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Abstract

The paper is aimed at examining the relationship between the three topics of the
workshops that gave rise to this book: security, fault tolerance, and software assurance.
Those three topics can be viewed as different facets of dependability. The paper focuses
on diversity, as a desirable approach for addressing the classes of faults that underlay
all these topics, i.e., design faults and intrusion faults.

1. Introduction

The paper is aimed at examining the relationship between the three topics of the
workshops that gave rise to this book: security, fault tolerance and software assurance.
Those three topics can be viewed as different facets of dependability [29, 33], (see also
the paper by Brian Randell in this volume). The second section is devoted to a fault
classification, which identifies three major classes of faults: physical faults, design
faults, (human-machine) interaction faults, where the latter two classes can be either
accidental or deliberate. The classes of faults that come into play, when considering
simultaneously security, fault tolerance and software assurance are the design faults and
the interaction faults. Contributions of fault tolerance to security and software
assurance necessitate diversity. Diversity can take place at a number of levels in a
system: execution support (hardware plus operating system), execution conditions or
design of the application software, human-machine interface, and operators. The third
section is devoted to a close examination of these possibilities, with indications on their
effectiveness with respect to the classes of faults of interest. Diversity is also commonly
used for the validation of dependable systems all along its development, as presented in
the fourth section. However, some faults can defeat fault-tolerance techniques (e.g.,
those faults resulting from tradeoffs between security and usability, or faults giving rise
to common-mode failures). It is thus necessary to make an evaluation of the risk that is
incurred, which is the topic of the fifth part of the paper.

! YvesDeswarteis currentlyon sabbaticalat MicrosoftResearch, Cambridge, UK.



2. Faults [29, 33]

Faults are the adjudged or hypothesized causes of system failures, i.e. deviations
from delivery of correct service to the system user(s). Faults and their sources are
extremely diverse: a) their phenomelogical cause can be physical or human-made, b)
they can be accidental or deliberate, with or without malicious intent, ¢) they can be
created or occur during the system development or during its operational life, d) they
can be internal or external to the system, and e) they can be permanent or transient.
However, the many resulting classes of faults can be grouped into three major
categories (Figure 1): physical faults (adverse physical phenomena), design faults,
interaction faults (operational misuses).
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Figure 1 - Classes of faults

The causal chain from faults to failures (figure 2) involves errors, i.e. that part of
system state that may lead to subsequent failure.
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Figure 2 - Causal chain from faults to errors, to failures

Failures can be classified according to a) their domain, i.e. value or timing, b) their
perception by system users, i.e. consistent or inconsistent, usually called Byzantine, c)
their consequences upon system environment, from minor to catastrophic, with usually
intermediate grading, such as significant or major. From the very existence of the
causal chain from faults to failures, it is relatively common usage to classify faults
according to the failures they cause.

The ability to identify the activation pattern of a fault that caused one or more errors
is the activation reproducibility of a fault. Faults can be categorized according to their
activation reproducibility: faults whose activation is reproducible are called solid, or
hard, faults, whereas faults whose activation is not systematically reproducible are
elusive, or soft, faults. Most residual design faults in large, complex, software are
elusive faults (or "Heisenbugs"[23]): they are subtle enough that their activation
conditions depend on equally subtle combinations of internal state and external
solicitation, which occur rarely and can be very difficult to reproduce.



Situations involving multiple faults and/or failures are frequently encountered. Given
a system with defined boundaries, a single fault is a fault caused by one adverse
physical event or one harmful human action. Multiple faults are two or more
concurrent, overlapping, or sequential single faults whose consequences, i.e., errors,
overlap in time, that is, the errors due to these faults are concurrently present in the
system. Consideration of multiple faults leads one to distinguish a) independent faults,
which are attributed to different causes, and b) related faults, which are attributed to a
common cause. Related faults generally cause similar errors, i.e., errors that cannot be
distinguished by whatever detection mechanisms are being employed, whereas
independent faults usually cause distinct errors; it may however happen that
independent faults lead to similar errors [5], or that related faults lead to distinct errors.
The failures caused by similar errors are common-mode failures.

3. Diversity for fault tolerance

Many techniques commonly used in security or safety critical application domains
can be identified as different means of implementing diversity for fault-tolerance. All
these techniques are aimed at tolerating some kind of design faults, but they can be
classified according to where they are implemented:

- at the level of users or operators,

- in the human-computer interfaces,

- at the application software level,

- at the execution level, or

- at the hardware or operating system level.

In this section, we identify these levels, and for each of them we analyze the fault
classes they intend to tolerate.

