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Macro-Continuous Dynamics For Hyper-Redundant

Robots: Application to Kinematic Locomotion

Bio-Inspired by Elongated body Animals
Frédéric Boyer, Shaukat Ali, and Mathieu Porez

Abstract—This article presents a unified dynamic modeling
approach of (elongated body) continuum robots. The robot is
modeled as a geometrically exact beam continuously actuated
through an active strain law. Once included into the geometric
mechanics of locomotion, the approach applies to any hyper-
redundant or continuous robot devoted to manipulation and/or
locomotion. Furthermore, exploiting the nature of the resulting
model as being a continuous version of the Newton-Euler model
of discrete robots, an algorithm is proposed which is capable of
computing the internal control torques (and/or forces) as well
as the rigid net motions of the robot. In general, this algorithm
requires a model of the external forces (responsible for the self
propulsion), but we will see how such a model can be replaced
by a kinematic model of a combination of contacts related
to terrestrial locomotion. Finally, in this case, that we name
"kinematic locomotion", the algorithm is illustrated through
many examples directly related to elongated body animals such
as snakes, worms or caterpillars and their associated bio-mimetic
artifacts.

Index Terms—Beam theory, bio-inspired locomotion, contin-
uum robots, geometric mechanics, hyper-redundant robots, kine-
matic constraints, Newton-Euler dynamics.

I. INTRODUCTION

Engineers have always been inspired by nature. In the

beginning of robotics, robots resembling to human arm were

designed using discrete mechanisms devoted to the manip-

ulation tasks of industrial manufacturing processes. These

discrete mechanisms consist of serial chains of rigid bodies

connected by lumped degrees of freedom (DoFs) and are today

included into the wider class of multibody systems. With the

passage of time, the researchers in this field started developing

mechanisms with more and more DoFs, thus introducing a

new generation of robots called as hyper-redundant robots

(HRRs) since they may be considered as having an infinite

degree of redundancy with respect to the six dimensional

task consisting of moving a rigid body in space. In case of

locomotion, these systems are usually inspired by vertebrate

elongated body animals such as snakes [1] and anguilliform

fish [2], where the vertebrae correspond to the rigid bodies

of the associated multibody system. From this point of view,

these animals can be effectively considered as continuous, the
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european eel having more than 130 vertebrae, while some
species of big snakes have more than 500. Nowadays, thanks to
the research on bio-mimetic robots, the concepts of continuum

robots and soft-bodied robots are extending robotics even

further. In fact, unlike traditional robots, these robots, inspired

by the invertebrate organisms known as muscular-hydrostats,

do not contain any rigid organs. Also, their shape changes

are continuous along their body length similar to that of an

elephant trunk [3], the mammalian tongue [4], caterpillars

[5], earthworms [6], octopus arms [7] etc. Finally, all these

systems today form the general class of continuous-like robots.

Regarding their potential impact, let us first note that using the

same single chain morphology, elongated body continuous like

robots would offer a wide spectrum of applications ranging

from manipulation to locomotion on earth as well as in water.

Moreover, once connected to a discrete mechanism, they could

be used as versatile manipulators as well as grippers. Finally,

due to their slender morphology, they could play a crucial role

to achieve rescue missions in unstructured, highly cluttered

and confined environments e.g. collapsed buildings, narrow

spaces etc.

With the progress of these researches, the extension of the

basic robot models (geometric, kinematic and dynamic mod-

els) to these new systems became a crucial step towards their

future success. Regarding this point, several researchers have

done extensive work related to HRRs or continuous robots

in order to investigate the usual problems of robotics such

as motion planning, gait generation, kinematic and dynamic

modeling, design and control etc. We refer the reader to [8]

which surveys the state of the art on soft robotics. Historically,

the initiative was undoubtedly taken by Hirose through his

pioneering work related to the design and control of snake-

like devices [1].

Based on these seminal works, many contributions to kine-

matic modeling have been proposed [3], [9]–[12]. Concerning

dynamics of continuum robots, a few works on this topic have

been proposed [13]–[16]. In fact, the existing approaches can

be categorized into two main sets depending on whether the

robot is considered as a multibody system with a large number

of DoFs [17], [18], or directly as a continuous deformable

medium. In the first case, the modeling is facilitated by the

fact that mathematical tools from usual discrete robotics are

already available. On the other hand, adopting a continuous

model from the beginning can greatly facilitate the formula-

tion, analysis and resolution of the robotics problems related

to manipulation [15], [19] and locomotion [1], [10], [20].
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However, applying this second type of approach necessitates

giving a material reality to the continuum kinematics. For

instance, the backbone curves of references [9], [10] have to

be completed with a material lateral extension enabling the

inertia of the robot to be defined as achieved in [15], [19] for

planar robots. Alternatively, the Geometrically Exact Beam

Theory (GEBT) of J.C. Simo [21], [22] has been used for the

modeling of passive steerable needles in the context of medical

robotics [23],[24], while in [8] and [25], it has been applied

to the real soft robot OctArm [26]. In the GEBT, a beam is

modeled as a one dimensional Cosserat medium [27], i.e. a

multibody system made of an infinite number of rigid bodies,

or cross sections, of infinitesimal length assembled along the

line of their centroids, each cross section being able to move

with respect to the others due to some strain time-variations.

