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Tensor-based methods for numerical homogenization from
high-resolution imagesI

L. Giraldi, A. Nouy∗, G. Legrain, P. Cartraud

LUNAM Université, GeM, UMR CNRS 6183, École Centrale de Nantes, Université de Nantes, France

Abstract

We present a complete numerical strategy based on tensor approximation techniques
for the solution of numerical homogenization problems with geometrical data coming
from high resolution images. We first introduce specific numerical treatments for the
translation of image-based homogenization problems into a tensor framework. It includes
the tensor approximations in suitable tensor formats of fields of material properties or
indicator functions of multiple material phases recovered from segmented images. We
then introduce some variants of Proper Generalized Decomposition (PGD) methods for
the construction of tensor decompositions in different tensor formats of the solution of
boundary value problems. A new definition of PGD is introduced which allows the pro-
gressive construction of a Tucker decomposition of the solution. This tensor format is
well adapted to the present application and improves convergence properties of tensor
decompositions. Finally, we use a dual-based error estimator on quantities of interest
which was recently introduced in the context of PGD. We exhibit its specificities when
it is used for assessing the error on the homogenized properties of the heterogeneous
material. We also provide a complete goal-oriented adaptive strategy for the progres-
sive construction of tensor decompositions (of primal and dual solutions) yielding to
predictions of homogenized quantities with a prescribed accuracy.

Keywords: Image-based computing, Numerical Homogenization, Tensor methods,
Proper Generalized Decomposition (PGD), Model Reduction, Goal-oriented error
estimation, Adaptive approximation

Introduction

With the development of affordable high resolution imaging techniques, such as X-ray
microtomography, high resolution geometrical characterization of material microstruc-
tures is increasingly used in industry. However, the amount of informations that are
available is still difficult to handle in numerical models. This is why dedicated approaches
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have been proposed in order to incorporate these informations for simulation purposes
[57]. The most used approach in this context is the voxel-based finite element method
introduced in [21, 25], where each voxel of the model is transformed into a finite element.
The approach is straightforward and automatic for the generation of the computational
model (see [43] for a review). However, it leads to huge numerical models, as the number
of elements corresponds to the number of voxels in the image (in the order of 8 billion
of elements for a full resolution 2000 × 2000 × 2000 voxels CT scan). In addition, the
representation of the interfaces is not smooth, which induces local oscillations in the
mechanical fields [9, 40, 53]. The size of the model can be decreased with the use of
an octree coarsening away from the interfaces [40] or by decreasing the resolution of the
image [3, 38, 42]. However, this can severely decrease the geometrical accuracy (more
jagged interfaces) and increase the oscillations. In order to get rid of these oscillations,
mesh smoothing techniques can be considered, e.g. [6]. Ultimately, full resolution images
can still be considered, using Fast Fourier Transforms (FFT) algorithms [44] in the case
of periodic problems.

A second class of approaches consists in extracting the material interfaces from the
image and then in constructing an unstructured conforming mesh from these informa-
tions, e.g. [41, 56, 57]. This allows to generate smooth interfaces and adapt the mesh
in order to master the size of the model. However, meshing complex geometries is still
difficult and usually requires human guidance.

Finally, non-conforming approaches can be considered (see [13, 54] among others):
these approaches allows to avoid meshing issues. In particular, the eXtended Finite
Element Method (X-FEM) has been used by the authors for the treatment of 2D and
3D image-based analysis [35, 36, 40]. An integrated approach was proposed in order to
incorporate the geometrical informations into the numerical model. It is based on the use
of Level-set functions [51], for both segmentation and mechanical analysis. Thanks to the
use of tailored enrichment functions, it is possible to represent the interfaces on a non-
conforming mesh. The size of the numerical model is decreased thanks to the use of an
octree database that enables to keep maximum geometrical accuracy near the interfaces.
This allows to obtain a good compromise between easy mesh generation and accuracy
(both geometrical and mechanical). More recently, an improvement was proposed by
the use of a high-order two mesh strategy that enables high geometrical and mechanical
accuracy on coarse meshes [37].

Despite of the improvements in the numerical efficiency of the methods discussed
above, image-based computations are still computationaly demanding, leading to time
consuming studies especially for large resolution images. There is still a need for new
approaches that would allow the efficient resolution of such large scale problems.

This is why an alternative path is proposed in this paper. It relies on the use of tensor
approximation methods for the solution of image-based homogenization problems. The
basic idea is to interpret 2 or 3-dimensional fields as 2 or 3-order tensors, and to use ten-
sor approximation methods for the approximate solution of boundary value problems.
The use of suitable tensor formats allows to drastically reduce the computational costs
(time and memory storage) and therefore allows the computation on very high resolu-
tion images. This paper provides a complete tensor-based numerical methodology, going
from the translation of homogenization problems into a tensor framework, to the devel-
opment of a goal-oriented adaptive construction of tensor decompositions based on error
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estimation methods, and dedicated to the present application.
We first translate image-based homogenization problems to a tensor framework by in-

troducing suitable tensor approximations of geometrical data. Tensor approximation
methods are applied to indicator functions of material phases, which are previously
smoothed in order to improve the convergence properties of their decompositions. Suit-
able weak formulations of boundary value problems preserving tensor format are intro-
duced in order to handle the different types of boundary conditions that are used in
classical numerical homogenization methods. Regarding the construction of tensor ap-
proximations of the solution of PDEs, we use Proper Generalized Decomposition methods
(PGD), which is a family of methods for the construction of tensor decompositions with-
out a priori information on the solution of the PDE [10, 28, 45, 46] (see [12] for a short
review on PGD methods). Theoretical convergence properties have been recently ob-
tained for a class of PGD algorithms [7, 15, 16]. Note that a basic PGD algorithm has
been used in [11] for the numerical solution of PDEs with heterogeneous materials whose
geometry is easily represented in a tensor format. The method has also been used for
deriving efficient non-concurrent non-linear homogenization strategies [31].

Although PGD methods rely on general concepts in approximation of tensors, practical
algorithms have only been provided for the approximation in canonical tensor format.
However, this format is known to have bad topological properties yielding ill-posedness
of best approximation problems in the set of rank-r canonical tensors for d > 2 and r > 1
[52]. Greedy constructions of canonical tensor decompositions allow to circumvent this
issue but present only poor convergence properties. Here, we introduce variants of PGD
algorithms for the construction of tensor decompositions in different tensor formats. In
particular, we introduce a new definition of PGD which allows the progressive construc-
tion of a Tucker approximation of the solution. This tensor format is well adapted to
the present application and yields to improved convergence properties of tensor decom-
positions. The subset of Tucker tensors with bounded rank is known to possess nice
topological properties yielding well posedness and numerical stability of best approxima-
tion problems in these subsets [14]. Moreover, efficient algorithms based on SVD have
been proposed for computing quasi-optimal Tucker approximations of a tensor, with
controlled precision [34]. The algorithm proposed in this paper can be interpreted as an
adaptive subspace-based model reduction method which consists in constructing a se-
quence of reduced approximation spaces extracted from successive rank-one corrections.
An approximation (in Tucker format) is then obtained by a projection on the tensor
product of these approximation spaces. The main drawback of the use of Tucker tensors
is that it suffers from the curse of dimensionality. For dimension d > 3, a recent format
coined “hierarchical Tucker tensors” [19] combines the advantages of the canonical and
the Tucker tensors. This work is a first step toward the use of hierarchical Tucker tensors
within the PGD.

We finally devise a goal-oriented error estimation strategy in order the assess the
error on quantities of interest which are the homogenized properties. Error estimation
methods have been first introduced in the context of PGD in [2, 29]. Here, we use a
classical dual-based error estimator (see [1]), which has been used in [2] in the context
of PGD methods. The originality of the present contribution consists in providing a
complete adaptive strategy for the progressive construction of tensor decompositions
yielding to predictions of homogenized quantities with a prescribed accuracy. Note that
the proposed adaptive strategy could also be used in other context for goal-oriented
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approximation of PDEs in tensor formats.