Since every good concept is better if recursive, diversity can be successfully applied
at diverse levels. For instance, the AIRBUS A-300/600 digital fly-by-wire system [41]
is run by two classes of computers, with different microprocessors (designed
independently and provided by different vendors), the application software being
developed by two different companies, using different languages (and compilers), each
computer being self-checking with independent channels for functional processing and
monitoring. If we add the fact that a) some pilot interfaces implement diversity, b) two
pilots are in the cockpit and c¢) the diverse computers control different axes of the plane
(one controls the pitch axis and the other the roll axis), this example covers all levels of
diversity implementation.

3.1. Diversity at the level of users or operators

If some privileged users or operators are not blindly trusted”, or if they can be
impersonated by some intruders, it is useful to require the cooperation of several
independent users or operators to perform a sensitive operation. This can be interpreted
as an application of the diversity approach to users and operators: as long as there is no

2 Inarecentsurveyby Ernstand Young concerningcomputer-related fraud involving 1200 companiesin
32 countries,66% ofthesurveyedcompanieshad experiencedatleastone computer-relatedfraudinthe
previous 12 months; 17% ofthe companieshad even experiencedmorethan5 such frauds. The survey
reportedthat84% offraudswereperpetratedby companyemployees.



common-mode failures of these independent persons (i.e., collusion), the system
remains secure. On the contrary, if a single user or operator can perform such a
sensitive operation, you system is insecure if this user is not perfectly trustworthy.

The separation of duty proposed by Clark and Wilson [13] is one implementation of
user-level diversity. In the separation of duty model, complementary roles are assigned
to different users, and a sensitive operation can be realized only by the successive
executions of several programs that can be run only by different roles. A direct
implementation of this approach can tolerate the malicious behavior of some users (at
least commission faults, rather than omission faults), but no other class of faults (e.g.,
physical faults or software design faults, including malicious logic).

Distributing trust is another user-level diversity implementation. In this approach,
sensitive operations, e.g. authentication and access control, can only be realized by
running similar programs on different machines under the control of independent
operators [16, 37]. In this case, the operators have similar privileges, and an operation
is securely realized if at least a majority of the program copies are executed correctly.
No single operator is trusted, but there is a reasonable confidence that a majority of
them are not malicious. Secret sharing [40], and more generally Qhreshold
cryptographyO can also be viewed as a cryptographic implementation of trust
distribution. This approach is able to tolerate the malicious behavior of a minority of
operators (omission faults as well as commission faults), but also accidental interaction
faults (operator mistakes) and physical faults. Design faults are tolerated only if
diversity is also applied at the application software level and/or at the support level (see
Sections 3.3 and 3.5).

Trust distribution approach is efficient against malicious operators, but its efficiency
against external attacks depends on the difficulty for the intruder to gain the control of a
majority of the machine pool running the sensitive operation before being detected and
neutralized. To increase this difficulty, it is advisable to implement also some sort of
execution diversity (see Section 3.4).

Operator-level diversity is also commonly used in safety-critical applications to
tolerate operator disability or mistakes. This is, for instance the reason of the presence
of two pilots in commercial airplane cockpits. More generally, teamwork is often
organized to prevent and tolerate independent operator errors [38].

3.2 Human-computer interface diversity

Operator-level diversity necessitates the cooperation of multiple operators. But even
if only one operator is involved, diversity can be applied to human-computer interfaces
to counter interaction deficiencies. These deficiencies can be caused by interface design
faults, but also by possible operator inability to interact correctly’. Another cause of
deficiency is the intrinsic inefficiency of some -human-computer interfaces. For
instance, authentication mechanisms are based on something the user knows (e.g., a
password), something he owns (e.g., a token) or something he is (biometric
authentication). All these mechanisms have their limits: passwords can be guessed or

3 Ifthe operatormisinterprets displayed data or is unable to enter correct informationin time, this may
be due to bad interface design. Accident cause analysis is the source of endless arguments on
responsibilitysharingbetweeninterfacedesign faultsand operatormistakes.



disclosed deliberately, tokens can be stolen or borrowed, and all biometric techniques
have some false positive (authenticating the wrong person) and false negative (not
authenticating the right person) rates. The most efficient authentication systems use
diverse mechanisms, e.g. smartcard activated by keying a Personal Identification
Number (PIN), or fingerprint matching with patterns stored on a smartcard (this kind of
techniques can also ease privacy concerns raised by uncontrolled storage of biometric
data).