Starting from this point of view, in [2] a continuous eel-

like robot is modeled as a strain (curvature) - actuated ge-

ometrically exact beam. Pursuing a macroscopic modeling

approach, each Cosserat cross section of the actuated beam

mimics a vertebra of the animal (here the eel), while the

imposed strain law models the actuated infinitesimal joints

of the corresponding continuous rigid robot. Once related to

the general theory of locomotion on principal fiber bundles

[28], such a model can be used to solve the following two

problems both using the curvature time law as control input:

1) compute the control internal torques (and/or forces), i.e.

solve the inverse torque dynamics. 2) compute the net motion

of a reference cross section (for instance attached to the head)

propelled by the external forces exerted by the surroundings

(i.e., solve the forward locomotion dynamics). The approach

was termed macro-continuous since, like the Variable Geom-

etry Truss evoked in [19], it is suitable for modeling hyper-

redundant robots at a macroscopic scale where they can be

approximated as a beam. It is naturally adapted to the highest

levels of the mechanical design as well as the generation of

complex gaits involving a lot of DoFs as this is usually the

case of HRRs [20].

In the article here presented, we reconsider this approach for

locomotion and extend it to cases where: 1) The configuration

space of the cross sections is an arbitrary Lie group. 2) The

control strain law is arbitrary (curvature, twist, stretching...).

3) The external forces responsible for the propulsion are not

forced to be those produced by a fluid but can be imposed by

the contact with the ground and modeled through kinematic

constraints.

In this case, like discrete multibody systems [29], when the

number of independent constraints is larger than the number of

net motions DoFs, the locomotion dynamics are replaced by a

kinematic model entirely governed by the constraints. Geomet-

rically, these forward locomotion kinematics are nothing but a

continuous version of the finite-dimensional kinematic connec-

tions of nonholonomicmechanics [28], [30]. As a consequence

and contrary to the case of eel swimming, the locomotion

dynamics are not required to deduce the net motions but

are used in their inverse form to compute the resultant and

moment of external forces produced by the contacts. Once

these elements are computed, they are distributed on the

contacts in order to fix a possible set of external reaction

forces and couples which are used in a second step by the

algorithm to compute the internal actuation torques and/or

forces. Finally, the kinematic constraints are deduced from

the model of a few types of contacts, which will allow us to

apply the macro-continuous approach to terrestrial locomotion

of several elongated body animals as earthworms (crawling

worm), inchworms (measuring caterpillars), snakes in planar

and three-dimensional lateral undulations.

This article is structured as follows. In section II, we take

an in-depth look at the parametrization of GEBT particularly,

the strain field definitions and their relation to discrete joint

kinematics. Section III presents a comparative study of the

beam kinematics and HRRs. Based upon the parametrization

of section II, the continuous kinematic and dynamic models

are stated in section IV. In section V, the continuous Newton-

Euler computed-torque algorithm of [2] is presented in a more

general context. In section VI, the common types of terrestrial

contacts are modeled as kinematic constraints. Based upon

the model of contact, a modified algorithm is developed in

section VII. Finally, in section VIII the proposed approach is

illustrated by examples related to terrestrial locomotion robots

bio-inspired by elongated body animals.
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Fig. 1. Frames and parametrization

II. BASIC NOTATIONS AND DEFINITIONS

In the subsequent sections, we use the language of geomet-

ric mechanics [31] as this has already been adopted by [2],

[23], [32] in the context of continuum robots. In this regard,

G ⊆ SE(3) is a n dimensional Lie group of transformations
of the ambient space provided with an orthonormal fixed frame

Fs = (O, ex, ey, ez). The Lie algebra of G is denoted by g and

defined as the space of infinitesimal transformations or twists,

i.e. the tangent space to G at g = 1 endowed with the Lie
bracket [, ]. Introducing the internal product on g, we define g∗,
the vector space of 1 forms on g, or wrenches. Differentiating

the group automorphism h ∈ G #→ ghg−1 at h = 1, gives the
action map Adg of G on g. Then differentiating Adg with
respect to g at g = 1 defines the adjoint map ad(.) of g

on g. Dualizing ad(.) defines the co-adjoint map of g on g∗

while Ad∗(.) is the co-action of G on g∗. See Appendix A for

more usual definition of these operators as well as their matrix

expressions in SE(3).

For any vector V ∈ R
3, V ∧ (or V̂ ) denotes the cross-

product matrix of V while if V = (vT , ωT )T ∈ R
6, then
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V ∧ =

(
ω̂ v
0 0

)
, where ω ∈ R

3 and (V̂ )∨ = V . In

agreement with [2], a hyper-redundant robot may be modeled

by a Cosserat beam in finite 3D transformations and small

strains with the backbone curve of the robot assimilated to

the beam centroidal line. In this approach, each cross section

of the beam (of length l), supposed rigid, is labeled by its
abscissa X in the initial configuration in which the beam is

straight and aligned on (O, ex) (see Fig. 1). At any rigid
cross section X , a mobile orthonormal frame is attached
t #→ Fm(X, t) = (P, tX , tY , tZ)(X, t) whose origin P (X)
and the first vector tX(X) coincide with the center of the
cross section and its unit normal vector, respectively. With this

choice, the configuration of any mobile frame is defined by the

action of an element of g ∈ SE(3) applied to the fixed frame
Fs. It thus becomes possible to introduce the first definition of

the robot configuration space as a functional space of curves

in SE(3), parameterized by the material abscissa, i.e.:

C1 = {g : ∀X ∈ [0, l] #→ g(X) ∈ SE(3)}. (1)

Later, we will introduce a second definition of configuration

space as a principal fiber bundle. The derivative operators

∂(.)/∂X and ∂(.)/∂t will be indicated as a "prime" and a
"dot", respectively. On the robot, two vector fields are defined

in se(3). The first is the time-twist field:

η̂ : X ∈ [0, l] #→ η̂(X, t) = g−1ġ ∈ se(3), (2)

where η(X, t) defines the infinitesimal transformation under-
gone by the cross section X between two infinitely close

instants t and t+ dt. The second is the space-twist field such
that:

ξ̂ : X ∈ [0, l] #→ ξ̂(X, t) = g−1g′ ∈ se(3), (3)

where ξ(X, t) defines the infinitesimal transformation un-
dergone by the cross section X at fixed time t when the
material axis slides from X to X + dX . Now depending

on the considered robot, certain degrees of freedom between

any two contiguous cross sections are actuated while others

are constrained to constant values through the design of

internal joints (that are assumed ideal). Mathematically, this

corresponds to identify ξ̂ to a desired control field explicitly
dependent on the time and noted ξ̂d(t), i.e.:

ξ(X) = ξd(X, t), ∀(X, t) ∈ [0, l]× R
+. (4)

Finally, ξd parameterizes the internal kinematics of the robot,
i.e. the continuous infinitesimal homologous of the usual

internal joints of discrete multibody systems.