The outline is as follows: Section 1 presents the homogenization problems and their
variational formulations. Section 2 introduces the tensor framework and notations used
for separated representations. Then section 3 presents how the solution of PDEs can be
approximated under separated representations with the PGD. In particular, we detail a
new algorithm for the progressive construction of a Tucker decomposition. Next, image
geometry and boundary conditions are expressed in a tensor format in section 4. First
numerical examples are introduced in section 5. Then, in section 6, we introduce a goal-
oriented adaptive algorithm using error estimators on homogenized properties. Finally,
the article presents an application on a cast iron image extracted from a tomography,
where we use the complete goal-oriented adaptive solution method.

1. Homogenization problems and variational formulations

In this section, we introduce classical homogenization methods for a linear heat diffu-
sion problem. Homogenization problems are boundary value problems formulated on a
domain Ω which constitutes a representative volume of an heterogeneous material. The
solution of these problems allows to extract effective for apparent macroscopic properties
of the material depending on whether Ω is larger than the representative volume element
(RVE). Note however that the prediction of the size of the representative volume is out
of the scope of this paper. The reader can refer to [23, 24, 39, 48] for methodologies to
estimate the size of the representative volume. In the following, we will identify both
apparent and homogenized properties.

1.1. Scale transition and localization problems

We denote by u and q the temperature and flux fields respectively. The macroscopic

gradient of the field ∇uM and the macroscopic flux qM are defined through a spatial
averaging of the corresponding microscopic quantities ∇u and q over the representative
volume Ω:

∇uM =< ∇u >=
1

|Ω|

∫
Ω

∇u dΩ (1)

qM =< q >=
1

|Ω|

∫
Ω

q dΩ (2)

The inverse process yielding the microscopic fields from the macroscopic ones is called
localization. Given ∇uM or qM , microscopic fields ∇u and q are obtained by solving
localization problems which are boundary value problems defined on Ω:

∇ · q(x) = 0 on Ω

q(x) = −K(x) · ∇u(x) on Ω

+ boundary conditions depending on ∇uM or qM
(3)

where K is the conductivity field. If the data is the macroscopic gradient ∇uM or the

macroscopic flux qM , we obtain the microscopic fields respectively by

∇u(x) = A(x) · ∇uM (4)
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or

q(x) = B(x) · qM (5)

where A and B are called localization tensors. Once we have obtained the microscopic

fields through equations (4) (resp. (5)) for a given ∇uM (resp. qM ), we can deduce the

other macroscopic field qM (resp. ∇uM ) by using the constitutive relation and a spatial
averaging. We finally define the effective (homogenized) conductivity tensor K

h
such

that
qM = −K

h
· ∇uM (6)

1.2. Boundary conditions

The homogenized conductivity tensor depends on the localization process which is
governed by the choice of the boundary conditions. These boundary conditions are
expressed as a function of a macroscopic field which is the input data of the microscopic
problem. Classically, three sets of boundary conditions are considered [22–24, 49]. They
are described below.

1.2.1. Natural Boundary Conditions (NBC)

Boundary value problem (3) is considered with the following Neumann boundary con-
ditions:

q(x) · n = qM · n on ∂Ω (7)

with qM given and n the outer pointing normal of ∂Ω. The solution u is a priori defined
up to a constant. A well-posed problem can be obtained by introducing the following
solution space

H1
m(Ω) =

{
v ∈ H1(Ω);

∫
Ω

v dΩ = 0

}
(8)

The weak formulation of the problem is then:

Find u ∈ H1
m(Ω) such that

∀δu ∈ H1
m(Ω),

∫
Ω

∇δu ·K · ∇u dΩ = −
∫
∂Ω

δu qM · n dΓ (9)

Using equation (5), we obtain

∇uM =< ∇u >=< −K−1 · q >= − < K−1 ·B > · qM := −(Knbc

h
)−1 · qM (10)

Then, the solutions obtained from 3 different values of qM (e.g. (1, 0, 0)T , (0, 1, 0)T and

(0, 0, 1)T ) yield the complete characterization of Knbc

h
.

1.2.2. Periodic Boundary Conditions (PBC)

In this case, problem (3) is considered with the following periodic boundary conditions:

u(x)−∇uM · x is Ω-periodic

and q(x) · n is Ω-antiperiodic
(11)
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with ∇uM given. We denote by ũ(x) = u(x)−∇uM ·x. The solution ũ is a priori defined
up to a constant. A well-posed problem can be obtained by introducing the following
solution space

H1
per,m(Ω) =

{
v ∈ H1

per(Ω);

∫
Ω

v dΩ = 0

}
(12)

where H1
per(Ω) is the subspace of periodic functions in H1(Ω). The weak formulation of

the problem is then:

Find ũ ∈ H1
per,m(Ω) such that

∀δu ∈ H1
per,m(Ω),

∫
Ω

∇δu ·K · ∇ũ dΩ = −
∫

Ω

∇δu ·K · ∇uM dΩ (13)

Thanks to the linearity of the problem, ũ can be written as ũ = χ · ∇uM which yields

∇u = ∇uM+(∇ χ)T · ∇uM = (I + (∇ χ)T ) · ∇uM . Thus, the localization tensor defined

in equation (4) is found to be A = I + (∇ χ)T . We thus obtain

qM =< q >=< −K · ∇u >= − < K · (I +∇ (χ)T ) > ·∇uM := −Kpbc

h
· ∇uM (14)

3 different problems have to be solved for obtaining Kpbc

h
(e.g. with ∇uM = (1, 0, 0)T ,

(0, 1, 0)T and (0, 0, 1)T ). It can be noticed that for a material with a periodic microstruc-
ture, the localization problem defined by (3) and boundary conditions (11) can be rig-
orously justified by the asymptotic expansion method [5, 33, 50]. However, note that
periodic boundary conditions can be used even if the microstructure is not periodic (see
e.g. [23, 24]).

1.2.3. Essential Boundary Conditions (EBC)

In this case, problem (3) is considered with the following Dirichlet boundary conditions:

u(x) = ∇uM · x on ∂Ω (15)

with ∇uM given. Note that the solution u can be expressed under the form

u(x) = ∇uM · x+ ũ(x) (16)

where ũ is the solution of the following weak formulation:

Find ũ ∈ H1
0 (Ω) such that

∀δu ∈ H1
0 (Ω),

∫
Ω

∇δu ·K · ∇ũ dΩ = −
∫

Ω

∇δu ·K · ∇uM dΩ (17)

By linearity of the problem, 3 different choices for ∇uM (e.g. (1, 0, 0)T , (0, 1, 0)T and
(0, 0, 1)T ) are required to completely characterize the localization tensor A defined in

equation (4). The homogenized tensor Kebc

h
is then obtained by

6.2e− 3qM =< q >=< −K · ∇u >= − < K ·A > ·∇uM := −Kebc

h
· ∇uM (18)
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1.3. Unified formulation

Weak formulations (9), (13) and (17) can be unified with an abuse of notation for EBC
and PBC, for which ũ is replaced by u:

Find u ∈ V such that

∀δu ∈ V, a(δu, u) = l(δu) (19)

with

a(δu, u) =

∫
Ω

∇δu ·K · ∇u dΩ

and 
l(δu) = −

∫
∂Ω

δu qM · n dΓ for NBC

l(δu) = −
∫

Ω

∇δu ·K · ∇uM dΩ for PBC and EBC

(20)

Function space V is defined by:
V = H1

m(Ω) for NBC

V = H1
per,m(Ω) for PBC

V = H1
0 (Ω) for EBC

(21)

The generic weak formulation (19) will be used in order to simplify the presentation of
the proposed solution strategy. We will then come back to the underlying problems for
detailing some technical issues and for discussing some specificities of the localization
problems.

