C is join-dense and meet-dense in L.

3. The lattice of quasi-copulas

In Nelsen and Úbeda-Flores (2005), the authors show that the set of 2-quasi-copulas is a complete lattice, which is order-isomorphic to the Dedekind-MacNeille completion of the set of 2-copulas (for a study of the lattice-theoretic structure of the sets of triangular norms and semi-copulas, see Durante et al. (2008). Consequently, any set of 2-copulas sharing a particular statistical property is guaranteed to have pointwise best-possible bounds within the set of quasi-copulas. We now wonder if these results can be extended to higher dimensions. We then prove that the set of n-quasi-copulas is a complete lattice; however it is not order-isomorphic to the Dedekind-MacNeille completion of the set of n-copulas.

We first prove some results of the posets Q^n, C^n, and $Q^n \setminus C^n$.

Theorem 2. Q^n is a complete lattice; however, neither C^n nor $Q^n \setminus C^n$ is a lattice.

Proof. Let S be any set of n-quasi-copulas, and define $Q_S(u) = \sup\{Q(u) \mid Q \in S\}$ and $Q_S(u) = \inf\{Q(u) \mid Q \in S\}$ for each u in I^n. Since Q_S and Q_S are n-quasi-copulas (Rodríguez-Lallena and Úbeda-Flores, 2004), it now follows that $\vee S$ ($= Q_S$) and $\wedge S$ ($= Q_S$) are in Q^n, hence Q^n is a complete lattice.

Now suppose that C^n is a lattice, and consider the following 2-copulas:

\[
C_1(u, v) = \min(u, v, \max(0, u - 2/3, v - 1/3, u + v - 1)), \\
C_2(u, v) = C_1(v, u), \\
C_3(u, v) = \min(u, v, \max(0, u - 1/3, v - 1/3, u + v - 2/3)), \\
C_4(u, v) = \min(u, v, \max(1/3, u - 1/3, v - 1/3, u + v - 1)).
\]

We consider the following n-copulas: $C^*_i(u) = C_i(u_1, u_2) \prod_{k=3}^n u_k$, for $i = 1, 2, 3, 4$, and for all $u \in I^n$ (Nelsen et al., 1996). Since C^n is a lattice, $C = C_1 \vee C_2$ exists and is a copula. Hence $1/3 \geq C(1/3, 2/3, 1, \ldots, 1) \geq C_1^*(1/3, 2/3, 1, \ldots, 1) = 1/3$, so that $C(1/3, 2/3, 1, \ldots, 1) = 1/3$. Similarly (using C_2^*), we have $C(2/3, 1/3, 1, \ldots, 1) = 1/3$. Since $C_1^* \leq C_3^*$ and
$C^*_2 \leq C^*_3$, $C \leq C^*_3$ and so $C(1/3, 1/3, 1, \ldots, 1) \leq C^*_3(1/3, 1/3, 1, \ldots, 1) = 0$, thus $C(1/3, 1/3, 1, \ldots, 1) = 0$. Similarly, we have $C(2/3, 2/3, 1, \ldots, 1) \leq C^*_4(2/3, 2/3, 1, \ldots, 1) = 1/3$, so $C(2/3, 2/3, 1, \ldots, 1) = 1/3$. Hence, we obtain $V_C([1/3, 2/3]^2 \times \mathbb{I}^{n-2}) = -1/3$, i.e., C is a proper n-quasi-copula, which is a contradiction.

To prove that $Q_n \setminus C_n$ is not a lattice, it suffices to exhibit two proper n-quasi-copulas Q_1 and Q_2 whose join (or meet) is an n-copula. Let Q be the proper 2-quasi-copula $C_1 \lor C_2$, and define

$$Q_1(u) = \begin{cases}
Q(2u_1, 2u_2)u_3 \cdots u_n/2, & u \in [0, 1/2]^2 \times \mathbb{I}^{n-2}, \\
\min(u_1, u_2, \ldots, u_n), & \text{elsewhere},
\end{cases}$$

and

$$Q_2(u) = \begin{cases}
(1 + Q(2u_1 - 1, 2u_2 - 1)u_3 \cdots u_n)/2, & u \in [1/2, 1]^2 \times \mathbb{I}^{n-2}, \\
\min(u_1, u_2, \ldots, u_n), & \text{elsewhere}.
\end{cases}$$

Note that Q_1 and Q_2 are proper n-quasi-copulas. Finally, since $Q_1 \lor Q_2 = M_n$, which is an n-copula, the proof is done.

