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ABSTRACT. We consider N independent stochastic processes (X;(t),t € [0,7]), j = 1,...,N,
defined by a one-dimensional stochastic differential equation with coefficients depending on a
random variable ¢; and study the nonparametric estimation of the density of the random effect
¢; in two kinds of mixed models. A multiplicative random effect and an additive random effect
are successively considered. In each case, we build kernel and deconvolution estimators and
study their L2-risk. Asymptotic properties are evaluated as N tends to infinity for fixed T
or for T = T(N) tending to infinity with N. For T(N) = N2, adaptive estimators are built.
Estimators are implemented on simulated data for several examples.
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1. INTRODUCTION

Random effects models are increasingly used in the biomedical field and have proved to be
adequate tools for the study of repeated measurements collected on a series of subjects (see e.g.
Davidian and Giltinian, 1995, Pinheiro and Bates, 2000, Nie and Yang, 2005, Nie, 2006, 2007).

Such mixed models are defined through a hierarchical structure where, first, a distribution
describes the intra-individual variability and, second, a distribution describes the inter-individual
variability. In stochastic differential equations (SDEs) with random effects, the dynamics of each
individual is given by a SDE with drift and/or diffusion coefficient depending on parameters,
and the parameters of each SDE are random variables thus taking into account the variability
between individuals. To be more precise, consider the following one-dimensional SDE modeling
a continuous evolution for N subjects:

(1) dX;(t) = b(X;(t), ¢5)dt + o(X;(1), ¢)dWj(t),  X;(0) =2, j=1,...,N.

Here, 2, ..., 2" are known values, (W1, ..., Wy) are independent standard Brownian motions,

®1,...,¢N are i.i.d. random variables and (Wh,...,Wy) and (¢1,...,¢n) are independent.
Each process (X(t)) represents an individual and the random variable ¢; represents the random
effect of individual j. The functions b(z, ), o(z,p) are supposed to be known and statistical
inference is mainly concerned with the common unknown distribution of the random effects
¢;. In several recent contributions, a parametric model is proposed for the latter distribution
and various numerical as well as theoretical results have been obtained concerning maximum
likelihood estimation (see e.g. Ditlevsen and De Gaetano, 2005, Overgaard et al., 2005, Donnet
and Samson, 2008, Picchini et al., 2010, Picchini and Ditlevsen, 2011, Donnet and Samson, 2010,
Delattre et al., 2012).

Nonparametric estimation in the context of random effects models has been recently investi-
gated for linear discrete time models (see e.g. Comte and Samson, 2012). To our knowledge, the
problem of nonparametric estimation of the population distribution (distribution of ¢;) has not
been yet investigated in the context of SDEs with random effects. In this paper, we study this
topic in two special cases of (1). First, a multiplicative random effect in the drift:

(2) dX;(t) = ¢; b(X;(t))dt + o(X;(t)dW;(t), X,;(0)= #, j=1,...,N.
Second, an additive random effect in the drift:
(3) dX;(t) = (¢; + b(X;(1))dt + o(X;(1)dW;(t), X;(0) =27, j=1,....N.

The functions b : R — R and ¢ : R — R are known. We assume that the random variables
é1,...,¢n have a common density f on R and that the processes (X;(t)) are continuously
observed on a time interval [0, 7] with T' > 0 given. We build a series of nonparametric estimators
of the density f from the observations {X;(¢),0 <t <T,j =1,...,N} which are either kernel
or deconvolution estimators. We study the L2-risk of the proposed estimators and discuss their
asymptotic properties as N tends to infinity. We distinguish the case of fixed T" and the case of
T = T(N) tending to infinity with N. In view of practical implementation, the case of discrete
observations (X;(k0),0 < k <mn,j =1,...,N), with nd = T is studied. Numerical simulation
results using discretized sample paths for various models are given.

Section 2 concerns model (2). For large T', we propose a kernel estimator f,gl) of f. The
bound of its L?-risk shows that 7 = T'(N) > N3 ensures the possibility of obtaining the usual
optimal rates on Nikol’ski classes of regularity for f. Section 2.2 is devoted to the special case
b = o. Using an approach analogous to the one in Comte and Samson (2012), we build a

deconvolution estimator fr(,%) and discuss its properties for fixed and large T'. Then, under the
condition T = T(N) = N2, a special class of deconvolution estimators (f, 7 < N?) is introduced.
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We propose a data-driven selection of the parameter 7 which is non standard and leads to an
adaptive estimator (Theorem 1).
Section 3 concerns model (3). We follow an analogous scheme. The model assumptions and

the constraints on 7' are weaker. First, a kernel estimator f}(f) is proposed which attains usual
optimal rates for T = T(N) > N°2. Then, for T = T(N) = N? a class of deconvolution
estimators (fr,7 < N?)) and a data-driven selection of 7 are studied.

In view of practical implementation, we consider the case of discrete observations with small
sampling interval § and check that the estimators can be adapted to this case (Section 4). This
is used indeed in Section 5, devoted to numerical simulation on various models: the kernel and
the adaptive deconvolution estimators are implemented. The results are satisfactory, even when
the condition T'(IN) = N? is not fulfilled. In Section 6, model properties are investigated in the
general framework of (1) or in the special cases of (2) and (3). Some concluding remarks are
given in Section 7. Proofs are gathered in Section 8.

2. MULTIPLICATIVE RANDOM EFFECT IN THE DRIFT

We consider in this section model (2) where ¢ belongs to R and b and ¢ are known functions
satisfying:
(H1) b and o are Lipschitz:
AL >0,V € R, |b(z) — b(y)| + lo(z) — o(y)] < Ll —yl.

T 32
(H2) / %(Xj(s))ds <400, j=1,...,N, a.s.
0

The processes (W1,...,Wy) and the r.v.’s (¢1,...,¢n) are defined on a common probability
space (2, F,P). Consider the filtration (F;,t > 0) defined by F; = o(¢j, Wj(s),s < t,j =
1,...,N). As F; = o(W;(s),s < t) V F}, with F} = o(¢s, (¢, W;(s),s < t),j # i) independent
of W;, each process W; is a (F;,t > 0)-Brownian motion. The random variables ¢; are Fy-
measurable. Under (H1), equation (2) admits a strong solution adapted to the filtration (F¢, ¢ >
0) (see Proposition 8). Assumption (H2) is clearly fulfilled, for instance, if o is lower bounded.
Following Delattre et al. (2012), we may now introduce statistics which have a central role in the
estimation procedure. For j =1,..., N, we denote

() U0 = [ X Vi = [

Then, equation (2) yields:
(5) Uj(t) = ¢;V;(t) + M;(t), j=1,..., N,
with Mj(t) = [(b/o)(X;(5))dW;(s).

tb2

o2

(X;(s))ds.

2.1. Large observation time. In this paragraph, we consider the asymptotic framework where
both N and T tend to infinity. And, in addition to (H1)-(H2), we assume:

+00 b2
(H3) /0 T (Xy(9))ds = o0, j =1, N, as
Let

The statistic A;r coincides with the maximum in ¢ of the conditional likelihood of (2) given
¢j = . From (5), we see that A;r = ¢; + M;(T)/V;(T) (see e.g. Delattre et al. (2012)). The
second term is the ratio of a martingale divided by its quadratic variation, which under (H3),
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tends to zero a.s. when T tends to infinity. Thus, A;7 is a consistent estimator of the random
variable ¢;. To deal with expectations, we need the following stronger assumption implying

(H3):
(H4) There exist positive constants cg, ¢; such that
g < b (x)/o?(z) <3, VreR.