2. Tensor spaces and separated representations

In this section, we consider a scalar field of interest w : Ω→ R which can be the gray
intensity level of the image representing the heterogeneous material, a component of the
conductivity field K or the solution of localization problem (19). The domain Ω ⊂ Rd
being an image, it has a product structure. We have Ω = Ωx × Ωy × Ωz for d = 3 (resp.
Ω = Ωx×Ωy for d = 2), with Ωα = (0, lα). In this section, and without loss of generality,
we only consider the 3-dimensional case but the different notions extend naturally to
arbitrary dimension d. Under some regularity assumptions, a function w defined on such
a cartesian domain can be identified with an element of a suitable tensor space. In this
section, we introduce some general notions about tensors (as elements of tensor product
spaces) and their approximation using separated representations of the form:

w(x, y, z) ≈ wm(x, y, z) =

m∑
i=1

vxi (x)vyi (y)vzi (z) (22)
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2.1. Tensor spaces

For a general introduction to tensor spaces and tensor approximations, the reader can
refer to Hackbusch [18]. We suppose that w ∈ V where V is a Hilbert tensor space defined
in the set of functions RΩ. The inner product of V is denoted < ·, · > and its associated
norm ‖ · ‖. With Vx (resp. Vy, Vz) a Hilbert space of functions of RΩx (resp. RΩy , RΩz ),
the tensor product ⊗ between functions is defined in a usual way, such that

(vx ⊗ vy ⊗ vz)(x, y, z) = vx(x)vy(y)vz(z) (23)

for all vα ∈ Vα, α ∈ {x, y, z}. We define the set of rank-1 (or elementary) tensors

R1 = {v = vx ⊗ vy ⊗ vz; vα ∈ Vα, α ∈ {x, y, z}} , (24)

The algebraic tensor product ⊗a of spaces Vx, Vy and Vz is then defined by

Vx ⊗a Vy ⊗a Vz = span(R1) (25)

Finally, the Hilbert tensor space is defined by

V = Vx ⊗ Vy ⊗ Vz = Vx ⊗a Vy ⊗a Vz
‖·‖

(26)

where (·)
‖·‖

denotes the completion with respect to the norm ‖ · ‖.
In the case of a cartesian domain Ω = Ωx×Ωy×Ωz, tensor spaces V that are involved

in the formulation of localization problems (19), and given in (21), have the following
tensor product structure:

V = Vx ⊗a Vy ⊗a Vz
‖·‖H1(Ω) (27)

with 
V = H1

m(Ω), Vα = H1
m(Ωα) for NBC

V = H1
per,m(Ω), Vα = H1

per,m(Ωα) for PBC

V = H1
0 (Ω), Vα = H1

0 (Ωα) for EBC

(28)

This justifies the existence of a separated representation of type (22) for the solution of
homogenization problems (19).

2.2. Tensor decompositions

We introduce here two classical tensor decomposition formats.

Rank-m (canonical) decomposition. For a given m ∈ N, the set of rank-m tensors Rm is
defined by

Rm =

{
wm =

m∑
i=1

vi; vi ∈ R1

}
(29)

Definition (26) implies that for all w ∈ V, there exists a sequence of tensors, (wm)m∈N,
such that wm ∈ Rm and wm converges to w. Therefore, for any w ∈ V, this condition
justifies the existence of the approximation of type (22) with an arbitrary accuracy.
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Tucker tensors. For a given multi-index r = (rx, ry, rz) ∈ N3, we define the Tucker
tensors set Tr as follows:

Tr =

wr =

rx∑
i=1

ry∑
j=1

rz∑
k=1

λijk v
x
i ⊗ v

y
j ⊗ v

z
k;λijk ∈ R, vαp ∈ Vα, < vαp , v

α
q >α= δpq

 (30)

with < ·, · >α the inner product on Hilbert space Vα. An approximation wr ∈ Tr of
an element w ∈ V is called a rank-r Tucker approximation of w. We have the property
that Rr ⊂ T(r,r,r). Therefore, for all w ∈ V, there also exists a sequence (wm)m∈N, with
wm ∈ Trm and such that wm converges to w. The reader can refer to [27] for a review
of definitions and constructions of tensor representations in finite dimensional algebraic
tensor spaces V = RNx ⊗ RNy ⊗ RNz .

3. Proper Generalized Decomposition

The homogenization problem we want to solve has been recasted as follows (see section
1.3):

Find u ∈ V such that

∀δu ∈ V, a(δu, u) = l(δu)
(31)

where V is a tensor Hilbert space with tensor structure given in (28). Proper Generalized
Decomposition (PGD) methods constitute a family of algorithms for the construction of
a tensor approximation of the solution u of (31), without a priori information on the
solution. It can be achieved by formulating best approximation problems on tensors
subsets using operator-based norms instead of natural norms in tensor space V. In this
section, we first recall the principle of PGD methods. We then introduce a now classical
algorithm for the construction of rank-m approximations and we recall some properties
of this approximation. Then, we will introduce a new algorithm for the progressive
construction of a Tucker representation of the solution. This algorithm provides better
convergence properties than classical PGD definitions based on canonical decompositions.

Remark 1. In this section, we consider that the problems are formulated on a d-
dimensional domain Ω ⊂ Rd, with Ω = Ωx × Ωy × Ωz for d = 3 or Ω = Ωx × Ωy

for d = 2. The notation ⊗α will stand for ⊗α∈{x,y,z} for d = 3 and ⊗α∈{x,y} for d = 2.

3.1. A priori definition of an approximation on a tensor subset

Let us consider a tensor subset S (e.g. rank-1 tensors set, Tucker tensors set...). Given
a norm ‖ · ‖ in V, a best approximation u∗ ∈ S of u ∈ V can be naturally defined as

‖u− u∗‖ = min
v∈S
‖u− v‖ (32)

The idea is to find an approximation u∗ of u without a priori information on u. Therefore,
the norm must be chosen in such a way that problem (32) can be solved without knowing
u. In the present application, where u is solution of (31) with a a symmetric coercive
and continuous bilinear form, the norm ‖ · ‖ and associated inner product < ·, · > can be
chosen as follows:

‖v‖2 = a(v, v), < u, v >= a(u, v)
9



where the norm ‖ · ‖ is equivalent to the initial norm on V. We then have

‖u− v‖2 = a(u, u) + a(v, v)− 2a(u, v) = a(u, u) + a(v, v)− 2l(v),

and minimization problem (32) is then equivalent to

J(u∗) = min
v∈S

J(v), J(v) =
1

2
a(v, v)− l(v) (33)

We note that problem (33) that defines the tensor approximation in S does not involve
the solution u. It makes the approximation u∗ computable without a priori information
on u. Of course, tensor subsets S must be such that minimization problems on S are well-
posed. Moreover, tensor subsets S (such as rank-1 tensors, rank-r Tucker tensors) are
manifolds which are not necessarily linear spaces, so that even if problem (31) is a linear
approximation problem, minimization problem (33) is no more a linear approximation
problem and specific algorithms have to be devised.

Remark 2. Note that a necessary condition for optimality of u∗ writes

a(u∗, δv) = l(δv) ∀δv ∈ Tu∗(S) (34)

where Tu∗(S) is the tangent linear space to S at u∗.

3.2. Construction of a rank-m (canonical) decomposition

The aim is to find an optimal rank-m approximation um ∈ Rm of u of the form

um =

m∑
i=1

vi (35)

with vi ∈ R1. A direct definition of an optimal approximation in Rm would be defined
by the optimization problem (32). However, it is well known that for m ≥ 2 and d ≥ 3,
Rm is not a weakly closed set so that the minimization problem (32) is ill-posed for
S = Rm [15]. A modified direct definition of an approximation with arbitrary precision
ε > 0 could be formulated as follows:

Find um such that

‖u− um‖ ≤ inf
v∈Rm

‖u− v‖+ ε (36)

The solution of this problem yields the whole set of rank-1 elements {vi}mi=1 at once. In
order to avoid the introduction of the tolerance ε (i.e. ε = 0), it could be possible to
consider a weakly closed subset of Rm (e.g. by adding some orthogonality constraints
between rank-one elements). However, these direct constructions are computationnally
expensive since when increasing m, optimization problems are defined on sets with in-
creasing dimensionality and computational complexity drastically increases.