Lemma 3. Let $a = (a_1, a_2, \ldots, a_n) \in (0, 1)^n$, let $\theta \in [W^n(a), M^n(a)]$, and define $S_{a,\theta} = \{Q \in Q^n | Q(a) = \theta\}$. Then $\lor S_{a,\theta}$ and $\land S_{a,\theta}$ are the proper n-quasi-copulas (except when $\lor S_{a,\theta} = M^n$) given by $\lor S_{a,\theta}(u) = \min(u_1, u_2, \ldots, u_n, \theta + \sum_{i=1}^n (u_i - a_i)^+)$ and $\land S_{a,\theta}(u) = \max(0, \sum_{i=1}^n u_i - n + 1, \theta + \sum_{i=1}^n (u_i - a_i)^+)$, respectively, where $x^+ = \max(x, 0)$.

Proof. Let Q be any n-quasi-copula. The defining conditions (Q1) and (Q2) for quasi-copulas yield, for all $u \in \mathbb{I}^n$, the inequalities $-Q(u) - Q(u_1, \ldots, a_i, \ldots, u_n) \leq (u_i - a_i)^+$ for all $i = 1, 2, \ldots, n$, hence $\theta - \sum_{i=1}^n (u_i - a_i)^+ \leq Q(u) \leq \theta + \sum_{i=1}^n (u_i - a_i)^+$. Thus $\land S_{(a,\theta)} \leq Q \leq \lor S_{(a,\theta)}$, and these bounds are n-quasi-copulas (Theorem 3.2 in Rodríguez-Lallena and Ubeda-Flores, 2004).

Unlike the bivariate case, for any integer $n \geq 3$, C^n is neither join-dense nor meet-dense in Q^n, as the following two examples show — note that W^n is not an n-copula for $n \geq 3$, so it is trivial that there does not exist a set B such that $W^n = \lor Q^n(B)$; however we provide another “non-trivial” example. But before proceeding, we provide the definition of an ordinal sum of a family of n-quasi-copulas, which is an n-quasi-copula and a simple generalization of
the definition of ordinal sum of \emph{n-copulas} —which can be found in Mesiar and Sempi (2010).

Definition 4. Let \(J \) be a finite or countable subset of the natural numbers \(\mathbb{N} \), let \((a_k, b_k)_{k \in J} \) be a family of sub-intervals of the unit interval \(\mathbb{I} \) indexed by \(J \), and let \(\{Q_k\}_{k \in J} \) a family of \(n \)-quasi-copulas also indexed by \(J \). It is required that any two of the intervals \((a_k, b_k)\) have at most an endpoint in common. Then the \emph{ordinal sum} \(Q \) of \(\{Q_k\}_{k \in J} \) with respect to the family of intervals \((a_k, b_k)\) is defined, for all \(u \in \mathbb{I} \), by

\[
Q(u) = \begin{cases}
 a_k + (b_k - a_k)Q_k\left(\frac{\min(u_1, b_k) - a_k}{b_k - a_k}, \ldots, \frac{\min(u_n, b_k) - a_k}{b_k - a_k}\right), \\
 \min(u_1, u_2, \ldots, u_n) \in (a_k, b_k), \text{ for some } k \in J, \\
 \min(u_1, u_2, \ldots, u_n), \text{ elsewhere.}
\end{cases}
\]

Example 5. Let \(n \geq 3 \) be an integer; and \(D \) the \emph{ordinal sum} of \(M^n \) and \(W^n \) with respect to the \(n \)-boxes \([0, 1/2]^n\) and \([1/2, 1]^n\), respectively. Since any ordinal sum of \(n \)-quasi-copulas is an \(n \)-quasi-copula, then \(D \) is a proper \(n \)-quasi-copula. Now, suppose \(C^n \) is join-dense in \(Q^n \), then there exists a set \(S \subseteq C^n \) such that \(D = \bigvee_{Q^n} S \). Then, we have two cases:

(a) There exists an \(n \)-copula \(C \) such that \(C(1/2) = 1/2 \).

