Multiple echoes due to distant dipolar fields in NMR of hyperpolarized noble gas solutions - Archive ouverte HAL Accéder directement au contenu
Pré-Publication, Document De Travail Année : 2012

Multiple echoes due to distant dipolar fields in NMR of hyperpolarized noble gas solutions

Résumé

We report on multiple echo measurements in hyperpolarized liquids using optically pumped spin-1/2 noble gas atoms: either129Xe dissolved in cyclohexane or 3He dissolved in superfluid 4He. An NMR pulse sequence 90° -tau -90° (with slice-selective flipping pulses for 129Xe experiments) was used and long echo trains have been observed in the presence of applied gradients due to average dipolar fields typically one order of magnitude larger than that of bulk water in high magnetic fields. We show that a mean field description is valid for explaining the multiple echoes observed in these liquids, even for spin temperatures as low as 10mK for 129Xe or 10µK for 3He, and the echoes originate from the distant dipolar fields within the samples. Numerical lattice simulations have been used to assess the effects of slice selection and of finite sample size in addition to those of atomic diffusion. They account for the observed echo widths and amplitudes much better than previously published models which disregard finite size effects that appear to be of key importance. This opens the way to using multiple echoes resulting from distant dipolar fields for the determination of the absolute magnetization in hyperpolarized liquids without signal calibration.
Fichier principal
Vignette du fichier
echoes_EPJD_PP.pdf (319.58 Ko) Télécharger le fichier
Origine : Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00762884 , version 1 (08-12-2012)
hal-00762884 , version 2 (20-01-2013)

Identifiants

  • HAL Id : hal-00762884 , version 1

Citer

Steven W. Morgan, Emmanuel Baudin, Gaspard Huber, Patrick Berthault, Geneviève Tastevin, et al.. Multiple echoes due to distant dipolar fields in NMR of hyperpolarized noble gas solutions. 2012. ⟨hal-00762884v1⟩

Collections

LKB
664 Consultations
286 Téléchargements

Partager

Gmail Facebook X LinkedIn More