In order to circumvent the above difficulties, a progressive definition of PGD is clas-
sically introduced [10, 15], which consists in building the sequence (vi)1≤i≤m term by
term (in a greedy fashion). Even if the progressive definition is sub-optimal compared
to the direct PGD approach, R1 is weakly closed [15] so that successive best approxi-
mation problems on R1 are well-posed. Moreover, optimization problems on R1 have
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Algorithm 1 Progressive construction of a rank-m approximation

1: Set u0 = 0
2: for i = 1 to m do
3: Compute wi = ⊗αwαi ∈ arg min

w∈R1

‖u− ui−1 − w‖

4: Set Ui = span{wk}ik=1

5: Compute ui = arg min
v∈Ui
‖u− v‖

6: end for

almost the same complexity, so that the complexity of computing a rank-m approxima-
tion scales (approximately) linearly with the rank m. The algorithm used is defined in
Algorithm 1. Step 5 of Algorithm 1 corresponds to a classical projection onto the sub-
space spanned by all rank-one elements previously generated. At step m, the solution
um = arg min

v∈Um
‖u− v‖ can be written under the form

um =

m∑
i=1

λiwi with wi = ⊗αwαi

where the (λi)
m
i=1 ∈ Rm are coefficients that are solutions of the following system of m

equations:

m∑
j=1

Aijλj = bi, ∀i ∈ {1, . . . ,m} (37)

with

Aij = a(wi, wj) = a(⊗αvαi ,⊗αvαj ), bi = l(wi) = l(⊗αvαi )

Different algorithms have been proposed for computing wm ∈ arg minv∈R1
‖u−um−1−

v‖ (step 3). One possibility is an alternating minimization algorithm presented in Al-
gorithm 2. The integer kmax represents the maximum number of iterations and the
tolerance εs is associated to a stagnation criterium. In practice, we will take kmax = 10
and εs = 5.10−2.

Remark 3. In the case where ‖·‖ is the classical canonical norm on a finite dimensional
space, Algorithm 2 corresponds to the Alternating Least Squares (ALS) algorithm on R1

[8, 20, 27].

Remark 4. If the domain Ω is 2-dimensional, the method can be considered as a gen-
eralization of the SVD with respect to general norms on Hilbert spaces [15].

Minimization problem of step 5 of Algorithm 2, corresponding to the computation of
vα, is equivalent to

min
vα∈Vα

1

2
a(⊗βvβ ,⊗βvβ) + a(um−1,⊗βvβ)− l(⊗βvβ) (38)
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Algorithm 2 Alternating minimization algorithm for computing wm ∈ arg min
w∈R1

‖u −
um−1 − w‖

1: Initialize randomly vα ∈ Vα for all α
2: Set w0 = 0
3: for k = 1 to kmax do
4: for α = x, . . . do
5: Compute vα ∈ arg min

vα∈Vα
‖u− um−1 −⊗βvβ‖

6: end for
7: Set wk = ⊗αvα
8: if ‖wk − wk−1‖/‖wk−1‖ < εs then
9: break

10: end if
11: end for
12: Set wm = wk

It reduces to the solution of the following linear problem:

Find vα ∈ Vα such that

∀δϕ ∈ Vα, aα(δϕ, vα) = lαm(δϕ) (39)

with

aα(δϕ, ϕ) = a(δϕ⊗ (⊗β 6=αvβ), ϕ⊗ (⊗β 6=αvβ)),

lαm(δϕ) = l(δϕ⊗ (⊗β 6=αvβ))− a(δϕ⊗ (⊗β 6=αvβ), um−1)

Problem (39) is a one-dimensional problem defined on Vα ⊂ H1(Ωα). The proposed
algorithm then only involves the solution of uncoupled one-dimensional problems, which
is the reason for the efficiency of the PGD method.

Remark 5. Assuming that Vα = Rn, ∀α, and that the complexity of a linear solver on a
problem of size n is n3, then the construction of all the vectors of a rank-r decomposition
with algorithm 2 requires at most r kmax dn

3 operations. The update of the λ’s requires
1 + 23 + . . . + r3 = 1

4r
2(r + 1)2 operations. Finally the complexity of the algorithm 1 is

1
4r

2(r + 1)2 + r kmax dn
3.

3.3. Construction of a rank-r Tucker decomposition

An approximation of the solution using a Tucker format could be searched by solving
an optimization problem:

‖u− ur‖ = min
v∈Tr
‖u− v‖ (40)

This problem is well-posed [14]. However, this direct construction of a Tucker approx-
imation ur ∈ Tr is computationally expensive and when the objective is to find an
approximation with a desired accuracy, we will rather prefer an adaptive construction.

We now propose a sub-optimal but progressive construction of a sequence of Tucker
approximations {um}m∈N of the solution, where um is the best approximation of the

12



solution in a linear subspace Um of T(m,...,m), with Um of the form:

Um = ⊗αUαm (41)

that means Um = Uxm ⊗Uym ⊗Uzm for dimension d = 3 or Uxm ⊗Uym for dimension d = 2.
Linear subspaces Uαm ⊂ Vα are defined progressively, by completing the previous spaces
Uαm−1 by fonctions wαm extracted from a rank-one corrections wm = ⊗αwαm of um−1.
The sequences of linear spaces {Uαm}m∈N (and {Um}m∈N) are increasing with m (with
respect to inclusion). Let us detail this procedure.

Let Uα0 = 0 and U0 = 0. At iteration m, knowing um−1 ∈ Um−1 = ⊗αUαm−1, we start
by computing an optimal correction wm ∈ R1 of um−1, defined by

wm = ⊗αwαm ∈ argmin
w∈R1

‖u− um−1 − w‖ (42)

The new linear subspace Uαm is then defined by

Uαm = Uαm−1 + span{wαm}

which has a dimension dim(Uαm) := rαm ≤ m. The linear space Um is then defined by
(41) and has a dimension dim(Um) := rm =

∏
α r

α
m. The next approximation um ∈ Um

is then defined by the following linear approximation problem:

‖u− um‖ = min
v∈Um

‖u− v‖ (43)

This procedure requires the solution of a succession of best approximation problems
(42) on the manifold R1, which are nonlinear approximation problems with moderate
complexity, and a succession of best approximation problems on linear subspaces Um,
which are approximation problems with increasing complexity rm. However, these latter
problems remain classical linear approximation problems. The algorithm is summed up
in Algorithm 3. Step 6 (best approximation in R1) can be accomplished thanks to the

Algorithm 3 Progressive construction of the Tucker decomposition

1: Set u0 = 0
2: for α = x, . . . do
3: Set Uα0 = 0
4: end for
5: for i = 1 to m do
6: Compute wi = ⊗αwαi ∈ arg min

w∈R1

‖u− ui−1 − w‖
7: for α = x, . . . do
8: Set Uαi = Uαi−1 + span(wαi )
9: end for

10: Compute ui = arg min
v∈Ui
‖u− v‖

11: end for

alternating minimization algorithm (Algorithm 2). In practice, an orthonormal basis
13



{vαj }1≤j≤rαm of Uαm is built using the Gram-Schmidt procedure applied to the generating
set {wαj }1≤j≤m. The approximation um, solution of (43), can be written under the form

um =
∑
i∈Im

λivi, vi = ⊗αvαiα

with Im = {i ∈ Nd; 1 ≤ iα ≤ rαm}. The set of coefficients (λi)i∈Im is solution of a linear
system of equations ∑

j∈Im

Aijλj = bi, i ∈ Im (44)

with

Aij = a(vi, vj) = a(⊗αvαiα ,⊗αv
α
jα), bi = l(vi) = l(⊗αvαiα)

Remark 6. The orthonormalization of basis functions allows to detect if at step m, a new
function wαm is contained in the previous linear space Uαm−1, in which case Uαm = Uαm−1

and rαm = rαm−1. This allows to ensure the uniqueness of the best approximation um in
Um (regularity of system (44)). Also, it allows to automatically detect and take part of the
independence (or quasi-independence) of the solution with respect to a certain variable.

