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Abstract—This article studies how developmental phonetic
learning can be guided by pure curiosity-driven exploration,
also called intrinsically motivated exploration. Phonetic learning
refers here to learning how to control a vocal tract to reach
acoustic goals. We compare three different exploration strategies
for learning the auditory-motor inverse model: random motor
exploration, random goal selection with reaching, and curiosity-
driven active goal selection with reaching. Using a realistic vocal
tract model, we show how intrinsically motivated learning driven
by competence progress can generate automatically develop-
mental structure in both articulatory and auditory modalities,
displaying patterns in line with some experimental data from
infants.

I. INTRODUCTION

In their first months, human infants spontaneously explore

how to produce vocalizations, learning the mapping between

motor commands controlling the vocal tract and their acoustic

consequences [1]. We study here, in a simulated robotic setup,

how various strategies of spontaneous exploration, including

intrinsically motivated exploration, can generate developmen-

tal structures in early vocal learning while allowing a robotic

speaker to learn its auditory-motor inverse model. Speech

production general principles are illustrated in Figure 1.

Let us mention two major works in the field of com-

putational models of human vocal learning, which we also

refer as phonetic learning (although these models extend to

higher linguistic levels). The DIVA model [2], [3] proposes

an architecture partly inspired by neurolinguistics. It involves

two learning phases. The first one is analogous to infant bab-

bling and corresponds to semi-random articulator movements

producing auditory and somatosensory feedbacks. This is used

to tune a neural network between representation maps. In the

second phase, the model is exposed to external speech sounds

analogous to an ambient language and learn how to produce

them adequately. The Elija model [4] also distinguishes several

learning phases. The phases related to phonetic learning are

driven by a reward function (including sound salience and

diversity, as well as articulatory effort). The sounds produced

by the model then attract the attention of a caregiver, thus

providing an external reinforcement signal.

By focusing on phonetic learning, our study is limited to

the first learning phase in DIVA and Elija, in which the

former involves a semi-random articulatory exploration and the

latter a hand-coded reward function. Rather than considering

a pre-determined exploration, we are interested in the internal

mechanisms which can drive adaptive phonetic exploration and

learning instead and in the early stage of spontaneous vocal

exploration.

This process of vocal learning is here framed as an in-

stance of a more general robotics motor learning problem,

that of learning the inverse model mapping a distribution of

perceptual effects to the corresponding distribution of motor

programs that generate these effects [5]. Phonetic learning

shares several fundamental properties with learning other

kinds of inverse models like inverse body kinematics, visual

hand reaching, or locomotion: the corresponding sensorimotor

spaces are high-dimensional, highly redundant and non-linear,

and too large to be explored and learnt entirely in a life-

time. In previous work about such inverse model learning,

we have shown the importance of developmental mecha-

nisms guiding exploration and learning in these spaces [5],

[6]. Among these guiding mechanisms, intrinsic motivations,

generating spontaneous exploration in humans [7], [8], have

been transposed in curiosity-driven learning machines [9]–

[11] and robots [5], [6] and shown to yield highly efficient

learning of inverse models in high-dimensional redundant

sensorimotor spaces [5]. Efficient versions of such mecha-

nisms are based on the active choice of learning experiments

that maximize learning progress, for e.g. improvement of

predictions or of competences to reach goals [6], [9]. This

automatically drives the system to explore and learn first

easy skills, and then explore skills of progressively increasing

complexity. Such intrinsically motivated exploration was also

shown to generate automatically behavioural and cognitive

developmental structures sharing interesting similarities with

infant development [6], [12], [13]. This approach is grounded

in psychological theories of intrinsic motivations [7], [14],

explores several fundamental questions about curiosity-driven

open-ended learning in robots [6], and allows to generate

some novel hypotheses for the explanation of infant devel-

opment, regarding behavioural [13], cognitive [12] and brain

circuitry [15].

Additionally, it was shown in previous models that learning

redundant inverse models could be achieved more efficiently if

exploration was driven by goal babbling, triggering reaching,

rather than driven by direct motor babbling [5], [16].