III. BEAM-KINEMATICS AND HRRS

We now list the different possible actuations of ξ and

comment their relations to continuum robotics and beam

theory. For this, we start from definition (4) which we detail

as follows:

g−1g′ =

(
RTR′ RT r′

0 0

)
=

(
K̂d(t) Γd(t)
0 0

)
= ξ̂d(t),

(5)

where Kd = (KdX ,KdY ,KdZ) and Γd = (ΓdX ,ΓdY ,ΓdZ).
The components of these two vectors have the following

meanings: KdX is the rate of twist per unit of material

beam length while KdY and KdZ represent the curvatures

of its centroidal line in the planes (P, tX , tZ) and (P, tX , tY )
respectively. In the same way, ΓdX−1 is the rate of stretching
of the centroidal line (see Fig. 1) while ΓdY and ΓdZ are the

local transverse shearing rotations around the axes (P, tZ ) and
(P, tY ) respectively. Now, depending on whether these scalar
strain fields are actuated or not, different cases, relevant to

robotics, are possible, from that where the internal kinematics

are the most actuated to where they are the least actuated as

summarized in table I:

TABLE I
ACTUATED DOFS VS BEAM THEORY

Case Constraints DoFs Beam Theory Remarks

1 No
constraints

06 Timoshenko-
Reissner

Full actuated
beam

2 ΓdY =
ΓdZ = 0

04 Extensible
Kirchoff

Cross
sections stay
perpendicular to
vertebral axis

3 Case 2 with
ΓdX = 1

03 Inextensible
Kirchoff

infinitesimal ver-
sion of a spheri-
cal joint

4 Case 3 with
KdX = 0

02 No
corresponding
beam

In passive beams,
3D bending
always produce
torsion

5 Case 4 with
KdY = 0

01 Inextensible
planar
Kirchoff

Planar case with
Yaw DoF actua-
tion

Remarks:

• Each of these internal DoFs finds an application in nature

for elongated body animals’ locomotion. In fact, one of

the two curvatures KY and KZ actuates the yaw in the

plane of propulsion, while the other actuates the pitch for

complex 3D maneuvers involving the body. The torsion

KX has a direct action on the roll whose control is crucial

to stabilize the orientation of the head of robots bio-

inspired by eels for instance. As for linear DoFs, ΓX

actuates the traction-compression as used by large snakes

while ΓY and ΓZ can be actuated through the movements

of the skin and scales with respect to the backbone.

• A similar relation to (5) exists in the case of any sub-

group of SE(3). Also, in the following, we will consider
(5) with g belonging to any subgroup G of SE(3) of Lie
algebra g.

IV. THE CONTINUOUS MODEL OF HRRS

From now on, go, ġo and g̈o denote the position, velocity
and acceleration of the cross sectionX = 0 onG, respectively.
The continuous dynamic model of a HRR splits into 5 sub-

models detailed in the following subsections.

A. Continuous model of transformations

This is immediately derived from definition (5) of internal

DoFs:

g′ = gξ̂d(t), (6)

with boundary conditions: g(X = 0) = go.
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B. Continuous model of velocities

By taking derivative of (2) with respect to space (i.e. X),
and by invoking (5), we obtain:

η′ = −adξd(t)(η) + ξ̇d(t), (7)

with boundary conditions: η(X = 0) = ηo = (g−1
o ġo)

∨.

C. Continuous model of accelerations

This is inferred by taking derivative of the previous model

(7) with respect to time:

η̇′ = −adξd(t)(η̇)− adξ̇d(t)(η) + ξ̈d(t), (8)

whose solutions are fixed by the boundary conditions:

η̇(X = 0) = η̇o = (g−1
o g̈o − g−1

o ġog
−1
o ġo)

∨.

Remark 3: On reconsidering the continuous kinematic

model (6), it becomes clear that it is always possible to

reconstruct the configuration of the beam from the knowledge

of go and that of the strain field ξd. Thus, a second definition of
the configuration space of a robot can be given as the principal

fiber bundle:

C2 = G× S, (9)

where G stands for the configuration of the head frame, while

S is the shape space here defined as the following functional

space of curves in the Lie algebra:

S = {ξ : ∀X ∈ [0, l] #→ ξ(X) ∈ g}. (10)

In this second definition of the robot configuration space, the

cross section X = 0 plays the role of reference body, i.e.
a body whose motion defines the reference of rigid overall

motions with respect to which the shape deformations are

measured. In bio-mimetics, this reference body is usually

attached to the head of the bio-inspired robot.