As Ajr approximates ¢;, we introduce a kernel estimator for the unknown density f of ¢;:

A~

N
W - L _ A g
(6) @ = N Kl Ay, Kale) = K (5):
where K is integrable with [ K (u)du =1, C! and satisfies
(7) | K% := /Kz(u)du < 4oo, |[K'|? = /(K’)z(u)du < 400,

where K’ denotes the derivative of K and ||.| the L?-norm. We define f;, = f x Kj; where %
denotes the convolution product.

Proposition 1. Consider estimator f,gl) giwen by (6) under (H1), (H2), (H4) and (7). Then
IK]? | 2¢ | K')” 1
Nh g Th

(8) E(IF = £1%) < 201f = fall* +

The proof of Proposition 1, as all other proofs, is relegated to Section 8.

Under weak regularity assumptions on f, ||f — fx||? tends to zero when h tends to zero. The
estimating method is consistent, as soon as 1/(Nh) + 1/(Th?) tends to zero. Since N is the
number of i.i.d. observed trajectories, we now look at the rate of the L?-risk expressed as a
function of N and thus let T" and h be expressed as functions of N. We recall that a kernel of
order ¢ satisfies f:sz(x)dx =0for k=1,...,L For constants § > 0 and L > 0, the Nikol’ski
class (8, L) is defined by:

N(B,L) = {f ‘R R: [/ (/O +e) - f“)(w)>2d$}

The following Corollary holds

Corollary 1. Assume that f belongs to N(B,L) and that the kernel K has order ¢ = || with
[1z°|K (z)|dz < 4+00. Under the condition

1/2
< LtP*, wvte R} .

(9) hoc N~VEBH) gnd T =T(N) > N@B+3)/26+1)
we have
(10) E(|f," ~ fI) S N72/CHD,

We give here the classical discussion implying Corollary 1. If f belongs to N (3, L) and if the
kernel K has order ¢, then ||f — fu||?> < C?h2° with C = L [ |u|’|K (u)|du/¢! (see Tsybakov,
2009). For the first two terms in the r.h.s. of (8), the classical rate-optimal compromise imposes
that h oc N~/ 2641 thus implying h2% +1/(Nh) oc N=28/(28+1) " Fitting the last term with this
rate requires that 1/(Th3) < N—20/(8+1D)  This holds for T > N®#+3)/(28+1)  The conditions in
(9) yield the rate (10).

The constraint on T is satisfied for any nonnegative g if T > N3. If 8 > 3, for some known
Bo, we only require T > N(260+3)/(260+1)  Eyen if § is very large, we always need T/N tends to
infinity when N tends to infinity.
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With T'= T(N) > N3, an adaptive selection of the bandwidth h could be done relying on the
method described in Goldenshluger and Lepski (2011).

2.2. The special case b = ¢ for fixed T. The following approach is inspired by the discrete
time model studied in Comte and Samson, 2012. Indeed, when b = o, the variables in (4) and
equation (5) reduce to:

_[MAXG() -
Uj(t)—/o Sy =t U0 = et £ W), =1 N,

Assume that T is fixed and let A be a sampling interval to be discussed later. Fork =1,..., K,
tr = kA, T = KA, we consider the following random variables based on observations

(11) Upp = Uj(te) — Uj(th-1) _ b+ \/IEWj(tk) \/ZWj(tk_l)-

A
Using a Gaussian deconvolution, we define the estimator:

1 m A N U. 2
(12) 721)(:6') = / me — E E e Jke /( )du,

=1 k=1

where m is a cutoff which should be chosen adaptively.

Recall some standard notations. For possibly complex-valued functions g, h € L*(R) N L'(R),
we denote by ¢g*(u) = [ e™®g(x)dr the Fourier transform of g, by (g, h = [g(z (x)h(x)dz the
L?-scalar product The Plancherel theorem yields (g, h) = (g*, h*)/2m. Let now

.M@OZ]‘/Wei”ﬁwwwiﬁ.ﬁﬂﬁzfﬂwhqmmﬂw

21 ) o

so that f,Sf) (z) is, for all z, an unbiased estimator of f,,(z), i.e. E(f,(,f) (z)) = fm(z). We have
the following result.

Proposition 2. Consider the estimator fr(,?) given by (12). We have

A m™m 2
E(If - fO1D) < If - fmll?+ / o 4T

2rNT
1 A Aemm* /A m
13 — *(u)|*d VA |+ —
(13) 27 Jju>7m IF()lPdu + TNT ( ™mn + Q\F +
The bound of the L2-risk is classically split into the sum of a bias term ||f — f,,/|> and a

variance term, itself the sum of two expressions (last two terms in the r.h.s. of (13)). Let us
discuss the possible best choice of A for fixed T.

Do we have interest to take small A? The function A — A2e(™?*/A decreases for A < w2m? /2,
increases for A > m2m?/2 and thus admits a unique minimum reached at 72m?/2. As m has to
be large (for the bias to be small), the choice of A minimizing A2e(mm)*/A g excluded. Conse-
quently, with fixed T > 1, the best choice of A <1 is just A = 1. It follows that the dominating
variance term is o (e(™)” /m)/N. This is the standard order of variance in nonparametric de-
convolution when measurement errors are Gaussian. We refer to e.g. Comte et al. (2006) for
defining the adequate adaptive choice of the cut-off m.
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In view of the next section, let us consider the case of a large T'. Then, we can choose a large
Aif T > (mm)?/2. With A = (7m)?/2 and T > (7m)?/2,
AZe(ﬂ'm)z/A e2m
I G
™mNT — 2 N
The two variance terms thus have the same order m/N which is standard in density estimation
without noise. For instance, for A = T, K = 1, mm = /T, the estimator (12) is equal to:

1 VT

1 U;(T)
2r J_ 7 '

T

N
e,me § :eZUAj,Teuz/(2T)du, with here A;7 =
7j=1

The variance term in its L2-risk bound is simply (3¢/2)v/T/N +m/N. This suggests the choice
T(N) < N? as adequate.

2.3. Estimation in the case b = o for large T. In the case of large T, with b = o, the
previous discussion indicates that 7 = T(NN) should be proportional to N2. Let us assume, for
simplicity, that

T =T(N)= N2

The discussion also suggests to introduce a new class of estimators defined by
N
R 1 VT A 2o
frlz) = — / e = 3 giudis u/ gy,
2 J_ N =
based on the observed processes

Uj(7)

(14) Ajr= , 7 €[0,N?].

Then, we proceed to build an adaptive choice of 7, among the integer values {1,..., N?}. Note
that the class of estimators ( fT) presents a non standard feature as the parameter T appears
not only as a cut-off parameter for deconvolution but also inside the integral. The following risk
bound holds when 7 is fixed.