We thus explore here how phonetic learning can be achieved

with intrinsically motivated goal exploration mechanisms, and

what developmental structure it may generate. In an experi-



Fig. 1. Speech production general principles. The vocal fold vibration by the lung air flow provides a source signal: a complex sound wave with fundamental
frequency F0. According to the vocal tract shape, acting as a resonator, the harmonics of the source fundamental frequency are selectively amplified or faded.
The local maxima of the resulting spectrum are called the formants, ordered from the lower to the higher frequency. They belong to the major features of
speech perception.

mental setup using the VLAM model of vocal production [17],

we compare such a strategy with random motor babbling as

well as with random goal babbling.

II. EXPLORATION STRATEGIES

We consider an agent provided with a motor space M

corresponding to articulatory commands controlling the shape

of its vocal tract, and a sensory space S corresponding to

acoustic features. Both spaces are continuous. The agent,

which has to be considered in its initial state as a pre-

vocalizing baby agent, does not know any relationship between

these variables. Let us call f : M → S the function defined

by the physical properties of the environment (mainly aero-

acoustic laws). The aim of phonetic learning is to approximate

f−1, that is the inverse mapping from acoustic goals to reach

in S, to adequate motor commands in M . To do this, the agent

can observe (m, s) ∈ M × S pairs from its own experience,

and thus has to deal with three main issues:

• M and S can be highly dimensional, such that random

sampling to collect (m, s) pairs would lead to too sparse

data for an efficient learning;

• f can be strongly non-linear, such that function approx-

imation from experience is not trivial;

• f can be redundant (many M to one S), such that f−1

approximation is a ill-posed problem.

When a learning process faces these three issues, as it is

the case in phonetic learning, random exploration in M is

not a realist strategy to collect (m, s) pairs. Due to high

dimensionality, data are precious whereas, due to non-linearity

and/or redundancy, data are not equally useful to learn the

inverse mapping f−1. As collecting a (m, s) pair involves the

realization of m, through f , to observe s, the problem is then

to find good learning strategies. Let us consider three different

ones.

• Random motor exploration: at each time step, the agent

randomly chooses an articulatory command m ∈ M ,

produces it, and observes s = f(m).
• Random goal selection with reaching: at each time step,

the agent randomly chooses a goal sg ∈ S and tries to

reach it by producing {m1, . . . ,mn} ∈ Mn. It observes

the corresponding sensory consequences {s1, . . . , sn} ∈
Sn.

• Active goal selection with reaching: at each time step,

the agent choose a goal sg according to a measure

of interest in S based on its previous experiences. It

tries to reach sg by producing {m1, . . . ,mn} ∈ Mn

and observes the corresponding sensory consequences

{s1, . . . , sn} ∈ Sn. It updates the interest measure with

respect to these new experiences.

These three learning strategies are similar to the

ACTUATOR-RANDOM, SAGG-RANDOM and SAGG-

RIAC algorithms in [5], respectively. They differ in two

ways. Firstly by what we call the choice space, which refer

to the space in which the initial point is drawn in order to

collect a (m, s) pair. When the choice space is M , as it is

the case for the random exploration strategy, the agent can

directly produced an m and thus collect a (m, s = f(m)) pair.

When it is S, as it is the case in the random and active goal

selection strategies, the agent has to find a way to reach this

goal choice. It typically consists in an optimization procedure

which requires several trials (either by actual realizations

through f or alternatively using a model based on previously

collected (m, s) pairs). Secondly, they differ by an active or

random selection in the choice space. When this latter is M ,



we only consider random selection (although active selection

can be conceived, see [5]). When it is S, active selection

refers to the ability of actively choosing a goal with respect

to a measure of interest I : S → R. In previous papers

(eg [18]), we showed that an adequate interest measure is

the competence progress. It is computed from an history of

previous competences in reaching goals in regions of the

choice space.

III. DEVELOPMENTAL ROBOTICS EXPERIMENT

This section first describes the vocal tract model we use

in our experiments, then exposes a specific implementation of

the learning strategies proposed above.

A. Articulatory-acoustic model

The function f defining the articulatory-to-acoustic transfor-

mation corresponds to a vocal tract model able to compute the

sound wave generated by a given articulatory configuration.