Remark 7. Again, assuming that Vα = Rn, ∀α, and that the complexity of a linear
solver on a problem of size n is n3, then the construction of all the vectors of a rank-
(r1, . . . , rd) decomposition requires at most r kmax dn

3 operations, for r1 = . . . = rd = r.
The update of the core tensor α requires at most 1 + 23d + . . .+ r3d ≤ r3d+1 operations.
Finally, the complexity of the algorithm 3 is bounded by r3d+1+r kmax dn

3. This indicates
that we should use this method in 2D or when the geometry presents particular symmetries
such that one or two rα are small compared to the others, like in section 5.2 for instance.

4. Tensor format for image-based homogenization problems

In order to apply the PGD method to the solution of numerical homogenization prob-
lems, specific reformulations and approximations have to be introduced in order to re-
cast the problem in a suitable format adapted to tensor-based methods. These specific
treatments concern the separated representation of the conductivity field K, yielding
an approximation of operator under a tensor format, and the introduction of suitable
reformulations for imposing the different types of boundary conditions.

In [30, 31], the authors already introduced a similar computational method for ho-
mogenization in the EBC case and for simple geometries. In the present contribution,
these works are extended to the different boundary conditions that are classically used in
computational homogenization, which necessitates the introduction of suitable reformu-
lations of the variational problem. Moreover, we introduce specific numerical treatments
for dealing with real geometries extracted from images.
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4.1. Separated representation of the conductivity field

Let us consider a composite material with two phases numbered 1 and 2 in which the
conductivity is constant and is denoted K

1
and K

2
respectively. If I : Ω→ {0, 1} is the

characteristic function of phase 1, the local conductivity K is rewritten

K(x) = I(x)K
1

+ (1− I(x))K
2

= K
2

+ I(x)
(
K

1
−K

2

)
Therefore, a separated representation of the scalar field I ∈ L2(Ω) = ⊗αL2(Ωα) yields a
separated representation of K. Suppose that the image contains P x × P y × P z voxels
for d = 3, or P x×P y pixels for d = 2. For d = 3, the discrete characteristic function can
be written

I(x, y, z) =

Px∑
i=1

Py∑
j=1

P z∑
k=1

Iijkφ
x
i (x)φyj (y)φzk(z) (45)

where Iijk is the value of I in the voxel (i, j, k) and where the {φαi }1≤i≤Pα are piecewise
constant interpolation functions. For d = 2, we can write

I(x, y) =

Px∑
i=1

Py∑
j=1

Iijφ
x
i (x)φyj (y) (46)

where Iij is the value of I in the pixel (i, j). We then identify function I with I = (Iijk) ∈
RPx ⊗ RPy ⊗ RP z for d = 3 (resp. I = (Iij) ∈ RPx ⊗ RPy for d = 2).

In this section, we propose to slightly smooth the geometry in order to obtain a lower
rank tensor decomposition. This can be seen as a particular approximation of the geom-
etry. Note that voxel-based, remeshing or level-set techniques also introduce approxima-
tions which result in different representations of the actual geometry.

4.1.1. Singular value decompositions

We now equip ⊗αRP
α

with the canonical inner product, which is defined for X,Y ∈
⊗αRP

α

by

< X,Y >=

Px∑
i=1

Py∑
j=1

Xij · Yij for d = 2

< X,Y >=

Px∑
i=1

Py∑
j=1

P z∑
k=1

Xijk · Yijk for d = 3

The associate norm is denoted ‖ · ‖. For d = 2, it is well known that the best rank-m
approximation of I with respect to the norm ‖·‖ is the classical Singular Value Decompo-
sition (SVD) truncated at rank m. For d = 3, several alternatives have been proposed for
extending the concept of SVD. One could apply the progressive PGD approach presented
in section 3, with the canonical norm ‖·‖, to obtain a separated representation of I. How-
ever, much more efficient constructions have been proposed for tensor decomposition in
RPx ⊗RPy ⊗RP z , the tensor to be decomposed being known a priori [27]. For example,
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the ALS algorithm computes an approximation of I on Rm by approximating the best
approximation problem on Rm. We can also mention the Higher-Order Singular Value
Decomposition (HOSVD) that defines an approximation of I in the Tucker set Tr. An

implementation of these methods can be found in the MATLAB
TM

Tensor Toolbox [4].
Note that the above definitions can be considered as particular cases of PGD methods for
particular choices of norm. In fact, for the above particular norm (which is a crossnorm),
these methods can be considered as multidimensional versions of the SVD.

Finally, we obtain a separated approximation Im of I in Rm (or eventually in Tr for
the Tucker format). The error ε = ‖I− Im‖/‖I‖ can be controlled in order to provide
a desired accuracy on the description of the geometry. Note that the approximation Im
can be identified with an approximation Im of I in the tensor space L2(Ω).

4.1.2. Regularized indicator functions

When computing a separated decomposition Im of I using classical tensor decompo-
sitions, we observe that the number of terms needed to have a good representation of I
is highly dependent on the regularity properties of function I. The indicator function,
which presents strong discontinuities at the material interfaces, is a typical example of
an irregular function which yields a bad convergence of separated representations. In
order to circumvent this convergence issue, the image is slightly smoothed before using
tensor approximations. In practice, the iso zero of a level-set φ defined from the image
is used to represent the interfaces. A smoothed indicator function Is is obtained by the
following operation

Is =
1

2

(
1 + tanh

(
2φ

δ

))
(47)

where δ represents a characteristic length. This formula is applied on the whole level-set,
no matter the distance to the interfaces. The effect of smoothing is illustrated on figure 1.

−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

φ

 

 

I

I
s

2 δ

Figure 1: Smoothing effect on the characteristic function

4.1.3. Illustration

We here illustrate the impact of the regularization of the indicator function on a 2D
example. We consider the 2D image I with 512 × 512 pixels represented in figure 2. A
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Figure 2: 2D image taken from [17]

very small smoothing is applied (δ = 2 pixels). In this 2-dimensional case, the rank-m
tensor approximation corresponds to a rank-m truncated SVD. On figure 3, we illustrate
the convergence of SVD applied to the original image I or to the smoothed image Is.
This figure shows that even for a small smoothing, we obtain a faster convergence of
the decomposition. Indeed, for a fixed error ε of 10−2, about 100 additional modes are
necessary for the decomposition of the original image. The smoothing then yields to lower
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Figure 3: Convergence in L2 norm of the separated representations of the initial and smoothed images
with respect to their rank.

rank representations and therefore to more efficient tensor-based algorithms. However,
the smoothing introduces an approximation of the geometry that has to be controlled.
Note that another advantage of the smoothing of the characteristic function is that it
removes the oscillations at the boundaries and prevents the approximation Im to be
negative, which would lead to a negative conductivity in some regions of the domain and
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therefore to an ill-posed boundary value problem.

4.2. Tensor format of boundary conditions

4.2.1. Natural Boundary conditions (NBC)

Problem (9) is reformulated as follows:

Find u ∈ H1(Ω) such that ∀δu ∈ H1(Ω)∫
Ω

∇δu ·K · ∇u dΩ + γ

∫
Ω

δu dΩ

∫
Ω

u dΩ = −
∫
∂Ω

δu qM · n dΓ (48)

with γ > 0. For any γ, the solution of (48) verifies
∫

Ω
u dΩ = 0 and therefore, u ∈ H1

m(Ω)
is the solution of the initial problem. We solve d problems associated with ∇uM = eα,
where {eα} is the canonical basis of Rd. The right-hand side can be expressed as a sum
over the boundary of the cartesian domain. The normal flux qM · n being constant on
each face, each term in the right-hand side is a rank-one tensor, so that the resulting
right-hand side can be represented by rank-2d tensor, where 2d is the number of boundary
faces in dimension d.

4.2.2. Periodic Boundary Conditions (PBC)

Problem (13) is first reformulated as follows:

Find ũ ∈ H1
per(Ω) such that ∀δu ∈ H1

per(Ω)∫
Ω

∇δu ·K · ∇ũ dΩ + γ

∫
Ω

δu dΩ

∫
Ω

u dΩ = −
∫

Ω

∇δu ·K · ∇uM dΩ (49)

with γ > 0. For any γ, the solution of (49) verifies
∫

Ω
u dΩ = 0 and therefore, u ∈

H1
per,m(Ω) is the solution of the initial problem. The term ∇uM is uniform over Ω. The

tensor format of the right-hand side then follows directly from the tensor format of the
conductivity field. We solve d problems associated with ∇uM = eα, where {eα} is the
canonical basis of Rd.