Proposition 3. Assume (H1), b =0 and 7 < T(N) = N2%. Then,
R 1 . o= L
B~ P < 5 [ P Y (14 [ etao).
27 Jul> 7 N 0

Let f7 be such that ff = f*I_ 7 7. The bias term above is:

_ QZL * 2
I =l =g [ 5P

Regularity spaces usually considered in deconvolution setting are Sobolev balls defined by:
(15) Cla.L) = {f € (L NLA®), [(1+ )| () du < L),

Clearly, if f belongs to C(a, L):

1
> | () Pdu < (L/2m)r°
27 Jjul> 7

Thus, the bias-variance compromise is obtained for 7 of order N2/(2a+1)  The resulting rate

is proportional to N—2¢/(2¢+1) " Evidently, as a is unknown, this choice of 7 cannot be done.
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Therefore, we now define the data-driven selection of 7. With x a constant to be specified later,
let

(16) pen(k) =k

N ?
and
no_ P A2 _ P A2 _
a1 o= max (Ifine— fll* —pen(k) = max (I1f; — fil” ~pen(h))
where ()1 = max(z,0).
Now define
(18) 7T = arg 1<11Tr1g]1\[2 {FT + pen(T)} .

As in Goldenschluger-Lepski method (see reference [9]), I'; is a data-driven estimation of the
bias term | f — f,||* while pen(7) corresponds to the variance term. The choice of 7 is thus done
to minimise the bias-variance compromise.

Recall that f; is defined by f7 = f*I_ 7 /7.

Theorem 1. Assume (H1), b= 0 and T(N) = N2%. For k > 12 fol ¢”’ dv /7 (~ 5.58), we get

!

B~ 1P < int (1f; = fIP +pen(r)) + 5

where C' is a numerical constant (C =7) and C' is a constant.

Theorem 1 states that the bias-variance compromise is automatically achieved by the adaptive
estimator f+ without knowledge of the regularity of f.

The condition T'(N) = N? may appear rather strong, but can be weakened if some knowledge
on the regularity of f is available. For instance, assume that f € C(a, L) with a > 2. Then the
optimal 7 has order N2/(2a+1) < N2/5 Therefore, the condition T(N) = N? can be replaced by
T(N) = N?/5.

2.4. Miscellaneous remarks. The two strategies described sections 2.1 and 2.2 have links.
Under (H1) and (H4), f can be as well estimated using deconvolution as follows:

N

™m N
(19) fg) (:L') _ 1/ e—iuzi Z eiuAj’Tdu _ i Z Sln(ﬂ-m(A]}T - x)) )
- N

27 TN Air—x
=1 =1 T

This estimator corresponds to a kernel estimator as (6) with K (x) = sin(nz)/(wz) (not fulfilling
(7)) and bandwidth A = 1/m and is also a possible estimator of f in the special case b = o. The
risk is then bounded as follows.

Proposition 4. Consider the estimator given by (19) under (H1) and (H4). We have

22 3
5 B3 _ / * () [2 am. m
(20) W =1 < g [ Irans TR+
Ifb=o

(21) E(I£2) - fII?) < 27r/||> |f* () Pdu + S 1T?/ ] £ (u )lzdu—l—%.
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Compared with Proposition 1, the bound in (20) is analogous to (8). In the special case b = o,
the risk bound of f,(ll) is unchanged.
On the contrary, the bound of f,Sf ) in (21) contains an additional bias term (middle term in the
r.hs. of (21)) which allows to weaken the constraints on 7. For instance, if [ |ul*]f*(u)[?du <
400, which is true if f € C(a, L) for a > 2, the new term is negligible as soon as T > +/N.
Thus, if the regularity index of f is larger than 2, rates of density estimation without noise can
be attained.
If we have no knowledge at all on the behaviour of |f*(u)|?, we can only use that |f*(u)| < 1
and get the order m®/T? which is better than m3/T.

3. ADDITIVE RANDOM EFFECT IN THE DRIFT

We study in this section model (3), under (H1).

3.1. Large time strategy. Relying on Equation (3), we set:

X;(T) ))ds
Zir = j( Tfo = J+/ j(s)v

and define the estimator

N
ONR
(22) = 5 st
where Kj(z) = (1/h)K(z/h), K is C?, integrable, with [ K(u)du =1 and
(23) /K2 )du < +o00, /K” u)du < 400.

The risk of f}(L4) is slightly different than the risk of fh of Section 2.
Proposition 5. Consider estimator f}(f) given by (22) under (H1) and (23). Assume moreover
that o%(z) < 0%, Vz € R. Then

1

(21) BUAY = 111 <207 -l + L5 1 oty L

where ¢ 1s a numerical constant.

The discussion of Corollary 1 can be done here. Consider that f belongs to the Nikol’ski class
N(B, L) and that the kernel has order £ = | 3] with [ |z|°| K (x)|dz < +oo. If we impose that h o
N~V B+ we get a rate proportional to N~26/(26+1) plus a term of order N°/(26+1) /72 1f T2 >
N@B+5)/R6+1) - then N5/(26+1) /72 < N=26/(26+1) " This constraint holds for any nonnegative (3
if T > N®2. Note that this constraint is weaker than for f}(Ll) and the result holds under weaker
assumptions for the model.

3.2. Fixed step strategy using increments. The method using increments with a sampling
interval A is possible here. Using (3) yields,

Ll o L1 NS W [ otonames)

lg — tk—1 e —te—1 Jyy,
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where t, = kA k=1,....K, T = KA. Let:
N K
A 1 mm A . ﬁf’fk o2(X;(s))ds
fO@) = / et S SO S iz iy Dy,
27 ) NT =i

Note that, in the above formula, we use a "stochastic deconvolution” to build the estimator. The
following risk decomposition holds.

Proposition 6. Consider estimator f,(n5) given above under (H1). Assume moreover that o2(z) <
0?2, Yr € R. Then

R A ™m o, m
B) _ £l12y < || £ — 2 u202/A
E(Hfm f” ) = ||f fm” +7TNT /_ﬂme 1 du+7N

The same discussion as after Proposition 2 can be done here. As above, we can define another
class of estimators depending on a cutoff parameter 7 and build an adaptive choice of it. Let

~ 1 \/F . 1 N . i T 2 X d
f‘r(m) — / e T — ZEZUZj’Te272 Jo 0%(X;(9)) Sdu,
2 —\ﬁ N =
7. X;(1) = X;(0) — [y b(X;(s))ds
1T T T .
We define
: L _ Vi
_ R : _ VE
(25) B = max (|lforr = el ~pEn(k))  with pan(k) = &los(N) 7
Let
(26) T = arg  Jnin {I’T + pen(T)} .

Theorem 2. Assume (H1) and T(N) = N2. Assume moreover that o?(x) < o3, Vx € R. Then

there exists a numerical constant & such that:
I

x _ C
(27) E(1fr — fIP < C_inf (I = fI+ BoR() + 7.

where C is a numerical constant and C' is a constant.

The additional factor log(/V) in the penalty pen is due to the fact that o(z) is not constant.
It implies a logarithmic loss in the rate. More precisely, if f € C(a, L), the infimum in the
right-hand-side of (27) is of order (N/log(N))~2¢/(2a+1) instead of N—2/(2a+1),

If o(z) is constant, this factor log(/N) in the penalty is not needed.