We use a realistic system modeling the vocal tract, the

Variable Linear Articulatory Model [19] derived from the

Maeda articulatory model [20]. This latter was conceived

from a statistical analysis of 519 vocal tract sagittal contours

from radiographic measurements and tomographic studies of

sentences pronounced by a French speaker. These contours

are segmented in 28 sections from the glottis to the lips, from

which the corresponding vocal tract areas are calculated. This

analysis provides seven main parameters explaining 88% of

the data variance, and which may be interpreted in terms of

phonetic commands corresponding to the jaw (J), the tongue

body (TB), dorsum (TD) and tip (TT ), the lip protrusion

(LP ) and separation height (LH), as well as the larynx height

(Lx) (Figure 2). These parameters can in turns be linearly

combined to reconstruct the sagittal contour and then the area

function. The formants and the transfer function are finally

calculated from this latter, and a sound can be generated

from formant frequencies and bandwidths (Figure 3). In other

words, VLAM models the speech production process depicted

Figure 1. In this experiment, we limit ourselves to vowel

generation where the vocal tract has to be sufficiently open

(minimum of the area function greater than 0.15 cm2).

VLAM inputs and outputs should then be transformed into

adequate representations (see [21] for a discussion about real-

istic perceptual and motor representations of speech gestures

in an articulatory model). For the articulatory space M , we

use the seven VLAM parameters (Figure III-A). Note that

in VLAM the articulatory space is centered such that the

neutral position corresponds to null values of the parameters.

For the auditory space S, we use a common two-dimensional

representation for vowels [22]–[24]. The first dimension is

the first formant F1. The second one is the second effective

formants F ′

2
, which correspond to a weighted average of F2,

F3 and F3. They are are expressed in Barks [25], a psycho-

acoustic measurement reflecting human frequency perception.

Figure 4 display the space S, usually called the vocalic

triangle.

Algorithm 1 Reaching phase algorithm for goal selection

strategies. sg ∈ S is the goal to reach. N (µ, σ) is the

multivariate normal distribution with mean µ and standard

deviation σ on each dimension.

sbest ← NN(sg)
mbest ←M(sbest)

for N trials do

m ∼ N (mbest, σexpl)
s← f(m)
if ‖sg − s‖ < ‖sg − sbest‖ then

mbest ← m

sbest ← s

end if

end for

B. Learning strategy implementation

We assume that the agent is provided with an episodic

memory of the previously experienced (m, s) pairs. Given a

request sg ∈ S, it is able to find the (mi, si) pair in its memory

which minimize the distance ‖si − sg‖. In other words, the

memory provides a link between M and S, as well as a

nearest neighbor search procedure in S. We note M(s) the

m associated with a s in a (m, s) pair and NN(s) the nearest

neighbor of s in the memory.

1) Random motor exploration: Random motor exploration

is the simplest learning strategy we consider. It consists of

successively drawing motor configurations in M according to

a uniform distribution.

2) Random goal selection with reaching: Instead of using

the motor space M as the choice space, as defined in the

previous section, this learning strategy uses the sensory space

S. Once a particular goal sg has been drawn from an uniform

distribution over S, it requires a subsequent reaching phase in

which the agent has to perform an optimization procedure to

provide an adequate motor command m in order to reach the

goal sg . We choose a simple procedure based on a mutation-

selection loop as described in Algorithm 1.

This implementation of reaching requires at least one pre-

existing (m, s) pair in order to find a nearest neighbor for the

first goal. We choose to bootstrap the system by producing ar-

ticulatory commands close to a neutral position during the first

100 experiences. This local reaching procedure can therefore

be conceived as a maturational-like mechanism, starting on

a neutral position and then exploring variations around what

was already tried.

3) Active goal selection with active reaching: This learning

strategy also uses S as the choice space but involves an

active goal selection based on a competence progress measure.

Before running the reaching phase defined above, the agent

looks at the nearest neighbor s = NN(sg) in its past

sensory experiences. Once the reaching phase is performed,

it computes the difference d = ‖sg − s‖ − ‖sg − sbest‖.
This is used to compute the competence progress cp(sg)
over the S space, which will act as a measure of interest to



(a) (b)

Fig. 2. (a): The seven articulatory parameters in VLAM. The lips are at the left, the vocal folds at the bottom right. The jaw controls the global opening
of the vocal tract. The apex controls the the tongue tip position. Body and dorsum globally control the front/back and low/high dimensions of the tongue,
respectively. Lx controls the larynx height. (b): Some common configurations (right) together with a tube representation representing the global shape of the
oral cavity (left). This latter can be viewed as an approximation of the area function. /i/ corresponds to a tight constriction at the front of the vocal tract; /a/
to a wider constriction at the back, and /u/ to a tight constriction at the middle of the vocal tract and at the lips.