D. Dynamics on C1: continuous model of the internal torques

By applying on C1 the Hamilton principle for a continuum
robot subject to a density of imposed external wrenches per

unit of beam length F on ]0, l[ and two punctual external
wrenches F− and F+ imposed on X = 0 and X = l
respectively, one obtains the following Partial Differential

Equations (PDE) [33]:

∂

∂t

(
∂L

∂η

)
− ad∗η

(
∂L

∂η

)
+

∂

∂X

(
∂L

∂ξ

)
− ad∗ξ

(
∂L

∂ξ

)
= F ,

(11)

whose solutions are fixed at each instant by the boundary

conditions:

∂L

∂ξ
(0) = −F− , and:

∂L

∂ξ
(l) = F+, (12)

where the Lagrangian density of a continuum robot has been

defined by L = T−U = (1/2)(ηT (Mη)−ΛT (ξ−ξd(t)), with:
M ∈ g∗ ⊗ g, the inertia tensor density, and ∂U/∂ξ = Λ ∈ g∗,

the density of internal wrenches ensuring the forcing of the

Lagrangian internal kinematic constraints: ξ = ξd(t). Let us
note here that Λ is a field of Lagrange multipliers and that, for
the actuated internal DoFs, the associated multipliers are forces

or/and torques exerted by the actuators while for the passive

DoFs, the multipliers are internal reaction torques or forces.

Note also that with such a choice, the internal kinematics

are assumed to be inelastic and the robot turns out to be a

continuous rigid robot1. Now, if we note ∂T/∂η = Mη the
density of kinetic wrench along the robot, we find:

Mη̇ − ad∗η (Mη)− Λ′ + ad∗ξd(t) (Λ) = F , (13)

with boundary conditions:

at X = 0: Λ(0) = −F− and at X = l: Λ(l) = F+. (14)

Finally, (13) and (14) are considered in the following as the

dynamics of the internal wrenches or more simply as the

"internal dynamics".

E. Dynamics on C2: dynamics of the reference body

The dynamics on C2 are derived from those on C1 by forcing
the virtual and real velocity fields in the Hamilton principle

(which previously led to (13-14)) to verify the following

constraint:

η = Adk(ηo), (15)

where, k = g−1go. Note that, the defined field (15) is simply
the time-twist field on the beam induced by the movement of

the head alone, while the body is frozen in its current shape.

In these conditions, the internal wrenches do not work in such

a field and the balance of virtual work reduces to:
∫ l

0

Ad∗k(Mη̇ − ad∗η(Mη)− F )dX = Ad∗k+
F+ − F−, (16)

where η̇ is replaced by the acceleration field compatible with
(15), i.e.:

η̇ = Adk(η̇o) + adη(Adk(ηo)) +Adk(η
2
o)− (Adk(ηo))

2

= Adk(η̇o) + ζ, (17)

which defines ζ(X) as the material (or body) acceleration of
cross section X induced by the body shape motion and the

movement of the head except for its pure acceleration (i.e. η̇o).
Finally, when the calculations are done and the kinematic

reconstruction equation ġo = goη̂o is taken into account, the
dynamic equations on C2 can be written as:

(
η̇o
ġo

)
=

(
M−1

o (ξd)Fo(ξd, ξ̇d, ξ̈d, go, ηo)
goη̂o

)
, (18)

with: Fo = Fin + Fext, and where we introduced the inertia

tensor of the whole robot reduced to the reference cross section

i.e. in X = 0:

Mo =

∫ l

0

Ad∗kMAdkdX, (19)

as well as the external wrenches, reduced to the reference cross

section:

Fext = −F− +Ad∗k+
F+ +

∫ l

0

Ad∗k(F )dX, (20)

1Alternatively, the model of internal dynamics can be enriched by adding
elastic and viscous terms in U
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and the inertial wrenches reduced to the reference cross

section:

Fin = −

∫ l

0

Ad∗k(Mζ − ad∗η(Mη))dX. (21)

In the following, (18) will be considered as the dynamics of

the reference body net motions controlled by the shape time

variations, i.e. the "locomotion dynamics".

V. DYNAMIC ALGORITHM OF THE CONTINUUM ROBOTS

By defining the kinematic state vector X1 = (g, η, η̇), the
kinematic models (6,7,8) can be easily grouped together into

a single spatial Ordinary Differential Equation (ODE):

X ′

1 = f1(X1, ξd(t), ξ̇d(t), ξ̈d(t)). (22)

Similarly, the internal dynamics (13) can be stated in the form

of the following spatial ODE, of the state vector X2 = (X1,Λ):

X ′

2 = f2(X2, ξd(t), ξ̇d(t), ξ̈d(t)), (23)

with: f2 =

(
f1

ad∗
ξd(t)

(Λ) +Mη̇ − ad∗η (Mη)− F

)
. (24)

Then, the terms appearing in the locomotion dynamics (18)

can also be calculated by spatial integration of a single ODE

of the state vector X3 = (X1,Mo, Fo):

X ′

3 = f3(X3, ξd(t), ξ̇d(t), ξ̈d(t)), (25)

with: f3 =




f1
Ad∗kMAdk

Ad∗k(ad
∗
η(Mη) + F −Mη̇)


 , (26)

where the ζ of (21) can be replaced by η̇ in (26) if the initial
spatial conditions of (25) verify η̇(X = 0) = η̇o = 0. In fact,
in this case (17) shows that ζ = η̇ all along the beam. Finally,
as we will now see, in every case the algorithm integrates (25)

in these conditions, so that (26) makes sense.

All the above ODEs form a general algorithm as shown in

Outputs

Acc. Velocity Config.
Internal forces

Inputs:

Block2:

Inverse internal

dynamics

Block1:

Forward 

locomotion 

dynamics

Net motions:

( , , )( )d d d tξ ξ ξ! !!

( )tΛ

( , , )( )o o og tη η!

ogoηoη!
∫∫

Fig. 2. General algorithm of HRRs

Fig. 2 to solve the dynamics of a HRR. The execution of

algorithm is summarized as follows:

1) In block 1, integrate the spatial ODE (25) from X = 0 to
X = l initialized by X3(0) = (go, ηo, 0, 0, F−), to give
Mo and Fo.