Remark 1. The study of Section 3 can be done under weaker assumptions on o including the
case where a random effect is present in the diffusion coefficient too, say o(x,v) provided that
supy>o E(0?(X;(t),¢5) = of < +o0.

4. DISCRETIZATIONS

In practice, only discrete time observations of (X;(t)) are available. We investigate now this
context and assume that for a small sampling interval ¢, the observations are (X;(kd))1<k<n,
with T'= nd. In estimators of Sections 2 and 3, we replace all ordinary and stochastic integrals
based on the continuous time observations by their usual discrete approximations using the
discrete data. This procedure is classical. To avoid unnecessary repetitions, we only deal with
the estimators built in Section 3.
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We replace the Z; 7’s by the usual approximation:

. 1 n
Zir =7 (Xj(T) - X;(0) - 5};17()9((/1C - 1)5))> ,

and define the estimator based on discrete observations:
N
~(4 1 ~
(@) = N > K (96 - Z],T) :

Analogously, for 7 < T, set:
R 1 [7/4]
Zjr =~ | X;007/0)) - — 3 Z b(X )o) |

T N
Fra(a) = 21 /f _W%Z uZjr 3oz LD 002 (X5 (k=1)8)) gy,
s Nz =

The following proposition holds:
Proposition 7. Assume (H1). Assume moreover that E(d)]z) < 400, 02(x) < 02 for all z and
sup> B[V (X;(s))] < +oo.
(1) Let the kernel satisfy (7) and (23). Then,
£(4 || H 9
(28) E(|fyg — FIP) < 20 = fall® + 55 + e otI1E7 |

where ¢, C are constants not dependmg onT, h,o.
(2) For0<o<1<r,

(29) E(1 s — 11%) < O = JIP + V7 (5 +9),

where C is a constant not depending on T,0.

s+ O I

Let us give some comments on the assumption sup,~, E[b*(X;(s))] < +o0. It holds obviously if
the drift b is bounded. Otherwise, it may be linked with the existence of a stationary distribution
for model (3), but it will be checked directly in the examples below. Repeating all steps of
Theorem 2, we can define a data-driven choice 75 of 7 and prove that the corresponding estimator
f;“; satisfies an inequality analogous to (27).

5. NUMERICAL SIMULATION RESULTS.

In this section, we consider three models of multiplicative or additive form.

Model (1). Geometric Brownian motion:
(30) dX;(t) = X;(t)(¢;dt + cdW;(t)), X;(0) = 27 > 0.
Then, X;(t) = exp(Y;(t)) with dY;(t) = (¢; — 0?/2)dt + odW;(t).
For this model, we use exact simulations for N' = 50 and T" = 300 or N = 200 and 7" = 300,
with o = 1, 7 = 1. The distributions of the random effects are: Gamma I'(3, 0.1), where 3 is
the shape parameter and 0.1 the scale parameter, mixed gamma 0.3 I'(3,0.1) + 0.7 I'(15,0.1),
and Gaussian N(1,0.22).

The computation of the kernel estimator is fast as we only need the terminal variable U;(T),
which has an explicit form for model (1). The bandwidth is selected by the R-function density,
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Kernel estimator Deconvolution estimator
A 1 ~
X f2
N =50, T =300 N =200, T =300 N =200, T = 300

FIGURE 1. Model (1), Geometric Brownian Motion with distribution of the ran-
dom effects: Gamma (first line), mixed gamma (second line), and Gaussian (third
line). Estimated density for 25 independent samples in thin green: kernel estima-
tor (first two columns) and deconvolution estimator (last column). True density
in bold black. Estimated density for one sample of (¢;)’s directly observed with
standard kernel density estimator in bold dotted red.

with a Gaussian kernel. The bandwidth A is selected by cross-validation. The deconvolution-type
estimator f; is computed, with constant x calibrated through preliminary simulations to x = 150.
Results are illustrated in Figure 1 which represents variability bands for the two estimators. The
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log-normal mixed gamma mixed Gaussian

1.0

0.5

FIGURE 2. Model (2), multiplicative Ornstein-Uhlenbeck process with distribu-
tion of the random effects: log-normal (first column), mixed gamma (second

column), and mixed Gaussian (third column). Kernel density estimators ( f,(ll))
for 25 independent samples in thin green. True density in bold black. Estimated
density for one sample of (¢;)’s directly observed with standard kernel density
estimator in bold dotted red. N = 200, T = 400.

first column gives 25 estimated densities with N = 50, T" = 300 for the kernel estimator. In
the last two columns, we have N = 200, T = 300, for the kernel (column 2) and the deconvolu-
tion (last column) estimators. Clearly, increasing N improves the result as expected. Note that
the methods work well even for T'/N not very large. Looking at the last two columns, we see
that the deconvolution method seems less biased but with a greater variability than the kernel
method. Especially, for a bimodal distribution, the deconvolution methods works well, even bet-
ter than when the individual parameter ¢; are directly observed (dotted line). Nevertheless, the
deconvolution method is more time consuming as we need to compute all the U;(7) for 1 <7 < T.

Model (2). Ornstein-Uhlenbeck process with multiplicative random effect:
(31) dX;(t) = ¢; X;(t)dt + odW;(t), X;(0) = 2.

This model satisfies (H1)-(H2) but not (H4). Nevertheless, it is a classical model. We use the
explicit solution:

t
X;(t) = ale? + oe¢ft/0 e~ dW;(s).

We use exact simulations of the X;(kd) with § = 0.01, for N = 200 and T = 400, with o =1
and 27 = 0. The distributions of the opposite of the random effect —¢; are: log-normal from
normal distribution A'(1,0.12), mixed gamma 0.3 T'(3,0.08)+0.7 I'(15,0.07), and mixed Gaussian
0.5 N(0.5,0.25%) 4+ 0.5 N'(1.8,0.25%).

To compute the kernel estimator f}(Ll), we replace U;(T) and V;(T) by their usual discrete
approximations using discrete data X;(kd). The method works well as illustrated by Figure 2
where 25 estimated densities are plotted. Indeed, the graphs are comparable to those obtained
from a sample of directly observed ¢; (bold dotted curves). Again, T'/N need not be very large.

Model (3): Ornstein-Uhlenbeck process with additive random effect:
(32) dX;(t) = (¢j — X;(t))dt + cdWj(t), X;(0) = a7,
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log-normal mixed gamma mixed Gaussian

1.0

00

05

FIGURE 3. Model (3), additive Ornstein-Uhlenbeck process with distribution of
the random effects: log-normal (first column), mixed gamma (second column),
and mixed Gaussian (third column). Estimated density for 25 independent sam-

ples in thin green: kernel estimator ( f,(fg, first line) and deconvolution estimator

( f7~—575, second line). True density in bold black. Estimated density for one sample
of (¢;)’s directly observed with standard kernel density estimator in bold dotted
red. N =200, T = 400.