(a) Articulatory part (b) Acoustic part

Fig. 3. VLAM processing flow. Articulatory part: a vocal tract shape is generated from the seven articulatory commands; Acoustic part: from the area
function (top right), the spectrum of the vocal tract transfer function is computed (bottom right) leading to formant values positioned in the (F1, F2) and
(F2, F3) spaces (left).

select subsequent goals. We define the competence progress

as e−d ∈ [0, 1], where d is always non-negative due to the

reaching implementation of Algorithm 1. Thus, the gain in

reaching distances is emphasized for goals close to be reached,

allowing to focus on the reachable parts of S. We nevertheless

define a threshold ǫ for which goals are considered to be

reached, such that:

∀d ≤ ǫ : cp(d) = cp(0) = 1,

∀d > ǫ : cp(d) = e−d.

Technically, the goal space is discretized in a fine-grained

grid over S (generally 50 bins by dimension), in which a time-

weighted measure of the competence progress is maintained.

Each cell i of the grid starts with a null competence progress

value CPi(t = 0) = 0. Then, each time t a goal sg is

selected and leads to a competence progress value cp(sg), the
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Fig. 4. Auditory space in (F1, F
′

2
) from a uniform sampling of the VLAM 7-

dimensional articulatory space, with common phone locations. Globally, F1

is rather correlated with the constriction size and F ′

2
with the constriction

position (see Figure 2b).

corresponding cell is updated with the following formula:

CPi(t) =

{

α.cp(sg) + (1− α)CPi(t− 1) if sg in cell i

CPi(t− 1) otherwise.
(1)

This allows a fading memory of the competence progress

measure in each cell. Generalization across cells is done by a

gaussian filtering with standard deviation expressed in number

of bins (generally 4).

IV. RESULTS

A. Random exploration

Figure 5 shows the distribution of produced sounds over

time for the random exploration strategy. We observe that it

does not evolve over time, as they are always produced from

a random drawing in M space.

B. Random goal selection with reaching

Figure 6 shows the distribution of produced sounds over

time for the random goal selection with reaching strategy.

During its first 100 vocalizations, the agent is in a bootstrap

mode such that motor commands are around the neutral

position, leading to sensory consequences concentrated on a

small part of S. Then, we observe a progressive exploring

of the sensory space S. This is due to the conjoint action

of random goal selection (which push to cover the whole

space) and reaching by local exploration (which provide the

progressive aspect).

C. Active goal selection with reaching

Figure 7 shows the distribution of produced sound over

time for the active goal selection with reaching strategy. At

the beginning, we observe a similar behavior compared to

the random goal selection strategy. However, it covers more

uniformly the sensory space S at the end. This is due to the

active goal selection which pushes him to focus on regions

which maximize the competence progress, allowing to adapt

its focus on less visited parts of S.

This is somewhat in line with some developmental observa-

tions [1] showing a tendency for childrens to begin producing

front vowels (with high F2 values) and progressively shift back

their tongue during maturation (leading to back vowels with

low F2 values).

Figure 8 shows the distribution of the produced articulatory

commands in M over time. Firstly, we indeed observe a

progressive shift of the tongue body TB (front-back dimension

of the tongue). Secondly, we observe that some structure

emerges, in the sense that some articulators are preferred. The

random goal selection strategy exposes a very similar behavior

(not shown here). To interpret this articulatory pattern, let

us consider the extreme case where an articulator does not

have any influence on the produced sound. According to the

reaching algorithm in Algorithm 1, it should then describe a

Brownian motion, thus resulting in a bell-shaped distribution

centered around the neutral position. Goal selection with

reaching phase strategies therefore mainly use articulators

playing an important role in goal reaching.

