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Abstract—This paper compares the spatial Sobol’ sensitivity
analysis approach to two other sensitivity analysis
techniques on a model with spatially distributed inputs. The
comparison is performed on AquiferSim, a model that
simulates groundwater flow and nitrate transport from
paddock (i.e. field) to aquifer. Some of the input layers have
considerable uncertainty. Alternative soil and land-use
layers were simulated through Monte Carlo simulation
based on expert-derived confusion matrices. Uncertainty of
the raster rainfall layer was simulated via geostatistical
unconditional simulation of error fields. The three sensitivity
techniques are: (1) the spatial Sobol’ technique, (2) one-at-a-
time (OAT) variation around base sample points, and (3) the
Elementary Effects method. The results show that the spatial
Sobol’ approach gives the best insight on AquiferSim
behavior. OAT local variations of inputs around some
sample points allow checking of the robustness of model
predictions around those points, but give no insight on the
relative importance of inputs. The Elementary Effects
method shows that land use layer is the most influential
input factor, but fails to capture interactions between input
factors. The spatial Sobol’ approach identifies the land use
layer as being the most influential. It shows that strong
interactions occur between most of the inputs, explaining
43% of the output variability.
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L. INTRODUCTION

Sensitivity analysis (SA) techniques can be used to
study how uncertainty in model inputs influences
uncertainty in model predictions (Saltelli et al., 2000).
Various techniques are available to perform sensitivity
analysis from a set of model evaluations (Helton, 1993;
Saltelli et al., 2004). They differ mainly in how the
uncertainty of the mode! inputs is sampled, and in how the
sensitivity measures are calculated. Some of these various
techniques are suitable for models with spatially
distributed  inputs, others, like regression-based
approaches, are not (Lilburne and Tarantola, 2009).

A spatial SA has been carried out on AquiferSim, a
model that simulates groundwater flow and nitrate
transport from paddock to aquifer. The AquiferSim model
has been designed for analysis of cumulative effects of
leaching from agricultural non-point sources at a regional
scale on alluvial plains in New Zealand. Some of the
inputs for AquiferSim are categorical vector data (soil,
land use and climate zone layers); others are continuous
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raster data (aquifer transmissivity and recharge). These
spatial inputs, along with other scalar inputs, are subject to
various sources = of uncertainty (measurement errors,
interpolation errors, missing data, etc.). Sensitivity analysis
(SA) is needed to study how these uncertainties influence
the variability of AquiferSim predictions, to check the
robustness of the model predictions, and to identify the
factors that account for most of the model output
variability. Three different spatial SA techniques were
used: one-at-a-time (OAT) local variations around some
base points, the Elementary Effects method, and the
variance-based spatial Sobol’ method. This paper
compares the results of the three methods.

II.  METHODS

A, AquiferSim Model

AquiferSim is a steady-state model of groundwater
flow and contaminant transport. It has been designed for
analysis of cumulative effects of leaching from agricultural
non-point sources at a regional scale under a range of land
use scenarios (Bidwell et al., 2005). AquiferSim takes
various GIS layers as inputs, including maps of land use,
soil type and climate zone (categorical vector data) and
maps of river recharge and transmissivity of the aquifer
(continuous raster data). AquiferSim models the three-
dimensional concentration of nitrate in the groundwater.
One output is vertical 1-D profile graphs of nitrate
concentration below point locations chosen by the user.

B.  Target Function of Study

AquiferSim was used to simulate a region of 3500 km?
with a cell size of 100 m. The objective function Y for the
sensitivity analysis was chosen as the average of the
maximum nitrate concentrations (mg/L) below a set of 10
points distributed evenly around the study area.

C. Simulating Uncertainty of the Model Inputs

Most SA methods need the model to be evaluated on
multiple points of the space of the input factors. Six input
factors were considered in this analysis, the first is a
lookup table of nitrate and drainage values, the other five
are spatial inputs: land use, soil, climate, transmissivity of
the aquifer, and river recharge maps. Uncertainty for each
input factor has been simulated using a specific model
(Table 1).
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The nitrate and drainage lookup table is derived from
outputs from a paddock-scale model. The table lists nitrate
concentration and vertical drainage values per unit land
area for every possible combination of land use type, soil
type and rainfall class. In addition to the original table, two
alternatives were generated by applying global —5% and
+5% variations to the nitrate concentration values only,
leaving the drainage values unchanged.