The solution is:
t
X;t)=ale "t +¢;(1—e ")+ Je_t/ e*dWj(s).
0

Hence,
2
E(X2 ()¢5 = 9) <3 + 97 + 2

Provided that Egb? < o0, E(ij(t)) < 3((29)% + IEQS? + 02). All assumptions of Section 3 are
satisfied. For this model, we use exact simulations of the X;(kd) with § = 1 for N = 200
and T = 400, with ¢ = 1 and 2/ = 0. The distributions of the random effects are: log-
normal log N'(1, 0.1?), mixed gamma 0.4 T'(3,0.08) + 0.6 I'(30,0.035), and mixed Gaussian
0.5 N(0.5,0.25%) + 0.5 (1.8, 0.25%).

The computation of the kernel estimator fh 5 only requires the discretized terminal variable

Z . while the deconvolution-type estimator fTé s requires all the variables ZJ ;for1 <7 < N2,
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see Proposition 7. The deconvolution-type estimator f’;&(g is computed with constant & calibrated
through preliminary simulation experiments to & = 10.

Figure 3 (25 estimated densities) illustrates the kernel method (first line) and the deconvolution
method (second line). The deconvolution method has a great variability but captures well the
two modes of the bimodal distributions. On the contrary, the variability band for the kernel
estimators is thiner but seems to miss the height of the two modes.

6. MODEL PROPERTIES.

In this section, we detail some properties of model (1), give some interpretations of our as-
sumptions and look at links between model (2) and (3).

6.1. Existence and uniqueness of strong solutions. We consider N real valued stochastic
processes (X;(t),t > 0), j = 1,..., N, with dynamics ruled by (1) where ¢; are R-valued.
Consider the assumptions

(A) The functions (z, @) — b(z, ) and (x,¢) — o(z, ) are C! on R x R?, and such that:
3K > 0,Y(z, ) € RX R, |b(x, )| + |o(z,9)| < K(1+ |z] + [¢]).
(B) The functions (z,¢) — b(x,¢) and (z,p) — o(z, ) are C' on R x RY, and such that:

(@, ) + log (2, 90)| < L), [0, (x, )] + |oj(x, 0)| < L(w)(1 + |2]),

with ¢ — L(p) continuous.

Under (A) or (B), for all ¢, and all 27 € R, the stochastic differential equation
2 e i i ;
(33)  dXPTO) =X (0.0t + o (XE (). ) aW(h), XPT(0) =

admits a unique strong solution process (Xf’xj (t),t > 0) adapted to the filtration (F3,t > 0).
Let C(R*,R) be the space of continuous functions on R™, endowed with the Borel o-field asso-

ciated with the topology of uniform convergence on compact sets. The distribution of X;.D’x] ()
is uniquely defined on this space. Now, we can state:

Proposition 8. e Under (A) or (B), for j = 1,...,N, equation (1) admits a unique
solution process (X;(t),t > 0), adapted to the filtration (F; = o(¢j, Wj(s),s < t,j =
1,...,N),t > 0) such that the joint process ((X;(t),¢;),t > 0) is Markov and there
exists a measurable functional

(34) (p,z,w) € (REx R x C(RT,R)) — F(p,z,w) € C(R*,R)

such that X;(.) = F (¢, 27, W;(.)).
Given that ¢; = ¢, the conditional distribution of (X;(t),t > 0) is identical to the distri-
bution of the process (Xf’x] (t),t >0).
The processes (X;(t),t >0),j5 =1,..., N are independent.

o Under (A), if moreover, for k > 1, E(|¢;|?*) < oo, then, for all T > 0, SUPye[o,7] E[X; ()% <
00.
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6.2. Assumption (H4). Let us discuss some implications of Assumption (H4). Under (H4), the
function b%/0? is non null. If we combine (H4) with the assumption that 0 < o2 < o%(z) <
0?,Vr € R, then, we can assume that both b and o are positive and satisfy:

(H5) (1) 0<co<b(x)/o(x)<ec1, (i) 0<og<o(x)<o,VreR.

Proposition 9. Let X; be given by (2), X;(0) = z;, j =1,...,N under (H5). Then, the process
X, is transient in the sense that:

P( lim_Xi(t) = +o0) =B(¢i >0),  P(lim_Xi(t) = —oc) = P(¢; < 0).

t——+o0

6.3. Links between the multiplicative and the additive model. In some cases, the mul-
tiplicative model can be transformed into an additive model by a change of function.

Proposition 10. Assume that the drift function in model (2) is C* and satisfies, for some

positive constant by, b(x) > by for all z, and set F(x) = [ du/b(u). Then the process Y;(t) =

F(X;(t)) satisfies

W0 ()
2070 F-1(Y; (1))

oo F-L(Y;(t))

dY;(t) = (¢, dt + ———————=dW,(t
J() ((;5] ) +bOF_1(Y}(t)) ]()
The result follows from a standard application of the It6 formula. Consequently, (2) can be

treated as (3) after the change of function when b(-) is lower bounded b y a positive constant.

7. CONCLUDING REMARKS

In this paper, we consider N ii.d. processes (X;(t),t € [0,T]), j = 1,...,N, where the
dynamics of X; is described by a SDE including a random effect ¢;. The nonparametric density
estimation of ¢; is investigated in two specific models ((2)-(3)) where the diffusion coefficient
does not contain the random effect. The drift term is either multiplicative (b(x, ) = pb(zx)) or
additive (b(z,p) = ¢ + b(z)). We build kernel and adaptive deconvolution-type estimators and
study their L?-risk as both N and T' = T'(N) tend to infinity. Under the theoretical condition that
T(N)/N tends to infinity rather fast, the estimators attain the usual optimal rates. Nevertheless,
numerical simulation results on several models show that, in practice, T'(N)/N needs not be very
large. Extensions of the present work to models with a more general drift are on going work.

8. PROOFS

8.1. Proof of Proposition 1. Classically,

E(If—F01% = If —EGE)I2+ENAY —EGED)12)
(35) < 20f = full® + 20 fn — EGOIP + EN A - EG)P).
The last term is the usual variance term and is bounded by
. . 1 K?
(36) B/ - BGIP = 5 [Vartste - Avaae < L2

The first term is a usual bias term. The specific term is the middle one. We note that fj,(x) =
E(Kp(xz — ¢1)) and we apply the Taylor Formula with integral remainder:

_ 1
Kh(.%' — Al,T) — Kh<1' - ¢1) = W/O K, (flL(x - (bl + u(¢1 - Al,T))) du
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which yields

Ifa —EG? = / (E(Kn(z — Avr) — Kn(z — ¢1)))* do
§ /E [(Kh(l' — AI,T) — Kh(l‘ — (Jsl))z} dl‘

_ E [/ (Kn(z — Avp) — Kn(x — 61))° d:r]

2
< o [EP@dEG - A = / <K'>2<y>dyE<<Aél<(§>)> )
1 , 2
= h3 (K)Q(ZJ) QT%

since under (H4),

(L(T)?Y 1 L
EQW@W>ST%MMMﬂm§T%.