2) In block 1, calculate η̇o and then integrate (18) between
t and t+∆t in order to deduce the new reference state
(for the following time-step): (go, ηo)(t+∆t)

3) In block 2, integrate the spatial ODE (23) from X = 0
to X = l initialized by X2(0) = (go, ηo, η̇o, F−) to give
Λ (and F+ by way of verification).

Remarks:

• Let us remark that the above algorithm is nothing else

but a continuous version of the Newton-Euler discrete

algorithm of mobile multibody systems of [29], where

(22) stands for the forward recursive kinematics, (23),

for the backward recursive computation of inter-body

wrenches, and (25) stands for the recursive computation

of the locomotion dynamics.

• The algorithm solves the forward dynamics by computing

the net (reference) acceleration from a model of the

external forces. In general, such a model can be very

complex as in the case of swimming in which, in the ab-

solute, it requires to integrate the Navier-Stokes equations

of the surrounding flow [34]. In the case of terrestrial

locomotion, the above algorithm can be used with exter-

nal forces modeled as physical laws, e.g. friction laws.

However, for the sake of simplicity of analysis, it can

be useful to consider the contacts as ideal. In this case,

they can be modeled as constraints instead of forces as

discussed in the following section. In the next step, we

will see that when the number of constraints is sufficient,

locomotion dynamics can be replaced by kinematics and

the locomotion is named as "kinematic locomotion".

VI. KINEMATIC MODELING OF CONTACTS

In this work, we consider two types of contacts: anchorages

and supports. Anchorages are modeled as bilateral holonomic

constraints while supports are modeled as non-holonomic

constraints. In both cases the contacts are distributed along the

body axis. In the case of anchorages, two types are envisaged:

either the anchorage is fixed on the material axis of the robot

on an abscissa, noted C, constant in relation to time or, in
contrast, this abscissa, noted C(t), is explicitly dependent on
time. The former is known as a locked anchorage and the latter

is a sweeping anchorage. Concerning supports, the contact is

always sweeping, as the robot can slide freely thanks to an

annular type contact (see Fig. 3). Anchorages and supports are

assumed to be attached to rigid bodies submitted to imposed

relative motions in the fixed earth frame. Finally, as we will

 

 

 

 

Fig. 3. Annular contact (CSFS)

see when considering examples, these models are of great
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practical interest for modeling numerous locomotion modes

as illustrated in table II.

TABLE II
CONTACTS IN TERRESTRIAL LOCOMOTION

Type Constraint Locomotion Examples

Locked
anchorage

Clamped to
earth

Step by step
locomotion

Inchworm

Sweeping
anchorage

Rolling
without
slipping

Axial propul-
sion

Earthworm, big
snakes

Support Non-sliding Lateral undu-
lation

Snakes

A. Anchorages

For a locked anchorage as shown in Fig. 4(a), where the

robot is anchored at a fixed material point C ∈ [0, l], we write
the geometric model as:

g(C) = gc(t), (27)

 
 

(a)

 

 

 

(b)

Fig. 4. (a) Locked anchorage; (b) Sweeping anchorage

where t #→ gc(t) denotes a function of time in G which

represents the imposed motion of the anchored rigid body.

In particular, if gc is independent of time, then this body
is fixed, as in the case of a manipulator robot anchored in

the ground or more simply a cantilevered beam (see Fig.

4(a)). For a sweeping anchorage as shown in Fig. 4(b)), the

geometric model of contact cannot distinguish it from a locked

anchorage, both considered at the same instant t. In fact, in
the second case, we still have:

g(C(t)) = gc(t), (28)

which coincides with (27) when C = C(t). In contrast,
the kinematic model can make the distinction since, for the

sweeping anchorage, by taking total derivative with respect to

time (denoted as d(.)/dt) of (28):

d

dt
g(C(t)) = ġ(C(t)) + g′(C(t))Ċ(t) = ġc(t), (29)

which is multiplied by g−1(C(t)) to obtain, invoking (28)
again, the sweeping anchorage constraints in g:

η(C(t)) + ξd(C(t), t)Ċ(t) = ηc(t), (30)

where ηc(t) = (g−1
c ġc)

∨(t), (ηc(t) = (VcX , VcY , VcZ ,
ΩcX ,ΩcY , ΩcZ)

T (t), when G = SE(3)) is the time-twist
imposed on the rigid body supporting the anchorage and where

(30) allows one to recover the kinematic form of a locked

anchorage: η(C) = ηc(t) when C is time-independent. Finally,
let us note that (30) produces a set of dim(g) independent
scalar constraints.

B. Supports

Before describing the details of their modeling, let us recall

that supports are sweeping by nature so they can only be

accounted for by kinematic constraints. Here, we consider

supports named as Cross Sectional Follower Supports (CSFS).

Such supports follow the cross sections in their lateral motions

(see Fig. 3). A CSFS is an annular joint preventing all relative

translation velocities (of the beam with respect to the support)

in the plane of a given cross section of abscissa X = C.
Thus, for a movement in the space R3 (i.e. G = SE(3)), such
a contact exerted in any C ∈ [0, l] is modeled by the relations:

(ṙ(C) − ṙc(t))× tX(C) = 0 , (ω(C) − ωc(t))
T tX(C) = 0

(31)

where ω(X) = (ṘRT )∨(X) denotes the spatial angular
velocity of the X-cross-section while (ṙTc , ω

T
c )

T (t) is the
spatial twist imposed on the rigid support. After computation,

(31) leads to the following three non-holonomic constraints

VY (C) = VcY (t), VZ(C) = VcZ(t), ΩX(C) = ΩcX(t),
(32)

where VcY (t), VcZ(t) are the lateral velocities expressed in
the cross section frame while ΩcX(t) is the axial component
of the angular velocities. All of them being imposed on the C-
cross-section by the movement of the obstacle, these velocities

are null if the obstacle in question is fixed. Finally, C can itself

move along the material robot axis following a time law of

the general form:

Ċ = VcX(t)− VX(C), (33)

where VcX is imposed by the axial motion of the support

while VX(C) is ruled by the locomotion. Lastly, let us note
that when the given support follows the cross section not only

laterally but also axially, then Ċ = VcX(t)− VX(C) = 0.