(b) Since \(C^n \) is compact, there exists a sequence of \(n \)-copulas \(\{C_k\} \) (with \(C_k \leq D \) for every \(k \in \mathbb{N} \)) such that \(\{C_k(1/2)\} \to 1/2 \) as \(k \to \infty \). Let \(C \) be the \(n \)-copula for which \(\{C_k\} \to C \) point-wise; then it is clear that \(C(1/2) = 1/2 \).

In both cases, \(C \) is an ordinal sum —this is a simple generalization of the result in (Theorem 3.2.1 in Nelsen, 2006). Since both \(C \) and \(D \) are ordinal sums and \(C \leq D \), with respect to the region \([1/2, 1]^n\) there exists an \(n \)-copula which is less than \(W^n \); but this is absurd. We then conclude that \(C^n \) is not join-dense in \(Q^n \).

Example 6. We first look at the case \(n = 3 \). Let \(C_1 \) and \(C_2 \) be the \(3 \)-copulas whose mass is distributed uniformly along the main diagonals of the dark cubes in Figures 1 and 2, respectively (for more details, see Carley, 2002); and consider the \(3 \)-quasi-copula \(Q = C_1 \land C_2 \) —note that, in such a
Figure 1: Blocks used for the construction of the 3-copula C_1 in Example 6.

Figure 2: Blocks used for the construction of the 3-copula C_2 in Example 6.
case, $Q(1/2, 1/2, 1/2) = 1/4$, $Q(1, 1/2, 1/2) = 1/2$, and $Q(1/2, 1, 1/2) = 1/2$.
Now, suppose C^3 is meet-dense in Q^3; then there exists a set $S \subseteq C^3$
such that $Q = \bigwedge Q^3 S$. Thus, for all $\varepsilon > 0$, there exists a sequence of 3-
copulas $\{C^*_k\}$ such that $C^*_k \geq Q$ and $C^*_k(1/2, 1/2, 1) < 1/4 + \varepsilon$ for every
$k \in \mathbb{N}$. Observe also that $C^*_k(1/2, 1/2, 1/2) < 1/4 + \varepsilon$ and $C^*_k(1, 1/2, 1/2) =
C^*_k(1/2, 1, 1/2) = 1/2$. Thus, it must be satisfied $V_{C^*_k}([0, 1/2]^3) \geq 1/4$,
$V_{C^*_k}([1/2, 1] \times [0, 1/2]^2) \geq 1/4 - \varepsilon$, and $V_{C^*_k}([0, 1/2] \times [1/2, 1] \times [0, 1/2]) \geq
1/4 - \varepsilon$. However, note that taking $\varepsilon < 1/8$, we have a contradiction. Thus,
we have $Q \neq \bigwedge Q^3 S$.
To prove the result for the n-dimensional case, it suffices to take the n-
quasi-copula Q^* given by $Q^*(u) = Q(u_1, u_2, u_3) \prod_{i=4}^n u_i$ for all $u \in \mathbb{R}^n$ (Nelsen
et al., 1996), where Q is the 3-quasi-copula defined above —and similarly the
generalization for C_1 and C_2—, and using similar arguments to those from the
trivariate case, we conclude that $Q^* \neq \bigwedge Q^* T$, where T is a set of n-copulas
such that $T \subseteq \mathbb{R}^n$; whence C^n is not meet-dense in Q^n.

As a consequence of the two previous examples, and taking into account
Definition 1, we have the following result:

Theorem 7. For $n \geq 3$, Q^n is not order-isomorphic to the Dedekind-
MacNeille completion of C^n.

Acknowledgements

The authors wish to thank the anonymous referee for valuable suggestions.
The third author also acknowledges the support of the Ministerio de Ciencia
y Innovación (Spain) and FEDER (project MTM2009-08724), and the
Consejería de Educación of the Junta de Andalucía (Spain).

References

Alsina, C., Nelsen, R.B., Schweizer B., 1993. On the characterization of
a class of binary operations on distribution functions. Statistics &
Probability Letters 17, 85-89.

operators: properties, classes and construction methods, in: Calvo, T.,
Mayor, G., Mesiar, R. (Eds.), Aggregation Operators: New Trends and
Applications. Physica-Verlag, Heidelberg, pp. 3-104.