8.2. Proof of Proposition 2. Since E(ﬁ(r?)) = fm, we have
(37) E(If = F$N%) = 1f = fll® + B fn = F21P)-

As || fm — AT(,?)HQ = 2n) Y fr - (ﬁ(,f))*HQ, and the random vectors (Uj ;)1<k<k are independent
and identically distributed for j = 1,..., N (see (11)), we get

2
N K
A~ 1 Tm 1 U u2 . u2
E(|fm = f2NP) = 27r/ E(NKZ g (eUikew™/B — E(e™Uiken™/(2A))) )du

1 1 &
= — Var Zei“Ulv’“eUQ/(ZA)> du

m k=1
1 ™ & Uy, iul 2/A
(38) = / cov(e™VLE e YL ) e 2 du.
oNKZ | ka1

Looking at (11), we can see that, for k = &/,
COV(eiUUl’k,emUl’k/) -1 |f*(u)|2e—u2/A
and for k # k/,
COV(eiUUl’k7€iUU17k,) — (1 _ |f*(u)’2)efu2/A'
Plugging this in (38) yields

_ i@ A(m) = m
(39) E(lfm — fi ") < J7 +

where

1 T™m
A(m) = 27T/ e’ /2 du.

Plugging (39) into (37) gives (13).
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We now bound A(m). First
mm/VA mm/VA
A(m) = \/E/ e dv < @ (e —i—/ e”2d11> .
T Jo 1

oo
Integrating by part and using that v — eV’ /v? is nondecreasing for v > 1 imply
mm/vVA v?2 ﬂm/\/Z 1 Wm/\/z d
/ 6”2 dv — e + = / 6”2 av
1 2v 2 1 U2

@eﬂm% _ ¢

\V)

™m
Therefore we get

™ m™m

A(m) < @ <\/Z67r2m2/A + ;) )

As fr = L rmmm)s If = fmll? = (2m)~! f|u|>7rm | f*(w)|>du, which ends the proof of (13) and
thus of Proposition 2. O -

8.3. Proof of Proposition 3. The proof is close to the one of Proposition 2 and simpler. The
following decomposition holds:

HfT - f”2 = ”]ET - fT”Q + ”fT - f“2

Then,

. 1 VT , )

- 2y wAy, u?/(271)
E(|fr = f-11) 5N /ﬁVar <e e )du,
where ' .
Var (e A1) =1 — | f*(u)[?e /7.
Hence,
1
2 —u?/T\ u?/T < \/7- / v?

(10) Bl £ = oo / WP e Yo [ e

8.4. Proof of Theorem 1. We have the successive decompositions
52 = FI < 301 = Fone I + lfone = FolP+ 167 = £17)
and
e = Foncl® = IIfs = FrlPLons
= (Ifs = Fo1? = pen(#)) Trzr + pen() Lz,
< T'. +pen(?)
ferr = Fol? = I1fs = FlPToer
= (Ifs = Fo? = pen(n)) Trss + pen(r) T,
< T + pen(7).
This yields
3(I'7 + pen(?) + Iz + pen(r) + || /- — f)
6(T- + pen(r)) + 3 f- — fI|.

I1f = f1?
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Then, for k > 7:
Ife = £l < 3(1F = £+ 1 — full® + 11fx — £21I)

Note that
1 *
o= P = 5ol £ = o [ £ ()Pl
U VT<|u|<VE
1 *
< oo Ir@Pdu= - P
T

lul>v/T
Moreover, as the Fourier transforms of fT — fr and f — f; have disjoint supports,
HfT - f”2 = HfT - fTH2 + HfT - fH2
It follows that, for k > 7:
1 fe = FrI* < 301 fk = Fill® + 1 = 1),
which in turn implies that

P <3 max (|fi — fill* — pen(k)/3) + 3> — £

Therefore, gathering inequalities, we get

I£7 = fII* <18 Dnax, (Ifx = fill® = pen(k)/3) + 6].f- — fII* + 6pen(7)

and
N2
E(|fz = 1) < 18 E(|fk — fill* — pen(k)/3) + 6E(|| fr — f|I*) + 6pen(r)
k=1
N2 A
< 18 E(||fk — fill* — pen(k)/3) + 6| f- — |
k=1
1 42
+6Hﬁ)7766h)\]/\f; + 6pen(7).
Consequently
. 1+ [Fev’d
E(Hf+—fH2)§6||f7—f\|2+6(1++{2:U> pen(r +182E (1 — fell* — P2

Now, we use the Talagrand Inequality to prove the Lemma

Lemma 1. Under the Assumptions of Theorem 1
N2

> E(|[fx — fill* — pen(k)/3) <

k=1

=l

This and Proposition 3 gives the result of Theorem 1. O
Proof of Lemma 1. We have that ||fi — fxl|*> = SUDtes o ¢]=1 lun (t)]? where S, = {t €

L2, supp(t*) = [-m,m]} and

1 il zuA- u?/(2k) *
o (0) = 5= (0, (e~ 1)) = 2 / ) () du,
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Note that:

- 1 [VE o
EZ: wt( ))) with wt(-ﬁ) = %/_ﬁt*(_u)ezuxeu /(Zk)du

The class of functions {¢1,t € S 7, [[t[| = 1} is uniformly bounded as follows.

VE 1/2

1

||wt||oo < Tﬂ”tH </feu2/kdu> < 4 /6/71' k,l/4 = M
—Vk

By inequality (40), we get that:

E ( sup |uN<t>|2) = E(|fi — filP) < eVR/N = H?,

tES\/p”tH:l
with ¢ = fol ¢’ dv /. At last, let us determine the bound wv.

47 sup  Varyy(A;j)
teS pllt|=1

sup E (// t*(u)t*(—U)ei(”_”)Af’ke(“2+“2)/(2k)dudv>
teS plltl=1

sup <// t(w)t™ (—v) f*(u — v)e(“2+”2+(“_”)2)/(2k)dudv)
teS It =1

IN

IN

1/2
< (/ / (u —v)|%e 3(u+v deudv)
E 1/2
< (MeG / |f*<z>|2dz>
—2vk
< o/mel kA f|| = 4n? v

Thus applying the Talagrand Inequality yields with €2 = 1/2 that:

|1/4 L1/2
E sup  un (B2 —aH? | <Oy [ SOkt L TGV )

where C1, Cs, C3 are positive constants. Thus for pen(k)/3 = 4H?, we get

N2 N2
> E(Ifr — fill® = pen(k)/3) Y E ( sup  |wn(t)? = 2H2>
k=1 k=1 teS plltl=1

Ch Al 1/4 1/4 C
1 1/4_ —Caok —cskt/r) o Ca
N (k e +e ) <5

k=1

IN

We can choose the constant s such that k > 12¢. O
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8.5. Proof of Proposition 4. We have
E(I5D = £17) = B =B + BUED) = fon + fon = 1)
= |fm = FIP+ IE(FD) = full® + B = EFEIP)
The term || fm — f|I* = 5= — |f*(u)|?du is the usual bias term. The additional bias term

||IE(f7(r?)) — fm|? is bounded by
N

¢ 1 o 1 elu up;
IEGD) — fal® = 52 (E(e4m) — B(e™®) ) [Pdu
—m j=1
1 o wAL T iupy 2
= 5/ | (E(e T —e )) |“du

By the Taylor formula,

Thus

Then, under (H4),

We obtain

w2t m?