However, the jaw J and the tongue dorsum TD does not

seem to be much involved whereas they normally play an

important role, both controlling the size of the vocal tract

constriction. This latter plays a major role to control the F1

value (tight constriction leads to low F1 values as in /i/,

and large one to high F1 values as in /a/). Figure 9 shows

the conjoint density of these two articulators. We observe

a rather strong correlation indicating a conjoint action of

both articulators, thus explaining their rather low respective

mobility in Figure 8.

Interestingly, the used articulators correspond to the minimal

set allowing adequate production of vowels [26], although the

jaw is poorly involved whereas it is the main articulator of

vocal babbling. This suggests that further extensions using

dynamical articulator trajectories are needed to relate the

model to more experimental data.

To conclude this result section, note that we do not provide

score comparison of the learning strategies on a control task.

Actually, at the present state of our modeling process, there is

a tradeoff between good comparison results (showing globally

that choosing in S is better than in M , and that an active se-

lection is better than a random one, see [5] for thorough results

on score comparison), and interesting resulting developmental

patterns. These parameters are mainly the standard deviation

around the neutral position used to bootstrap goal selection

strategies, and the standard deviation σexpl in the reaching

Algorithm 1. We deliberately choose very small values for both

parameters to focus on developmental sequence observations.



a b c d

Fig. 5. Densities of produced sounds over the space S in the random exploration strategy. a) after 100 vocalizations; b) after 1000 vocalizations; c) after
3000 vocalizations; d) after 10000 vocalizations. Formants are expressed in Barks. Color bars are expressed in number of produced sounds per bins, with 50
bins per dimension.

a b c d

Fig. 6. Densities of produced sounds over the space S in the random goal selection with reaching strategy. Same convention than in Figure 5, the number
of vocalizations also including those performed during the reaching phase.

V. CONCLUSION

This preliminary study showed how goal-directed learning

driven by the competence progress can let emerge a devel-

opmental structure in the articulatory and acoustic spaces.

We showed interesting developmental patterns in both spaces.

Firstly, active goal selection displays a progressive exploration

of the auditory space, from sensory consequences of a neutral

articulatory configuration to a whole covering of S, which is

relatively in line with some experimental data. Secondly, the

articulators seem to be recruited according to their respective

efficiency to reach goals in the acoustic space.

These results thus encourage further extensions of the

model. More specifically, this research project aims at propos-

ing an integrated computational model of language acquisition

based on the interaction of three subsystems:

• an intrinsic motivation system allowing the agent to

focus on goals which maximize the competence progress.

Further extensions would involve higher levels of goals,

for example related to the use of vocalization to denote

external referents, exploring the path toward semantics.

• a social guidance system allowing the agent to be influ-

enced by an external skilled agent and providing goal

suggestions and/or action demonstrations, either by a

human or by another robotic agent.

• a maturational system allowing the agent to progressively

release its sensory-motor constraints according to its

competence progress, through motor primitives encoding

dynamical articulator properties (e.g. [27]).



a b c d

Fig. 7. Densities of produced sounds over the space S in the active goal selection with reaching strategy. Same convention than in Figure 5, the number of
vocalizations also including those performed during the reaching phase.

Fig. 8. Densities over time of produced articulatory commands over the space M in the active goal selection with reaching strategy. 0 values on the y-axis
corresponds to the neutral position in VLAM. High TB values correspond to a tongue back in the mouth; high LH values to open lips. Other articulators
do not need orientation information as they relatively stay around their neutral positions.

We also want to apply this approach to the control of a more

complex articulatory synthesizer. We are interested in using the

free software Praat [28], a powerful tool allowing to synthesize

a speech signal from a trajectory in a 29-dimensional space of

respiratory and oro-facial muscles. Numerous acoustic features

can in turn be extracted from the synthesized sound, among

which the Mel-frequency cepstral coefficients (MFCC, [29]).

Our hope is that a developmental robotics approach applied

to a realistic articulatory model can appropriately manage the

learning process of this complex mapping in high-dimensional

spaces , and that observed developmental sequences can lead

to interesting experimental data comparisons and predictions.

In particular, using such a dynamic model controlled by

muscle activity could hopefully allow to relate our results to

more common speech acquisition data, in particular regarding

sub-glottal exploration and babbling.
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