Diverse interfaces can also provide back-up facilities to cope with physical faults
affecting some parts of the interfaces.

3.3 Application software diversity

This is the most common form of diversity. The notion of software diversity has been
formulated in the seventies [11, 22, 36]. It has been significantly used in safety-critical
systems to provide either a fail-halt property or service continuity.

The fail-halt property, with respect to design faults, can be simply achieved by self-
checking modules consisting of two parts: a functional part and a monitor part running
an acceptance test based on assertions checked on input data, intermediate data or result
data. Acceptance test can also be implemented by comparing two versions of the
functional part. If the acceptance test detects an error, the component is isolated or
halted, in order to prevent disturbance of other parts of the system.

Continuity of service can be provided by recovery blocks [36], N-version
programming [4] or N-self-checking programming [30].

Application software diversity is of course primarily targeting at (accidental or
deliberate) design faults in the application software. But they can be efficient also to
tolerate physical faults [30], and also some hardware or operating system design faults.
For instance, the ELEKTRA railway interlocking control system [28] is composed of two
channels: one channel executes the interlocking control software, the other one executes
the monitoring software (i.e., the safety bag). Both channels are made of identical
hardware, with identical operating systems. According to the very high safety
requirements, operating system and hardware cannot be considered as exempt of design
faults. But, since the application programs running on the two channels are different, it
can be considered as very unlikely that the same (hardware or OS) design fault can be
activated at the same execution step on both channels and produce consistent errors
leading to an unsafe state.

N-version programming can also be efficient against viruses, if inter-process
communications are checked efficiently [26].

3.4. Diversity at the execution level

The same software run on the same hardware but with a different execution context
may behave differently with respect to accidental design faults, and this kind of
diversity can have a surprising high efficiency. Practical experience of Tandem systems
[7, 23] has shown that rollback mechanisms designed to tolerate physical faults turn out
to be equally efficient for the software faults, owing to the loose coupling between
process executions: since most (HeisenbugsO appear to be context sensitive, those
affecting primary execution are very unlikely to be activated during the rollback.



This kind of diversity would deserve more attention.

3.5. Diversity at the hardware and OS level

Diversity can be applied at the hardware level, for instance by designing
independently different processors able to run identically the same software [3], and by
comparing bit-by-bit the results. This kind of diversity has been primarily intended to
tolerate hardware component failures and external physical faults: such faults are very
unlikely to produce identical errors on diversely implemented hardware. But nowadays,
such diversity should be still more useful to tolerate the numerous design faults induced
by the increasing complexity of recent microprocessors. See for instance the Pentium
Specification Updates published by Intel” , with many CerrataO defined as Qlesign
defects or errorsQ)

To tolerate compiler (design or execution) faults, but also to increase the execution
diversity, identical application software modules can be compiled by independently
developed compilers, as is the case for the Boeing 777.

Operating systems are also prone to design flaws, and diversity can help to tolerate
them. In particular, it is possible to run application software replicas on different
Commercial-Off-The-Shelf (COTS) operating systems. This should be especially
efficient for security critical software, which could be attractive targets for intrusions
(e.g., certification authorities, name and directory services, electronic commerce, etc.).
Indeed, most intrusions exploit flaws in OS platforms rather than flaws in the security-
related software itself. But a particular attention must be given to prevent Crorrelated
faultsOwhich could appear in several COTS OS. For example, the buffer overrun attack
is common on many Unix-based systems, as well as on Microsoft Windows-NT. In
some cases, such correlated faults cannot be easily avoided, e.g., when they are features
of standard protocols. Such features are often exploited by denial-of-service attacks
(see for instance [12]).

4. Diversity and validation

This section addresses the role of diversity in the validation process in two ways: on
one hand, design diversity aids the validation of the software variants and, on the other
hand, a good validation method necessitates a set of diverse verification and validation
techniques.

Design diversity is generally used to check the dynamic behavior of the software
during execution. In addition to its ability to detect or tolerate faults in operation, it has
been observed that design diversity i) aids the validation of software variants, thanks to
back-to-back testing and ii) helps in detecting certain errors that are unlikely to be
detected with other methods. For example, in a controlled experiment performed in
[42], 14 % of faults were detected by back-to-back testing of three variants after
extensive individual tests, whereas in [8] nine faults were detected after extensive use
of other testing methods. It can be argued that design diversity is costly. However,
previous experiments and evaluations showed that design diversity does not double the
cost (see e.g., [1, 6, 24, 31]), and more recently a study performed on an industrial
software [27] confirmed that the cost of one diverse variant is between 0.7 and 0.85 the
cost of a non fault-tolerant software. This is due to the fact that even though some
development activities (e.g., detailed design, coding, unit and integration tests) are
performed separately for each unit, several activities (e.g., specifications, high level



design and system test) are performed globally and even take advantage of the existence
of more than one variant.