£(3) 2 o
I ~ fll < 52 5
Using the Parseval equality, the variance term can be bounded as follows

N

R R 1 el uA; uA;
E(IfS -EGDID = S-E / |7 DT — E(AT)) Pdu
—7mm j=1
N
= s ) Ve | vt des

Finally, we obtain the bound (20).

Ifb=o,
" 1 m™m
BUY@) =5 [ e r e au,
27T —7Tm
The risk of the estimator, using repeatedly Parseval equality, is
E(lf = 0% = I = fml® + 1 fm =BG + E(LE - B(FD)?)
1 Tm 2 m
< _ 2, L w0 V2] —u2/(2T) 12 m
< W=t [ 1P 1Pdu+
1 1 m m
(1) < gp [ Rds e [l P

which gives the second bound of Proposition 4. O
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8.6. Proof of Proposition 5. Equations (35) and (36) hold with f}(f‘) instead of f;(bl) and Z 1

instead of A; 7. Now we study || f5 — E(fé4))||2, still considering that fj(x) = E(Kp(x — ¢1)).
We apply the Taylor Formula with integral remainder:

Kh(l’—Zl,T)—Kh(x—qSl) = (¢1_hQZLT)K/ <33—h¢1>

e K O )

Recall that ¢; is Fyp-measurable, thus E((¢ — ZLT)K’(%)) = 0, and we obtain, using succes-
sively the Cauchy Schwarz and the Burkholder-Davis-Gundy inequalities,

15~ BUDIE = [ @~ Zr) - Ko = 60)))?da
< /E [(Kh(x - Z1r) — Kp(x — ¢1))2} dx

- E U (Kn(x — Zv7) — Kn(e — 61))? d:c]
W (s

4
Jy o(x )
< o [P t — )
C T 2
< hST4HK”H2[E [(/0 UQ(XI(S))CLS)]
< =Ko

8.7. Proof of Proposition 6. We know that exp(U;—(U)+/2) is a martingale if U is a martingale
and E(eV)/2) < co. As 0?(z) < o} for all z, this implies that

" kA u2 kA )
exp | 1— o(X;(s)dW (s) + — o“(X;(s))ds
RGO RE e IS VIC)

has conditional expectation 1 given F;_1)a. Since e is F(k—1)a-measurable, we obtain that
2
E (eiuyj,k 6;7 f(IZA—l)A o’ (Xj(s))d5>

_r (aij <eig T2 12 oG (NAW (357 [ 1) 02 (X () f(k_lm>>
= B = ().
Therefore E( fr(,‘? ) (z)) = fm(z) and we decompose the risk in the two usual terms
(42) E(I£ = fI?) = 11 = fml® + EQULD = funll®)-

Then we have to compute

2
IcA

N K
" 1 ™ol o2(X;(s))ds *
(115 = fmll*) = 5 E / e S (e i SiZna NS g

—mm j=1 k=1
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Then using that the terms under expectation are centered, we compute a variance with indepen-
dent variables with respect to the index j:

B ~ fnl?) = 5o [

Let us denote by M) = f(l]iél)Aa(Xl(s))dW(s) and (M), = f(k 1a 0°(X1(s))ds. Now, for
k < {, by conditioning as follows:

cov (ez‘u<¢1+Mk)+u2 (M)x/2, eiu(¢>1+Mz)+u2<M)z/2)

K 2

u2
1 Z(eiquem f(lefl)A o?(X1(s))ds _ £ ()
k=1

du.

— E <eiuMk+u2<M>k/2E(eiuMg+u2<M>e/2‘:Ir(é_l)A)> )2

we get that
cov (ez‘u(¢1+Mk)+u2<M>k/27 eiu(¢1+Me)+u2<M>f/2> =1—|f* ()%
We obtain
v 02X ()
£(5) 2 - = - o2 s * 2 o * 2
E(lfz = fml®) = 5 & kZeAz (oA 0 (X £ )| )+g‘;(1 |7 () ]?)

<

™ 242
2 -
27rNK/ ¢ d“+N

Gathering the last inequality and (42) gives the result of Proposition 6. O

8.8. Proof of Theorem 2. The proof follows the steps of Theorem 1. We prove that

; VT [ s
E(|fs — £I?) < uf—f;num/0 o .

Then we obtain

~ 1 1U%U2d /vk
B — /1) < 6l — I +6 (1 + ”ﬂr) pen(r) + 182E (1~ 5ul? — 22,

Then we have to prove
N2 _
= , pen(k) '’
— _ VN <« 22
];E(ka fell 3 ) <N
To this end, we define
N ~ ~ k
Z wldin) ~ Bn(A0) with Ay = (Zias [ o (9)ds)
j=1 0

and
vk

1 *k Lux
wt(l‘ y) 27_[_ /\/Et (—u)e + k2ydu IO<y<0'2k
We find [|¢)y]|oo < M := /et /mk!/4,

< sup |17N(t)\2> < &Vk/N := H?

€8 =1
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with ¢ = fol 1 dv /7. The difference with the proof of Theorem 1 is that, here, we get nothing
better than ¢ := NH?. This is why we take ¢ = 3log(N)/K; in the Talagrand Inequality.
Then, choosing pen(k)/3 > (1 + 2€2)H? gives the result and the value of the constant &. O

8.9. Proof of Proposition 7. For the fisrt point, the proof is very close to the one of Proposition
5. The only difference is that the bias term includes an additional term due to the approximation
of Z;r by Z; . We have:

. . T — 7.
Kz — Zjx) — Kn(o — Zjz) = =24 ]T/ K5 JT+U}(L 2L J’T))du.

Using the Cauchy-Schwarz inequality, we get:

7 )2
/da; (E(Kh(:c ~Zjr) - Kl — Zj,T))>2 < E(Z]’Thg Zir) /(K,(y))Qdy-

It remains to study

Ty Z/ ) B (5 = 1))

Using again the Cauchy-Schwarz inequality and the fact that b is Lipschitz, say with constant
L, yields:

BZir— 70 < 23 [0 (x X;((k—1)5))*d
Ga=aP < T3 [ O =Xk~ DO b
As . .
X506 = (=10 = [ (@4 b dut [ o)W (),
(k=1)6 (k—1)8
we obtain:

E (X;(s) — X;((k — 1)8))* < 46*(E¢? + s1>118E[b2( i(8))] + 2607

Thus, E(Z;1r — Z 7)? < C§ for some constant C' which depends neither on 7' nor on 6.
Second we have

E(|frs — fI?) < 2E(| frs — F-I%) + 2E(|fr — FII%)-

Thus, we only deal with the additional term:

E(|| frs — fII?) < zi / VT et i S 2 60 _ 35 I 0502,
—\/T

For § <1 < 7, we can prove as above:

[7/9]

E(Z1, — Z1.,) + %E(Z 6% (X1((k —1)8)) — /OT o2(X1(s))ds)? < C6
k=1

for some constant C' which depends neither on 7 nor on §. Therefore,
.5 w2 T . w2 - 4
E|6mZ1’T+27—72 ZL:/f] 602(X1((k71)6))) . e’L’lLZ177—+ﬁ fo UQ(Xl(s))dS|2 < 05(6u2g%/7 i 4u 262u20%/7)7
T

which, integrating with respect to u, gives the result. O
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8.10. Proof of Proposition 8. . Consider the two-dimensional SDE:
AX;(t) = BXG(0), 65Dt + o(X;(1), &y (D)AWi(D),  X;(0) = aF,
do;(t) = 0, ¢i(0)=¢;.
This clarifies the Markov property of the joint process (X;(t), ¢;) once we have proved existence

and unicity of a strong solution. Moreover, the random effect ¢; thus appears as an unobserved
initial condition.

e Assumption (A) standardly implies that the above two-dimensional SDE admits a unique
strong solution and that there exists a functional F such that X;(.) = F (¢, 27, W;(.))
where F : R x R x C(R*,R) — C(R*,R) is measurable (see e.g. Karatzas and
Shreve (1997) p.310).