The Ω-periodicity of tensor approximations of type um =
∑m
i=1⊗αvαi is naturally

obtained by imposing Ωα-periodicity for all 1-dimensional functions vαi .

4.2.3. Essential Boundary conditions (EBC)

The weak formulation of the boundary value problem associated with EBC is (17).
∇uM being uniform on Ω, the tensor format of the right-hand side follows directly from
the tensor format of the conductivity field. We solve d problems associated with ∇uM =
eα, where {eα} is the canonical basis of Rd.

Finally, we impose homogeneous boundary conditions for all 1-dimensional functions
vαi ∈ H1

0 (Ωα) in tensor approximations of type um =
∑m
i=1⊗αvαi , thus imposing homo-

geneous boundary conditions for um ∈ H1
0 (Ω).

5. First applications

5.1. PGD using canonical tensor format

The aim is to illustrate the behavior of the progressive PGD method and estimate the
impact of PGD approximations on the quality of the quantities of interest which are the
homogenized tensors.

18



We consider the 2D image represented in figure 4. The picture contains 128×128 pixels
and is associated with a domain Ω = (0, 1)2. The domain contains random inclusions in
a matrix. The materials phases are isotropic with conductivities ki = 10W.m−1.K−1 for
the inclusions and km = 1W.m−1.K−1 for the matrix. We use a characteristic length of
δ = 1 pixel for the smoothing of the indicator function.

Figure 4: Random inclusions into a matrix

Problem (19) has been solved for NBC, PBC and EBC using a classical Finite Element
Method (FEM). These FEM solutions and the corresponding homogenized tensors are
taken as reference solutions.

In order to quantify only the error coming from the PGD approximation, we use an
exact representation of the original image. This avoids any degradation of the geometry
due to truncation of its decomposition. We here apply a progressive PGD algorithm to
construct rank-m separated representations of the solutions. On figure 5 is plotted the
convergence of the PGD approximations with respect to the rank of the approximation.
We observe similar convergence properties for different problems associated with the 3
types of boundary conditions. In fact, tensor decompositions being related to singular
value decompositions (spectral decompositions), the observed convergence reflects the
spectral content of the solutions. The observed plateaux can be explained by clusters of
singular values. Figure 6 shows the convergence of the corresponding estimations of the
homogenized tensors.

We can see that in the 3 cases, we have a good convergence of the homogenized tensor
with the rank of the approximation. Besides, a slower convergence is observed for the
NBC case. This can be explained by the fact that for the NBC case, high frequency
modes in the separated approximations have non negligible spatial means, as opposed to
the cases of PBC and EBC.

If we increase the contrast, by taking ki = 1000W.m−1.K−1, we observe on figure 7 a
slower convergence. In figure 8, we also observe a slower convergence for the homogenized
tensors. The large increase of the contrast deteriorates the conditioning of the operator.
In order to improve the present results, preconditioning techniques should be introduced.
Note that some preconditioning techniques have already been introduced for operators
in tensor format, see e.g. [26, 32, 55]. Preconditioning techniques adapted to the present
framework are under investigation and will be introduced in a subsequent paper.
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Figure 5: Convergence of the progressive rank-m PGD approximation with respect to rank m. Relative
error in L2 norm.
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Figure 6: Relative error in canonical norm on the homogenized tensor as a function of the rank of the
approximation
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Figure 7: Convergence of the progressive rank-m PGD approximation with respect to rank m. Relative
error in L2 norm, ki = 1000W.m−1.K−1.
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Figure 8: Relative error in canonical norm on the homogenized tensor as a function of the rank of the
approximation. ki = 1000W.m−1.K−1.
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5.2. PGD using Tucker format

In this section we compare the convergence between the progressive PGD with canoni-
cal tensor format (algorithm 1) with the progressive PGD with Tucker format (algorithm
3).

We consider the 3D image with 1283 voxels represented in figure 9. This image is asso-
ciated with a domain Ω = (0, 1)3 which contains fibers in a matrix. Phases are isotropic
with thermal conductivities kf = 10W.m−1.K−1 for the fibers and km = 1W.m−1.K−1

for the matrix. The image has been separated using the Tucker ALS method from the

Figure 9: Random fibers into a matrix

MATLAB
TM

Tensor Toolbox [4] with a rank-(119,119,18) Tucker decomposition, auto-
matically taking into account the anisotropy of the original microstructure. The relative
error in L2 norm between the separated representation and the real characteristic func-
tion is lower than 1%.

The two alternatives proposed in algorithms 1 and 3 have been tested with PBC,
for the load case ∇uM = (1, 0, 0)T . Here, the residual serves as an error indicator. It is
plotted figure 10. This figure shows that the algorithm 3 converges faster than 1. Indeed,
while 40 iterations are needed to reach a residual of 0.0532 for algorithm 3, algorithm 1
needs 90 iterations to reach the same value. However, algorithm 3 has a much higher
computational cost than algorithm 1 due to the projection on the subspaces (Um)m∈N∗ .
This limitation restricts the use of algorithm 3 to low dimensional cases (2 or 3).

Even if the residual has a poor convergence rate in both cases, we can see on figure 11
that the homogenized value Kh

xx
converges rapidly. The fast convergence of homogenized

value in contrast with residual justifies the definition of new error indicators. They will
be defined in the next section via goal oriented error estimation and the construction of
adaptive algorithms for the solution of problem (19).
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Figure 10: Residual norm with respect to m. Comparison between canonical decomposition (algorithm
1) or Tucker representation (algorithm 3).
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6. Goal-oriented error estimation

We consider the variational problem:

Find u ∈ V such that

∀δu ∈ V, a(δu, u) = l(δu) (50)

We denote by um ∈ V an approximation of u obtained with a PGD algorithm. The aim
is here to provide a methodology for an adaptive approximation of the solution relying
on the classical dual-primal error estimator [1, 2]. The main difference with respect to
[2] concerns the resolution of the dual problem: in this former contribution, the number
of modes needed for solving this problem were pre-defined in advance. However, this
number of modes is highly problem-dependent. In this contribution, an adaptive strategy
is proposed in order to circumvent this issue and specific improvements related to the
present class of applications are introduced.
The content of this section is the following: After presenting this adaptive method in

23



a general context of linear quantities of interest, we provide a specific methodology for
the present context of computational homogenization, where different linear quantities
of interest (the coefficients of the homogenized tensor) have to be computed.

6.1. Quantity of interest and adjoint problem

We define a quantity of interest Q(u) with Q : V → R a linear functional on V. We
introduce the adjoint problem

Find φ ∈ V such that

∀δu ∈ V, a(δu, φ) = Q(δu) (51)

The quantity of interest can then be expressed Q(u) = a(u, φ). The error in the quantity
of interest can be expressed:

Q(u)−Q(um) = a(u− um, φ) = l(φ)− a(um, φ) = 〈φ,R(um)〉

where R(um) is the residual associated with the approximation um.

6.2. Approximation of the adjoint problem

Suppose that we have an approximation φn of φ. We then have

Q(u)−Q(um) = a(u− um, φ− φn) + a(u− um, φn)

If the primal and adjoint problems are solved with a sufficient accuracy, the first term in
the right hand side can be neglected and we have the following estimation of the error
in the quantity of interest:

Q(u)−Q(um) ≈ a(u− um, φn)

In practice, in order to guaranty a good estimation of the error, we can construct a
sequence of approximations φn of φ until the estimation a(u − um, φn) has converged
with a desired tolerance.