Considering now, more generally, the validation of software systems. It is well
known (and this is confirmed in the survey carried out in [32], Section 2.2.3) that
despite the large number of available validation techniques (that are very valuable),
none of them is perfect. The authors of this survey argue for the combination of various
(i.e., diverse) techniques to obtain a high level of trust. They recommend combining
static analysis with testing for all categories of software systems. For critical software,
these techniques should be reinforced by formal specification, behavioral analysis and
proof-of-correctness. Indeed, the diverse techniques allow different types of faults to be
revealed. Static analysis (e.g., walk-through, inspection) can be applied to
specifications and code and allow detection of a large number of faults before software
execution: they could reveal as high as 84% and 95% of faults in the software (see
respectively [10, 39]). Testing uncovers faults that static analyses have failed to reveal.
Even within testing, diverse methods are recommended: for example it is worth
combining functional and structural testing as well as strategies with randomly selected
inputs and deterministic inputs. The behavioral analysis complements the static analysis
as the dynamic properties can be verified. Formal specification and proof-of-correctness
should be used for critical components. Another matter related to diversity in the
validation process is the aim of the various activities. Indeed, even though the overall
aim of validation is to check the software correct behavior, static analysis, behavioral
analysis and testing aim at uncovering faults (they succeed when they uncover faults),
whereas formal specification and proof-of-correctness aim at demonstrating the correct
behavior (they fail when they uncover faults). Also, diversity within the same validation
activity may be beneficial: in the experiment conducted in [21] two inspection teams,
following the same rules, found different types of faults in the same software system
(for each team around 75 % of faults were not found by the other team).

5. Efficiency evaluation

Diversity efficiency is mainly limited by the related faults defined in Section 2: even
independently developed hardware of software can exhibit faults generating similar
errors, as has been experienced by many experimental studies such as [5]. The
evaluation of the impact of such faults on the overall dependability of the system can be
evaluated as in [31]. This Section examines the efficiency of diversity a) on the
development process and b) with respect of security/usability tradeoffs.

5.1 Efficiency of diversity on the development process

High quality software necessitates a controllable and well-defined production process
as it assumed that there is a direct relationship between the quality of the development
process and the quality of the resulting product. Programs aimed at improving and
maturing the development process are usually referred to as reliability improvement
programs. Such programs are generally based on several diverse actions: well-defined
specification process, combined use of validation techniques, data collection, feedback
to the development process and actions performed to improve the process, etc. The
evaluation of the efficiency of these methods is needed to check their impact on the
product quality and on the development process productivity and efficiency.



Indeed most of the companies that have followed a reliability improvement program
have already appreciated the progress accomplished. Among these companies we can
quote without being exhaustive: AT&T, Bull, Fujitsu, Hewlett-Packard, IBM, Motorola,
NASA, etc. In addition to specific experiences, several papers and books have already
been published advocating and defining methods and models for improving software
process (see e.g., [25, 34]).

One of the major objections to reliability programs is their cost that has been
considered for a long time as increasing with the required dependability level. The
relationship between the level of dependability required and the associated cost is
further complicated when considering factors such as the supplier's rework cost, the
maintenance cost, the consequence of failure for the customer, or the cost of fault
correction. For example, past experience has showed that the cost of fixing a fault
uncovered during operation to be one or two orders of magnitude higher than the cost of
the same fault detected during development [9].

It is worth noting that all the companies that have followed a well-defined program
for improving software process and quality agree on the fact that the benefits are
important. However, it is very difficult to partition the gains according to the methods
used (e.g., the relative impact of fault prevention and fault removal techniques is very
difficult to be assessed). Another difficulty comes from the fact that the improvement
are usually evaluated by comparing the results of the new methods with respect to the
previous ones used by the company. Moreover the criteria of comparison vary from one
company to the other. These criteria concern for instance software productivity, fault
density in the field, reduction of test duration, etc. It is thus very complicated to draw
general conclusions from the published work. The examples presented below are given
as indication about some benefits observed; they have to be considered within the
context in which they have been obtained.

¥ The results obtained through the quality program started at AT&T's International
DEFINITY PBX [19] (using among other techniques the Cleanroom approach and
software reliability objectives) show: a factor-of-10 reduction in customer-reported
problems, a factor-of-10 reduction in program maintenance cost, a factor-of-2
reduction in the system test interval, and a 30% reduction in new product introduction
interval.