The joint process ((X;(t), ¢;(t) = ¢;),t > 0) is Markov. By the Markov property, for all
¢, 27, the conditional distribution of (X;(t),¢;),t > 0) given ¢; = ¢ is the distribution
of

X9() = F(p.d, Wi()).
As (¢j,W;(.)) are independent, the processes (X;(.)) are independent. As (¢;,27) is the
initial condition, the moment result follows.

e Assumption (A) does not cover the case of (2). This is why we also consider (B). Under
(B), we proceed in several steps which are classically used to prove regularity w.r.t. an
initial condition.

Under (B), for all ¢, equation (33) admits a unique strong solution. Therefore, there
exists a measurable functional

(43) (z,w) € R x C(RT,R) — F(p,z,w) € C(R",R)
such that Xf’xj (.) = F(p,27,W;) is the unique strong solution of (33). Moreover, as the
initial condition 27 is deterministic, it holds that, for all integer & > 1 and all 7' > 0,

E sup (X]‘-P’xj ()% < +o0.
t€[0,T]

We now prove that (43) is measurable as a function of (¢, z,w.).
Step 1
Let H be a compact subset of R¢, we prove that for all 27 € R and all T > 0,

(44) sup E(sup (X (u))?* := O(T, H) < +oo.
® us

By equation (33), for all p € H and ¢t < T,

. . t . t .
XOT () =l + /0 (X" (5), ¢)ds + /O F(XP (s), 0)dW;(s)
By (B), we have, for all ¢, z and k > 1,
V*(x,0) + o (x,0) < Lk, ) (1 + "),

where ¢ — L(k, ) is continuous. To ease notations, let us set, X (t) = Xf’xj (t),z = 7.
We proceed as in Tkeda and Watanabe (1981, Theorem 2.4, p.163). Using the Holder
inequality, the Burholder-Davis-Gundy inequality, we get

Esup(X (u)? < C(k)(«® + Lp(k, ¢) /O t(1 + Esup(X (u))?*)ds,

u<t u<s
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(45)
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where C'(k) is a constant and ¢ — Lz (k, ¢) is continuous. We conclude by the Gronwall
lemma that, for all t < T,

Esup(X (u))* < Cr(k, @),
u<t

where ¢ — Cp(k, ) is continuous. Thus, we get (44).
Step 2
We prove that

J
p— X77()

is continuous as a function R? — C(R* R).
Let H be a compact convex subset of R? and set, for ¢, ¢’ € H,

/ p,l o @l 2k
Si(e:¢) = Esup <Xj (u) — Xj (U)) :

We have:

Xpe0 = X7 0 = [ (WX (5)0) =0T ), )) s

t . L
[ (o077 90) = o057 (5).)) W o)
By (B), we have for s < T,

(X (5),0) — BXE" (), )] + o (X2 (5),0) — o (X (5), )]

J ! xd ! I
< L(y) <|va’” (s) = X7 () + o = ¢I(1 + SQI%IX}” * (U)!)>
us

Now, we proceed as in Step 1. We use the Holder inequality, the Burkholder-Davis-Gundy
inequality, the result (44) of Step 1 and finally the Gronwall lemma to obtain that, for
allt <T,

Si(e,¢') < o — ¢ [**Cr(k, H),
for (another) constant Cp(k, H). Now, choosing 2k > d, we can conclude by the Kol-
mogorov continuity of sample paths theorems (see e.g. Revuz and Yor, 1991, Theorem
2.1, p.25), that
wr(8) = sup sup | X7 () — X7 (1)
o' €H t<T
tends to 0 a.s. as J tends to 0. This gives (45).
Step 3
As (43) is measurable for all ¢, Step 2 standardly implies that

(g, z,w) €RY xR x C(RY,R) = F(p,z,w) € C(RT,R)

is measurable.
The conclusion of Proposition 8 follows.
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8.11. Proof of Proposition 9. For the proof, we omit the index j in the notations. Consider
a fixed value ¢ > 0 and introduce the process Yy(t) given by:

dYo(t) = poocodt + o (Yo(t))dW(t), Yo(0) =

As p > 0, pb(z) > pogcpy for all z. By the comparison theorem for one-dimensional SDEs (see
e.g. Ikeda and Watanabe 1981, p.352), it holds that X% (¢t) > Yy(¢) for all ¢ > 0. Thus,

XPT(t 1/t
0> Tt / 7 (Yo()dI ()
0
t
a o Be0RE)AW ) Jo(s)ds
t fo 02 Yo ))ds t
As fo o(s))ds > agt, [, 52 (Yy(s))ds = 400, s0
))dW (s
fo ()—> ,  as.
fo ))ds
t x
As0 < M < 02, we deduce that, a.s., liminf, ., « XW; ®) > pogco, hence limy_, oo X¥*(t) =
+00.
Analogously, for ¢ < 0, P(limy_ 1o X?%(t) = —o0) = 1. For ¢ = 0, X%%(.) is a martin-

gale such that < X0% >, = OJFOO o(X%%(s))ds = +oc a.s.. Hence, P(liminf; oo X"%(t) =
—o0, limsup,_, ; .o X**(t) = +00) = 1. Noting that

P( lim X(t) = +00l¢ = ¢) = P( lim X?*(t) = +00) = 1150,

we get that
P( lim X(t) = 4o00) =P(¢ > 0).

t——+o0

The other property follows analogously. O

8.12. Talagrand Inequality. The following result follows from the Talagrand concentration
inequality given in Klein and Rio (2005) and arguments in Birgé and Massart (1998) (see the
proof of their Corollary 2 page 354).

Lemma 2. (Talagrand Inequality) Let Y1, . ..,Y, be independent random variables, let vy, y (¢) =
(1/n) >0 [ (Y:) — E((Y;))] and let F be a countable class of uniformly bounded measurable
functions. Then for € >0

4 v 2 nH? 98 M2 _ 2K10(®)e nH
E[ 2_92(1 22H2] < | ZeKe= T i M|
ilelf;_|7/n,Y(¢)‘ (L+2)H7] < =1 5¢ T Kz (@)”

with C(e2) =1+ €2~ 1, K1 = 1/6, and

n

1
sup [|¢loc < M, E[sup \un,y(w)\} < H, sup — ZVar(w(Yk)) <w.
YeF YeF peF N —

By standard density arguments, this result can be extended to the case where F is a unit
ball of a linear normed space, after checking that f — v, (1) is continuous and F contains a
countable dense family.
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