6.3. Improvement of the estimation

Note that the estimation Q(um) converges with a convergence rate at least of the same
order as um. Indeed,

|Q(u)−Q(um)| = |a(u− um, φ)| ≤ C‖u− um‖‖φ‖

where C is the continuity constant of a. After solving the adjoint problem and with no
additional cost, we can introduce an improved estimation of the quantity of interest:

Q̂(um, φn) = Q(um) + a(u− um, φn) (52)

We have

|Q(u)− Q̂(um, φn)| = |a(u− um, φ− φn)| ≤ C‖u− um‖‖φ− φn‖

Note that if the adjoint problem were solved exactly, Q̂(um, φ) would be equal to the
exact quantity of interest Q(u), even if um is only an approximation of u. So in practice,
the error analysis is also a way of improving the estimation of quantities of interest.
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6.4. Adaptive approximation using error estimation

Suppose that we have a rank-mi approximation umi of u. In order to estimate the
error on the quantity of interest, one should look at the convergence of the sequence
(Emin )n∈N∗ defined by Emin = a(u − umi , φn) = Q̂(umi , φn) − Q(umi), where φn is a
sequence of approximations of φ.

In practice, one has to find an estimation Ẽi of the true error Ei defined by

Ei = a(u− umi , φ) = lim
n→∞

Emin (53)

This estimator Ẽi is defined by Ẽi = EmiNi , with Ni such that

max
j∈{0,...,jmax}

|EmiNi+j+1 − E
mi
Ni+j
|

|EmiNi+j |
< εstag (54)

with εstag = 10−2 a stagnation criterion. Note that this condition is chosen in order
take into account possible oscillations of the sequence {Emin }n. In practice, we choose
jmax = 9.

If |Ẽi| is lower than a prescribed tolerance εtol, Q(umi) is considered as a good es-
timation of Q(u). Otherwise, we compute a rank-mi+1 approximation umi+1

of u with

mi+1 = mi + mstep, we compute Ẽi+1 and we compare it again to the prescribed tol-
erance. In this case, umi+1

is computed starting from umi in a greedy fashion. The
adaptive algorithm is summed up in algorithm 4.

Algorithm 4 Adaptive approximation algorithm using error estimation

1: Set um0 = 0
2: Set i = 0
3: while |Ẽi| > εtol and mi ≤ mmax do
4: Set i = i+ 1
5: Compute umi = umi−1

+
∑mstep
j=1 ⊗αvαmi−1+j using algorithms 1 or 3

6: Compute Ẽi = a(u− umi , φNi) = 〈R(umi), φNi〉
7: end while
8: Compute Q̂(umi , φNi)

9: return Q̂(umi , φNi) and Ẽi

6.5. Expression of the quantities of interest

In the context of homogenization, the quantities of interest are the components of the
homogenized tensor. They can be extracted using the following linear functionals:

NBC: Qα(u) =
1

|Ω|

∫
Ω

∇u · eα dΩ

PBC, EBC: Qα(u) =
1

|Ω|

∫
Ω

∇u ·K · eα dΩ

where {eα}α is the canonical basis of Rd, if the following values of qM or ∇uM are used{
NBC: qM

α
= eα

PBC, EBC: (∇uM )α = eα
25



Indeed, for a given type of boundary conditions (NBC, PBC or EBC), if we denote by
{uα}α the solutions of the d boundary value problems associated with each load case α,
we have {

NBC: (Kh)−1
βα = Qα(uβ)

PBC, EBC: Kh

βα
= Qα(uβ)

We introduce the corresponding weak formulations

a(δu, uα) = lα(δu) ∀δu ∈ V (55)

At the end, we have 6 problems to solve for a 3D problem, the 3 primal problems and
the 3 adjoint problems.

6.6. Adaptive approximation in 2D

We consider homogenization with EBC on the microstructure represented in figure 2.
The phases have homogeneous conductivities with conductivities km = 1W.m−1.K−1 for
the matrix and ki = 10W.m−1.K−1 for the inclusions. The image I contains 512 × 512
pixels and is associated with a domain Ω = (0, 1)2. The image I has been smoothed with
a characteristic length of δ = 2 pixels. A SVD has been applied to obtain the separated
representation Is of I such that the relative error in L2 norm is lower than 1%. As a
consequence, Is is a rank-309 approximation of I.

6.6.1. Estimation of Kh
xx

First, we are interested in Kh

xx
= Qx(ux). We apply the algorithm 4 to find a good

approximation of this homogenized value. The parameters are mstep = 20 and mmax =
400. The tolerance is fixed to εtol = 10−2.

In the end, the estimated error is Ẽ3 = E60
45 = 0.87 10−2 and the estimated quantity of

interest are Qx(ux,60) = 1.79W.m−1.K−1 and Q̂x(ux,60, uφ,45) = 1.80W.m−1.K−1. The
convergence of (|Emin |)n∈N∗ is shown in figure 12.

Note that we are interested in the right part of the curves, when the error estimator
converges. The behavior of the curve mi = 20 around n = 13 is explained by a change
of sign in the estimated error.

6.6.2. Estimation of Kh
xy

We now look at Kh

xy
= Qy(ux). We apply again the algorithm 4 with mstep = 20 and

mmax = 400. However, given that the homogenized material is expected to be isotropic,
we take εtol = 10−3. Finally we get Ẽ2 = 6.56 10−4 which results in Qy(ux,40) =

0.99 10−2W.m−1.K−1 and Q̂y(ux,40, φy,45) = 1.06 10−2W.m−1.K−1. Different error
estimations for different iterations of the adaptive algorithm are plotted in figure 13.
Figure 13 shows that the stagnation criterium proposed in (54) is too restrictive. This is
due to the isotropy of the material and the particularly small value of Kh

xy
. Indeed, if we

relax the stagnation criterium by setting εstag = 10−1, we can see that for mi = 40 the
rank Ni of the adjoint approximation goes from 226 to 40 with a good approximation of
the absolute error |EmiNi |. The latter goes from 7.70 10−4 to 3.99 10−4 so we still have a
good estimation of the absolute error. The loss of precision is counterbalanced by much
faster computations of the different estimates.
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6.7. Specificities in the context of homogenization

For NBC, noting that qM
α

= eα and using the Green formula we obtain

Qα(u) = − 1

|Ω|
lα(u) (56)
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This equality also holds for PBC and EBC if ∇uMα = eα. Therefore, the following
important property holds for every type of boundary conditions:

φα = − 1

|Ω|
uα (57)

for all α. That means that for d-dimensional problems, we only need to solve d problems
instead of 2× d problems.

With these properties, a special adaptive algorithm can be derived for homogenization.
First, the diagonal terms of the homogenized tensor Kh

αα
are determined using the rela-

tion (57). On one hand, supposing that we already have an approximation um =
∑m
i=1 vi

of u, this relation implies that Vm = span{vi}mi=1 is a good space for the approximation of
φ through Galerkin projection. On the other hand, with φm =

∑m
i=1 vi an approximation

of φ, Vm = span{vi}mi=1 is also a good approximation space for the Galerkin projection
of φ. The algorithm for the estimation of the diagonal components of the homogenized
tensor is written in algorithm 5.

Algorithm 5 Adaptive approximation algorithm for diagonal terms

1: Set um0 = 0
2: Set i = 0
3: Set E0 > εtol
4: Compute um1

=
∑m1

j=1⊗αvαj
5: while |Ei| > εtol and mi ≤ mmax do
6: Set i = i+ 1
7: Set φmi = − 1

|Ω|umi

8: Compute Ẽi = a(u− umi , φNi), with Ni ≥ mi.
9: Set umi+1 = −|Ω| × φNi

10: end while
11: Compute Q̂(umi+1

, φNi)

12: return Q̂(umi+1
, φNi) and Ẽi

One can choose to solve only primal or adjoint problems for these steps. Then,
given that we have already approximations (uα,m), ∀α and consequently (φα,m), ∀α,
we can have a first error estimation of non diagonal terms of the homogenized tensor
Kh

αβ
, ∀(α, β), α 6= β. If the error is too high, we can apply algorithm 4 to find an esti-

mation of Kh

αβ
. We denote Ẽαβ the error estimation on Kh

αβ
. The adaptive algorithm

is summed up in algorithm 6.