¥ The experience reported in [20] by IBM, consisting in analyzing reliability-related
data (trend tests and reliability growth models) and in the application of an economic
model to determine optimal release time, shows that the benefit-to-cost ratio brought
by such analyses is 6.14, 11.98, and 78.65 depending on whether the cost of a failure
is 500, 5,000, or 50,000 monetary units.

¥ The experience reported by Fujitsu [2], using the concurrent development approach,
shows the release cycle has been reduced by 75%.

¥ The study carried out over 15 projects by Raytheon Equipment Division [18] shows
that the rework cost has shrunk to a quarter of its original value after completion of a
five-year program aimed at process improvement.

¥ Motorola (Government Electronics Div.) [17] has followed an improvement and an
evaluation program: they went from Capability Maturity Model (see e.g., [25]) level 2
to level 3 in three years and it took them three more years to reach level 4 for the
whole process and level 5 for policies and procedures. From level 2 to 5, the number
of faults has been divided by 7, the cycle time by 2.4 whereas productivity has been
improved by 2.8.



5.2. Efficiency of diversity with respect of security/usability tradeoffs

In Section 3, it has been shown that diversity can contribute significantly to improve
security. But quite often, even if they are implemented with diversity, security
mechanisms can be defeated by a careless user, e.g., who writes his PIN on his
smartcard.

Indeed, most computing systems users are not motivated sufficiently by security
concerns to accept easily the unavoidable discomfort induced by any security measures.
It may be difficult for them to imagine that, while they may have no access to sensitive
information, their careless attitude can endanger other users who may have to deal with
such sensitive data. But this is really true! Many attackers are exploiting badly
protected user accounts to gain enough privileges to progress towards more sensitive
targets. For instance, they can easily impersonate a careless user and abuse the trust that
other persons place in the impersonated user.

In fact, trust relationships should not be transitive: if Alice trusts Bob, and Bob trusts
Charlie, this does not mean that Alice trusts Charlie. Nevertheless, when implemented
by computer mechanisms, such trust relationships can be transitively abused. For
instance, if Alice trusts Bob and grants him the privilege to access her account (e.g., by
using . r host s on Unix), and in the same manner, if Bob gives Charlie an access to
his account, Charlie can easily access Alice® account. Yet Alice may not wish to deny
BobQ@ access to her account or Bob deny Charlie@ access to his, if these accesses are
needed to ease their work. Most operating systems exhibit such facilities, e.g. to
improve teamwork or to enable some users to benefit from other usersOexpertise. If
these features are correctly used, they can even improve security (examples are given in

[15]).

It is thus important to assess the influence of user behavior on the system security. A
quantitative evaluation method has been developed for this purpose [14]. Measurements
provided by this approach aim at representing as accurately as possible the security of
the system in operation, i.e. its ability to resist possible attacks, or equivalently, the
difficulty for an attacker to exploit the vulnerabilities present in the system and defeat
the security objectives assigned to the system. This method is based on 1) a theoretical
model, the privilege graph, exhibiting the system vulnerabilities, 2) a definition of the
security objectives, 3) a mathematical model to compute significant security measures.

In the privilege graph model [15], a node represents a set of privileges owned by a
user or a set of users (e.g., a Unix group) and an arc represents a vulnerability. An arc
exists from node X to node Y if there is a method enabling a user owning XQ@ privileges
to obtain Y@ privileges. Most of these vulnerabilities are induced by lax user behavior
or by features activated to facilitate information sharing. Weights are assigned to each
arc, according to the effort needed for a possible attacker to exploit the vulnerability. In
the privilege graph, diversity-implemented security mechanisms are represented by arcs
with weights corresponding to the difficulty to break each of these mechanisms.

The security objective definition is mostly used to identify in the privilege graph
which nodes represent the privileges of possible attackers and which nodes represent
the privileges of possible targets. The mathematical model, based on Markov chains, is
used to compute measures representing the global effort associated with all the paths
that connect possible attacker node to possible target nodes. A set of software tools has
been developed to generate automatically privilege graphs for distributed Unix systems,



to define security objectives, and to compute significant security measures [35]. Such
tools can help a security administrator to identify those security flaws that can be
eliminated for the best security improvement, with the least incidence to users. These
tools can also enable the administrator to monitor the evolution of the global system
security according to changes in the environment, in the configurations or in the user
behavior.
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