Soil and land use are categorical vector layers. Derived
from a soil survey, and a farmer questionnaire
- respectively, they identify 7 key soil and 25 land-use types
over the study area. Uncertainty was modeled using two
expert-derived confusion matrices. Nine alternative soil
layer realizations and nine alternative land-use layer
realizations were generated through random simulation of
the soil and land use uncertainty by applying probabilities
derived from the confusion matrices.

The climate map comes from an interpolated layer of
mean annual rainfall. Three rainfall layer realizations were
simulated by a geostatistic method, adding a stochastic
error field to the original data. This error field was
generated using the circulant embedding technique (Chan
and Wood, 1997), as a zero mean stationary Gaussian field
with some spatial structure, described by a variance and a
semi-variogram model.

Maps of river recharge and transmissivity of the
aquifer come from calibrated runs of the Modflow
groundwater model (Harbaugh et al, 2000) where
hydraulic conductivity has been varied to match
groundwater levels. Three water-budget scenarios, based
on expert opinion of the ratio of river recharge to land-
surface recharge and the proportion of ocean discharge,
were simulated in Modflow, resulting in paired river
recharge and transmissivity layers for each of the three
scenarios.

D.  Multiple Evaluations of the AquiferSim Model

One run of the AquiferSim model takes several
minutes to complete. In order to run multiple evaluations
of the model, a parallel computing framework has been
designed in Python to use a cluster of 10 powerful nodes,
thus reducing computational time considerably. In this
configuration, a Monte Carlo type approach to sensitivity
analysis is practical.

TABLE L. INPUT VARIABLES OF AQUIFERSIM MODEL

‘total number of realizations for the

Variable Model of Uncertainty

9 alternative layers derived from a Monte

Soil ma . . . . .
P Carlo simulation using a confusion matrix

9 alternative layers derived from a Monte

Land-use ma . . . . .
P Carlo simulation using a confusion matrix

Nirate/drainage table 3 alternative tables : original table, 5%, +5%

3 alternative layers of rainfall zone from

Climate map geostatistical simulation

River recharge map
and aquifer
transmissivity map

3 sets of linked pairs of maps — based on three
water-budget scenarios with higher/lower
proportions of ocean discharge

E.  Sensitivity Analysis

Three different approaches have been considered to
perform spatial sensitivity analysis of the AquiferSim
model: OAT local variations around some base points, the
Elementary Effects method (Morris, 1991; Saltelli et al.,
2008) and the variance-based spatial Sobol’ method
(Lilburne and Tarantola, 2009).

The same principle was used to handle spatially
distributed inputs in the three approaches: the /" spatial
input factor JX; is described as a discrete uniform
distribution in {0 ; 1 ; .. ; m—1 } where n, represents the
™ input factor. Each
discrete level is associated with a single realization of the
spatial input, generated from a specific spatial uncertainty
model. One must note that SA techniques based on
regression and the Fourier-based techniques cannot be
applied in this case, as the order in which spatial
realizations are ranked has no meaning.

The three different approaches considered differ on
various points, including design of the sampling of input
factors, measures of sensitivity, and computational cost
(e.g. number of model simulation runs). The first two are
mainly local, quantifying the variation of the model output
due to small variations in the uncertain model inputs
around a base point. The spatial Sobol’ method is global,
exploring more of the multidimensional input space.

1) OAT local variations around some base points

A first rough approach is to analyze the local influence
of the variation of each input factor X; around a few
random base points p/ =(X1-’,X~2’,...,X,{') where x/ is
the /™ realization (layer) of input factor X; for £ input
factors. The following steps were followed forj=0, 1, 2:

s select the realizations for the base point p/ from
the space of the input factors

o for each input factor .X;.

o calculate the model output for each spatial
realization of X, with the other input factors
(layers) remaining unchanged from the base
point.

o compute S/, the range of model output Y for
this set of runs (there are not enough runs to
calculate variance).

S/can be seen as a sensitivity measure of input factor X;
around base point p/.

The total number of model evaluations is ¢ = px zni

where #; is the number of possible values for input factor
X; and p the number of base points studied. Here C = 81.