C. Models of contact forces

As the contacts are ideal, the reaction (contact) forces are

identified as Lagrange multipliers associated to the scalar

constraints taken from (30) and (32). When G = SE(3), an
anchorage introduces six multipliers (i.e. the six components

of a complete reaction wrench) while a support transmits two

lateral forces and one axial torque for a three-dimensional

movement and only one lateral force for a planar motion.

When the anchorages and/or the supports are imposed at

the ends, the reaction forces associated with them enter into

the calculation of the dynamics via a contact component of

the apical external wrenches F± that we note Fc,± (where

"c" means "contact"). As long as the contacts are defined
inside the domain of the beam, i.e. if C ∈]0, l[, then each
of them adds a set of kinematic constraints in g and an

associated reaction wrench (defined in g∗), that enters into

the model via F which then contains a contact term of

the form: F c(C)δ(X − C), where δ denotes the Dirac

distribution. Finally, according to (20), any distribution of

contacts produces a contribution to Fext which is noted Fc

and called the resultant of the reaction (contact) wrenches.
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VII. ALGORITHM IN KINEMATIC CASE

When the number of constraints (imposed by the contacts)

is equal or higher than the dimension of the fiber of C2, the
system is said fully or over constrained and the net motions are

entirely ruled by the kinematic model of the contacts which

takes the most general explicit form:

ġo = goη̂o = gof̂(go, ξd(t), ξ
′

d(t), ξ
′′

d (t), ..., ξ̇d(t)), (34)

where the model of reference accelerations can be obtained

by simple time differentiation of f . In this case, the locomo-
tion is called "kinematic locomotion" (to distinguish it from

the previous dynamic locomotion case) and the locomotion

dynamics (18) are used in their inverse form to calculate the

contact wrench induced by the external constraints, i.e.:

Fc = Moη̇o − Fin − Fother , (35)

where Fother, denotes the contribution to Fext brought by the

distribution of external forces of other origin than contact.

Such a distribution will be denoted by (Fother,±, F other) and
models external loads as gravity, pressure and viscous forces

etc.

Outputs

Acc. Velocity Config.
Internal forces

Block2:

Inverse internal 

dynamics

Block1:

Inverse 

locomotion 

dynamics

Net motions:

( )tΛ

( , , )( )o o og tη η!

ogoη
oη!

∫∫
Block0:

Forward 

contact 

kinematics

,c

c

F

F

±

Inputs: ( , , )( )d d d tξ ξ ξ! !!

Fig. 5. Algorithm of a HRR with kinematic constraint model

Going further, when the number of constraints is strictly

higher than the dimension of the fiber of C2, the overall
motions of the robot are over-constrained which means that: 1)
the internal movements must be compatible2, 2) the reaction
unknowns Fc,± and F c are under-determined as they are

only required to verify the locomotion dynamics (35). Finally,

taking these considerations into account, the new constrained

algorithm as shown in Fig. 5 can be summarized as follows:

1) In Block0, calculate (ηo, η̇o) from a kinematic model of

contacts of the form (34) and its time derivative, and

integrate ηo between t and t+∆t in order to deduce the
new configuration of the reference cross section (for the

following time-step): go(t+∆t).
2) In Block1, integrate the spatial ODE (25) from X = 0 to

X = l initialized by X3(0) = (go, ηo, 0, 0, Fother,−) and
with F = F other, to giveMo, Fin, Fother (and Fother,+

by way of verification).

3) In Block1, calculate thanks to (35), the resultant of the

reaction wrenches Fc induced by the contacts.

2with the risk, if this is not the case of preventing mobility and, due
to the hyper-statism, of producing internal stress resolved by replacing the
constraints induced by the internal joints, assumed ideal, by rheological
passive laws.

4) After a distribution3 of Fc at the p contact points

Ci=1,..p, integrate in Block2 the spatial ODE (23)

subjected to the distribution of reaction wrenches

(Fc,±, F ci) applied at the contact points, and initialized
by X2(0) = (go, ηo, η̇o, F−) to calculate the internal
wrenches Λ.

Remarks:

• In the following we do not specify the form of the loco-

motion kinematics beyond its expression (34), preferring

to investigate it, case by case, for particular examples.

Let us just say here that the function f in (34) must be
calculated from f1 of (22) and from considerations related
to the way of locomotion studied (particularly based on

biological observation) as well as the contact model as

introduced in section VI.

• Hyper-redundant manipulators can be considered as a

subclass of fully constrained case. In fact here, the

reference cross section X = 0 is clamped in a rigid
basis enduring an imposed motion (in particular, null)

defined by X1(0) = (go, ηo, η̇o)(t). In this case, steps 1,
2 and 3 of the above algorithm can be avoided. Indeed,

the reference motions require no calculations as they are

known by their time laws.

• Note that if f is linear in ξ̇d and independent of go,
the kinematic model under the constraints of contacts

defines a principal kinematic connection on the principal

fiber bundle C2, i.e. a continuous version of the discrete
connections studied in the mechanics of non-holonomic

systems [30].