6.8. Remark on the approximation of the adjoint problem

Note that the adjoint problem must be solved with a precision higher than the primal
problem, in the following sense. Suppose that um is the Galerkin projection of u in a
linear subspace Vm ⊂ V, that means

∀δu ∈ Vm, a(δu, um) = l(δu)

If φn is defined as the Galerkin approximation of φ in Vm, i.e. φn = φ∗m with

∀δu ∈ Vm, a(δu, φ∗m) = Q(δu)
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Algorithm 6 Adaptive approximation algorithm using error estimation for homogeniza-
tion

1: for α ∈ {x, . . .} do
2: Compute Ẽαα with algorithm 5
3: end for
4: for α ∈ {x, . . .} do
5: for β ∈ {x, . . .}\{α} do
6: Compute Ẽβα using previously computed uα,mα and uβ,mβ
7: if |Ẽβα| > εtol then

8: Compute Ẽβα with algorithm 4, enriching uα,mα and uβ,mβ
9: end if

10: end for
11: end for

then,

a(u− um, φn) = 0

yielding Q(u) − Q(um) ≈ 0, which is of course a bad estimation of the error. For
example, when constructing a rank-m approximation um =

∑m
i=1 λivi with an update of

coefficients λi, we have that um is the Galerkin approximation of u in Vm = span{vi}mi=1.
We then obtain a bad estimation of the error if we compute an approximation φn in Vm.

A possible remedy consists in defining φn = φ∗m + δφm,n with δφm,n an approximation
of δφm = φ− φ∗m which is the solution of

a(δu, δφm) = Q(δu)− a(δu, φ∗m) ∀δu ∈ V

Note that if φ∗m =
∑m
i=1 µivi and δφm,n =

∑n
i=m+1 µivi, we can improve the approxi-

mation φn by defining it as the Galerkin projection of φ in Vn = span{vi}ni=1 ⊃ Vm.

As mentioned above, whatever the approximation strategy for the adjoint problem, if
we are able to construct a sequence of approximations φn, the convergence of the quantity
a(u− um, φn) should be checked and compared to Q(um).

7. Thermal homogenization of ductile cast iron

The last application concerns a segmented image that represents a sample of a ductile
cast iron. The image has been obtained by Computed Tomography (CT) and it contains
1283 voxels of size 2.2833 µm. The material is composed of iron and graphite. The
indicator function of the graphite’s phase is plotted in figure 14. The conductivities are
ki = 76.2 W.m−1.K−1 for the iron phase and kg = 24.0 W.m−1.K−1 for the carbon
phase. It turns out that the characteristic function I of the graphite phase is hardly
separable. As a consequence, we describe the exact geometry with the specific Tucker
representation introduced in (45) with a minimal linear smoothing on one element. The
algorithm 6 is employed. The homogenization with the PBC is applied. The tolerance
on the components of the conductivity tensor is set to 0.1 W.m−1.K−1. We choose a
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Figure 14: Ductile cast iron, characteristic function of the graphite phase

stagnation criterium εαβstag for the computation of the error indicator defined by

εαβstag =

{
10−2 if α = β

10−1 otherwise
(58)

as we expect that the material is isotropic. uα is increased by rank-50 tensor at each
step of the adaptive algorithm.

From a numerical point of view, only rank-100 approximations of the solutions of the
different loadings were necessary to get the diagonal components Kh

αα
, α ∈ {x, . . . , z}

with the tolerance of 0.1 W.m−1.K−1. However, rank-350 (resp. rank-300, rank-250)
approximations of the adjoint solutions was needed to obtain the error estimate of Kh

xy

(resp. Kh

xz
, Kh

yz
) with the desired accuracy.

In the end, the estimated homogenized conductivity is

Kh =

73.35 1.8 10−3 −4.5 10−3

73.36 −5.6 10−4

sym 73.36

 (59)

with estimated componentwise absolute error

|Ẽ| =

7.5 10−2 4.7 10−4 3.9 10−4

8.7 10−2 5.2 10−4

sym 9.3 10−2

 (60)

As expected, the material appears to be isotropic. Note that the obtained precision is
better than the one prescribed in the adaptive algorithm. This is due to the fact that
the error associated with an approximation um is not estimated at each iteration m but
only every 50 iterations. A reference finite element computation provides the following
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homogenized tensor

Kh

FEM
=

73.16 3.6 10−4 −4.5 10−3

73.19 5.7 10−4

sym 73.20

 (61)

The true componentwise absolute error is

|Ẽtrue| =

1.9 10−1 1.4 10−3 7.7 10−5

1.7 10−1 1.1 10−3

sym 1.6 10−1

 (62)

As we can see, the estimated error underestimates the true error (except for the xz
component) but provides a very good estimation of this true error.

Remark 8. Negative values for the homogenized tensors are meaningless. They are in
fact almost null values so we can set them to 0.

Remark 9. For very large images, the methodology can be directly applied but practical
issues have to be addressed in order to overcome memory limitations due to the repre-
sentation of the geometry. In practice, the image should be decomposed into sub-images
and tensor approximation methods applied on these different sub-images. This way, the
operator in Tucker tensor format is decomposed in smaller operators associated to each
sub-image.

8. Conclusion

A complete numerical strategy based on tensor approximations has been proposed for
image-based numerical homogenization. We have first introduced some specific treat-
ments of the geometry, including a smoothing of indicator functions in order to obtain
accurate low-rank representations of the geometrical data. This yields a formulation
of boundary value problems in a suitable tensor format. Suitable weak formulations of
boundary value problems that preserve tensor format have been introduced in order to
handle the different types of boundary conditions that are used in classical numerical
homogenization methods. Then, some variants of Proper Generalized Decomposition
(PGD) methods have been introduced for the a priori construction of tensor decomposi-
tions of the solution of boundary value problems. In particular, a new definition of PGD
has been proposed for the progressive construction of a decomposition of the solution in
Tucker format. This tensor format appears to be well adapted to the present application
and the proposed algorithms yields a rapid convergence of tensor decompositions. Fi-
nally, a dual-based error estimation strategy has been considered in order to assess the
quality of the prediction of homogenized properties. A goal oriented adaptive strategy
has been proposed for the construction of tensor approximations that satisfy a prescribed
accuracy on predicted homogenized properties. The number of modes needed for the dual
problem is obtained automatically by the adaptive strategy. The complete methodology
has been successfully applied to images of real 2 or 3-dimensional microstructures.

Considering the computational time, figure 15 is of interest. A 3D problem has been
solved for several resolutions using FEM and PGD approaches. The FEM solution is
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used as a reference for the computation of the L2 relative error ε. The time reference is
the computational time of the FEM solution on the image with the largest number of
voxels. The operator used for the PGD is treated as in section 7, meaning that the whole
picture has been taken into account, without truncation. We can see on figure 15 that for
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Figure 15: Normalized computational time as a function of the number of voxels and the relative error
ε in L2 norm

a precision better than 10−4 FEM is more interesting than PGD approaches. However
looking for such a precision is meaningless since errors done in the model should be larger
than 10−2 because of the image processing technique. An other advantage of the separate
representation in term of computation is the low memory requirement. Indeed since only
small 1D domains are considered, we do not have to manage very large stiffness matrices.

In order to go further in this work, additional parameters will be added to the solu-
tion such as the conductivity of each phase of the heterogeneous material. However to
solve these high dimensional PDEs other tensor formats can be employed, in particular
hierarchical Tucker tensor format and its derivations [19, 47]. Indeed the canonical de-
composition has several drawbacks as discussed by de Silva and Lim in [52] especially in
terms of existence, quality of the approximation and the so called “cancellation” effect.
The orthogonality of the vectors in the Tucker tensors avoids these problems but this
decomposition is still suffering from the curse of dimensionality since the size of the core
tensor is growing with rd with r = rx = ry = . . .. The hierarchical Tucker tensor format
writes the core tensor as a hierarchy of smaller orders such that the linearity dependance
with the dimension is recovered while keeping the orthogonality features of the Tucker
decomposition.
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[39] Lian, W., 2011. Contribution à l’Homogénéisation Numérique du Comportement Elastique de
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