2)  Elementary Effects method V
The Elementary Effects method is a’ technique for
sensitivity analysis that overcomes some of the limitations
of the previous technique, whose results depend heavily on
a single base point. It also belongs to the class of OAT
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sampling designs. In this study r = 100 different
trajectories in the input space were generated from
randomly selected base points. Each trajectory has (k+1)
points, where £ is the number of input factors, and has two
key properties: two consecutive points differ in only one
input factor, and each input factor has been varied exactly
once in the trajectory. This approach can be adapted for
the spatial case by using another realization to vary each
each input factor (layer) in turn. From each trajectory ¢, the
elementary effect £E! of input factor X; can be computed

as:

EE! =YX, oo Xy X X e X, )= V(X XX X,

where X is a different layer realization to X,_f !

For each input factor X, a sensitivity measure 4’ can be

calculated. It is defined as the mean of the absolute values
of the computed elementary effects EE/over the r

different trajectories:

/’li* = :TgIEE:’l

The total number of model evaluations is C = rx (k+1).
Here C = 600.

3) Variance-based spatial Sobol’ method

The spatial Sobol” method is a generalization of the
methods of Sobol’ (1993) and Saltelli et al. (2000) to
spatially dependent models (Lilburne and Tarantola,
2009). Briefly, it is based on the decomposition of the
output variance in conditional variances. It uses two quasi-
random sample matrices to explore the space of the input
factors. Each spatial factor (layer) X; is sampled from a
discrete uniform distribution in {0 ; ... ; #»~1 }. Numerous
permutations between the two sample matrices allow the
computation of Sobol” first-order and total-order
sensitivity indices S; and Sy, for each input factor.
Empirical 90% confidence intervals for the Sobol’ indices
have been computed from the same set of model
evaluations using 100 bootstrap replicas.

The computational cost of the spatial Sobol’ method is
considerably higher than that of the other two techniques:
the number of model evaluations needed s
C=2xNx (k + 1) where N is the size of the quasi-random
sample matrices (here N = 512 rows) and £ is the number
of input factors (here k£ = 5). Here C = 6144,

III.  RESULTS

The results from OAT local variations of model inputs
around some base points show that this type of analysis is
heavily dependent on the selected base point. Local
sensitivity measures of the input factors are different for
each base point and no general ranking can be inferred
(Table 2).

The Elementary Effects method gives more valuable
information: land use layer is the most influential input
(Table 3), while no input can clearly be discarded as
having little influence.

The spatial Sobol’ method leads to similar conclusions:
the land use layer also appears to be the most influential
input (Table 4). The sum of first-order effects is only 57%,
showing that there are significant interactions between the
inputs. The results also show that all of the inputs have
some interactions with the other inputs.

[V. DisCusSION

Associating randomly generated map and tabular
realizations to scalar values sampled from discrete uniform
distributions makes it possible to use various sensitivity
analysis techniques on the spatial AquiferSim model.

Complex descriptions of spatial uncertainty can be used to
generate map realizations, including geostatistical
techniques and simulation from confusion matrices.

OAT variations of each input factor around base
sample points depends heavily on the selected sample
point and it fails to identify the factors that account for
most of the model output variability. Yet it is a relatively
costless method to implement, and provides valuable
information on the local behavior of the model around
some specific points.

The most influential input, which is the land use layer,
was clearly identified by the Elementary Effects method,
with a quite low computational cost (Table 5). Yet this
technique does not explore the whole space of the input
factors, and some specific interaction effects could have
been missed by the analysis. Moreover, the adaptation of
this method to a spatial context raises some difficulties:
specifically, as the integer index associated with each
spatial realization has no meaning, the computation of
sensitivity measures | and o (Morris, 1991) is not possible,
therefore limiting the usefulness of the Elementary Effects
method.

TABLE Il RESULTS OF OAT LOCAL VARIATION ABOUT BASE SAMPLE POINTS
Base Point 1 Base Point 2 Base Point 3
Rank Range of Y Rank Range of Y Rank Range of Y
Land use I 1.73 3 0.87 2 0.81
ﬁ;‘]’j‘zmssif&harge &1 2 123 2 123 5 0.65
Soil 3 1.03 1 1.71 3 0.75
Nitrate/drainage table 4 0.73 4 0.67 4 0.70
Climate 5 0.09 5 0.45 1 1.29
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TABLE IIL. RESULTS OF ELEMENTARY -EFFECTS SENSITIVITY

ANALYSIS
Rank u*

Land use 1 68.57
River r;chafge & 2 5704
transmissivity ]