VIII. ILLUSTRATIVE EXAMPLES

We now consider several examples of terrestrial locomotion

where the net motions are ruled by kinematic locomotion

deduced from the model of contacts summarized in table II.

A. burrowing worm in 1D

(a)

Anchorage

(b)

Fig. 6. (a) Initial reference configuration; (b) Deformed configuration

This is a burrowing robot inspired by earthworms. The

earthworm is assumed to have a homogenous volumetric mass

ρ. Based on biological knowledge [35], the radial dilation of
the cross sections caused by axial compression ensures the

worm’s anchorage in its surroundings: a tunnel burrowed by

prior digestion of the earth in front of the head. Locally, the

radial anchorage is achieved by rigid setae which push into the

earth radially when the cross section is at maximal dilation

(see Fig. 6(b)). The beam model is that of a rod actuated

3Univocal if the number of constraints equal the dimension of the fiber,
multivocal, if it is higher.
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in traction-compression. The forward gait is produced by a

backward wave of traction-compression of the form:

ΓdX(X, t) = 1 + ǫ sin(ω(t−X/c)). (36)

The dilation (striction) of the cross sections is controlled by

the traction by adding to the Cosserat theory presented earlier

the axial volume preservation constraint written as:

A(X, t) = A(X, 0)/ΓdX(X, t), (37)

which is simply derived from: A(X, t)dS = A(X, 0)dX
where A(X, t) is the area of the cross section X at the instant

t, while dS = ΓdXdX is the length at current t of the part of
the worm of initial length dX initially located at X .
In this scenario, the previous general construction applies by

replacing G (as well as g and g∗) by R identified with the

commutative subgroup of translations along the x-axis (which
also coincides with its Lie algebra and its dual). It follows that

the adjoint maps disappear from the expressions and we can

propose more simply g = x, go = xo, η = ẋ, ξd(t) = ΓdX ,

F =
∑i=p

i=1 nci δ(X − Ci(t)), Λ = n where Ci denotes the

material abscissas of the p anchorage points (see Fig. 6(b))
defined at each instant by the condition of the local maximal

contraction:

Ci(t) ∈ [0, l], such that: ΓdX(Ci(t), t) = 1− ǫ. (38)

With these considerations, the worm’s continuous kinematic

model takes the form (22) with:

X ′

1 = (x′, ẋ′, ẍ′)T = (ΓdX(t), Γ̇dX(t), Γ̈dX(t))T , (39)

whose solutions are fixed by the anchorage points. In partic-

ular, it should be noted that any cross section anchored to the

ground by the setae imposes a constraint on the movement in

the fiber, identified here to R. It follows that the net movements

are derived from a kinematic model. Such a model can be

simply obtained by imposing that, at any anchorage point

Ci(t), the velocity of slipping is null, i.e. Ci(t) represents
a sweeping anchorage point. Also, by invoking the contact

kinematics (30) with C(t) = Ci(t), η(C(t)) = ẋ(Ci(t)),
ξd(t) = ΓdX(t), and ηc(t) = 0 (as the obstacles are fixed),
then:

ẋ(Ci(t)) + ΓdX(Ci)Ċi(t) = 0, (40)

so that, by taking the velocity of the cross section of the

abscissa Ci(t) from the second line of (39), one obtains:

ẋ(Ci(t)) = ẋo +

∫ Ci(t)

0

Γ̇dXdX, (41)

which can be entered into (40) to give the kinematic model of

the earthworm:

ẋo = −

∫ Ci(t)

0

Γ̇dXdX − ΓdX(Ci)Ċi(t). (42)

Moreover, it is easily shown that, for the law of propagation

(36), (42) is independent of the anchorage point considered.

In fact, Ċi is the speed c of the traction-compression wave.
Thus the locomotion kinematics can be rewritten after time-

derivation of (42) with i = 1:

ẍo = −ΓdX(C1(t))ċ− Γ̇dX(C1(t))c−

∫ C1(t)

0

Γ̈dXdX, (43)

which enables ẍo to be calculated. After that, it becomes

possible, thanks to the external dynamics (35), to calculate the

resultant of the reaction forces transmitted by the environment

to the worm via the anchorage points:

nc =

i=p∑

i=1

nci =

∫ l

0

m dXẍo +

∫ l

0

m

∫ X

0

Γ̈dXdχ dX, (44)

wherem = m(X, t) denotes the mass per unit of worm length
(and replaces M(X)) while the ζ of the general construction
is now calculated through space-integration of the continuous

model of accelerations (8) initialized by ẍo = 0. Finally,
when p > 1 the under-determination of the reaction forces
prevents the integration of the internal dynamics. However, if

an arbitrary distribution of these forces is assumed such that

their resultant verifies (44), for example adopting an equal

distribution, i.e. nci = nc/p, then it becomes possible to
integrate (13) which is written here:

n′ = m(X, t)ẍ−

i=p∑

i=1

nciδ(X − Ci(t)), (45)

with boundary conditions: n(0) = n(l) = 0 if one assumes
that the medium presents no force to the front and back of

the worm (ingestion and excretion moving the earth matter

from in front to behind), and where ẍ is deduced through

space-integration of the kinematic model (39) initialized by:

(xo, ẋo, ẍo).