Climate 3 56.74
Nitrate/drainage table S 49.51
Soil 6 44.66

TABLE IV. RESULTS OF SPATIAL SOBOL’ SENSITIVITY ANALYSIS

First-Order Total-Order
Sensitivity Index Sensitivity Index
(90% Confidence | (90% Confidence
Interval) Interval)
Land use 15% - 28% 49% — 60%
River recharge & 6%~ 19% 22%—29%
transmissivity
Nitrate/drainage 594 - 19% 12% — 18%
table
Climate 0.5% - 12% 32% - 44%
Soil 0% - 11% 26%-31%

The Spatial Sobol’ method has none of those
shortcomings, but at the price of a much higher
computational cost (in this case nearly a week). It ensures
that the entire model input space is explored. Land use was
identified by the Spatial Sobol’ method as being the input
that accounts for most of the output variability. This
method gives valuable insight on the interactions between
input factors, which account for 43% of the output
variance. Finally it shows that no inputs can be considered
as negligible. With a number of sample rows of N = 512,
confidence intervals on the sensitivity indices are small
enough to draw firm conclusions.

V.  CONCLUSION

By treating spatial layers as unique random variables,
various sensitivity analysis techniques have been applied
to the AquiferSim spatial model. Specific and complex
descriptions of spatial uncertainty were used for each
spatial input, to generate sets of random realizations. OAT
local variations of inputs around some sample points allow
the robustness of model predictions to be checked around
those points, but give no insight on the relative importance
of inputs. The Elementary Effects method shows that the
land use layer is the most influential input factor: it would
be worthwhile to obtain better land use information in
order to reduce the output variability. The spatial Sobol’
method gives the most valuable information: it confirms
that the land use layer is the most influential input; it also
shows that strong interactions occur between most of the
inputs, explaining around 40% of the output variability.

TABLE V. SUMMARY COMPARISON BETWEEN THE THREE
TECHNIQUES
Model Ranking Inter-
Evaluations of Inputs actions
Local OAT varmtxons 81 No No
around base point
Elementary Effects 600 Yes No
Spatial Sobol’ 6144 Yes Yes
ACKNOWLEDGEMENTS

We thank David Pairman, Stephen McNeill and
Christine Bezar for their helpful comments. Nathalie’s
visit to New Zealand was supported by the research
program "Risque, Décision, Territoire” (EPI) funded by
MEEDEM, France. Funding for this work was provided by
Foundation for Research Science and Technology (NZ),
contract CO9X0306.

REFERENCES

Bidwell, V.J., Lilburne, L.R. and Good, J.M. (2005). Strategy for
developing GIS-based tools for management of the effects on
groundwater of nitrate leaching from agricultural land use. In: A.
Zerger and R.M. Argent (Eds) MODSIM 2005 International
Congress on Modelling and Simulation. Melbourne, Australia:
Modelling and Simulation Society of Australia and New Zealand.

Chan, G. and Wood, A.T.A. (1997). An algorithm for stimulating
stationary Gaussian random fields. Applied Statistics. 46, 171~181.

Harbaugh, A.W., Banta, E.R., Hill, M.C. and Mcdonald, M.G. (2000).
MODFLOW-2000, the U.S. Geological Survey modular ground-
water model: User guide to modularization concepts and the
ground-water flow process. U.S. Geological Survey.

Helton, J.C. (1993). Uncertainty and sensitivity analysis technique$ for
use in performance assessment for radioactive waste disposal.
Reliability Engineering and System Safety. 42, 327-367.

Lilburne, L. & Tarantola, S. (2009). Sensitivity analysis of spatial
models. International Journal of Geographical Information Science.
23, 151-168.

Morris, M.D. (1991). Factorial sampling plans for preliminary
computational experiments. Technometrics. 33, 161174,

Saltelli, A., Chan, K. and Scott, M. (Eds.) (2000). Sensitivity analysis.
Chichester, UK: John Wiley.

Saitelli, A., Tarantola, S., Campolongo, F. and Ratto, M. (2004).
Sensitivity analysis in practice. A guide to assessing scientific
-models. Chichester, UK: John Wiley.

Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli,
D., Saisana, M. and Tarantola, S. (2008). Global sensitivity analysis.
The primer. Chichester, UK: John Wiley.

Sobol’, .M. (1993). Sensitivity estimates for nonlinear mathematical

models. Mathematical Modeling dnd Computational Experiment. 1,
407-414.

-424 -