Numerical results: For the numerical illustration of the

dynamic locomotion of the worm, a forward gait of the type

(36) with ǫ = 0.004 and ω = 2πc/λ, is introduced into the
general algorithm applied to the worm. Simulating for 10s, we
get the straight line 1D motion of the worm in the xy plane
as shown in Fig. 7. The Fig. 8(a-b) plot the axial position and

x

y

Fig. 7. Worm locomotion in xy plane

velocity of the worm’s head with respect to time, respectively.
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Fig. 8. (a) Time vs head position; (b) Time vs head velocity

The inverse locomotion dynamics and the inverse internal

dynamics of the system are solved to get the reaction forces
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at the anchorage points and the internal control forces, re-

spectively. By taking the speed c = 0.3m/s as constant, it
is noted that the axial contact force is zero at the anchorage

point as shown in Fig. 9(b) at X = C where no force jump

renders the internal force profile discontinuous. This scenario

may be compared to that of a wheeled body with constant

velocity where the wheels (and hence the body) experiences

no external (axial) forces so undergoing a pure inertial mo-

tion. Furthermore, by introducing the time dependent speed
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(b)

Fig. 9. With constant speed: (a) Contact force; (b) Internal force distribution
over the length

c(t) = at+ b (with a )= 0), it is noted that, due to the worm
accelerations, the axial reaction force (nc) at X = C is not

zero anymore as shown in Fig. 10(a), and hence introduces a

jump on the internal control force at X = C. This appears
on Fig. 10(b) which gives the desired internal control force

profile applied between cross sections over the whole length.

0 0.1 0.2 0.3 0.4 0.5

−10.5

−10

−9.5

−9

−8.5

−8

time(s)

n
c
(N

)

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−6

−5

−4

−3

−2

−1

0

1

2

3

X(m)

n
(N

)

t = 0.5s

X = C

(b)

Fig. 10. With variable speed: (a) Contact force; (b) Internal force distribution
over the length

B. Caterpillar (Inchworm) in 2D

We now consider the case of a climbing robot bio-inspired

from inchworms. Such an animal can be modeled as a bending

actuated beam with one localized clamping in C alternating

from one end to the other at each "step". Such a continuum

robot can be modeled by a Kirchhoff planar beam actuated in

curvature, i.e. by invoking the previous general construction

with G = SE(2) and ξd(t) = (1, 0,KdZ)
T which in this case

(planar configuration) is an integrable variable as KdZ = θ′

where θ is the angle that parameterizes the absolute orientation

of the cross sections in the plane. Having said that, the loco-

motion of the caterpillar can be modeled by considering it as

a continuous manipulator whose "base" and "terminal" change

places at each half-period of its gait. In these conditions, the

previous algorithm (with the anchorage point fixed in X = 0)

can be run again by changing X into l − X in the spatial

ODE and at each half-period such that C = l. The gait can
be simply defined by the angle θ as:

θ(X, t) = α sin2(ωt) sin

(
2π

l
(X − l)

)
, (46)

from which the curvature law is derived:

KdZ(X, t) = α sin2(ωt)

(
2π

l

)
cos

(
2π

l
(X − l)

)
. (47)

This law ensures that, at each instant: θ(t,X = 0) = θ(t,X =
l) = θ(t,X = l/2) = 0 whereas the curvature is minimal
at the two ends and maximal at X = l/2. Finally, the time
function as a factor of this internal shape law ensures the

periodic relaxation and bending of the robot. Its period is

π/ω and it assures the amplification of the bending over a

half-period and its attenuation (down to 0) in the following
half-period. Thus, assuming that the caterpillar starts at t = 0
in a stretched position, there will be anchorage at X = 0 at
all the intervals [2kT, 2kT + T/2] and anchorage at X = l
at the intervals [2kT + T/2, (2k + 1)T ]. In these two cases,
the external movements are null as they are fixed by the

anchorage conditions: X1(C) = (1, 0, 0). Moreover, the
external dynamics enable the reaction at the anchorage point

to be calculated. Finally the internal dynamics can be easily

integrated (in this case ζ = η̇) to give the internal wrenches.

x

y −→g

Fig. 11. Caterpillar locomotion
in xz plane

Numerical application: Some

numerical results are obtained for

caterpillar climbing under gravity

by applying the curvature (shape)

law (47) as input, with α = 1.8
and ω = 2π0.25. Simulating for
14 sec, we get the motion of

the caterpillar in the xy plane

as shown in Fig. 11. The Fig.

12(a-b) plot the axial position and

velocity of the caterpillar’s head

with respect to time, respectively.

The inverse locomotion dynamics

and the inverse internal dynamics

of the system are solved to get

the reaction forces at the anchor-

age points and the internal con-

trol torques, respectively. The Fig.

13(a) shows the reaction torque

cz(X = 0) at head with respect
to time. For illustrative purpose,

the torque distribution along the

length is presented in Fig. 13(b)

at t = 4.5s.

C. 2D snake in lateral undulation

A snake in lateral undulation is modeled by either a Kirch-

hoff or a Reissner 2D beam whose discrete counterparts are

drawn in Fig. 14(a-b), respectively (the beam cross sections

being the continuous infinitesimal counterparts of the axles

of the discrete mechanisms). In a first time, we choose the
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Fig. 12. (a) Time vs head position; (b) Time vs head velocity
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Fig. 13. (a) Reaction torque at head; (b) Internal torque distribution over the
length

Kirchhoff-snake kinematic model because it is the simplest

and it corresponds to the ACM robots of Hirose [1] whereas

the second, as proposed by Ostrowski [36], although more

complex, has advantages that we will mention later. In lateral

undulation, the snake supports itself laterally in its environ-

ment to self propel in an axial direction, i.e. by moving along

the length of its backbone. Mathematically, these supports are

modeled by non-holonomic constraints preventing the cross

sections of the snake to slide laterally. In the case where the

contact with the ground is continuously distributed along the

body length, there are obviously enough of these constraints

for the external movements to be completely fixed by the

internal kinematics of the snake according to the kinematic

context of section VII. In order to establish this kinematic

model, we begin by writing the continuous model of velocities

(7) in the case of G = SE(2) and ξd(t) = (1, 0,KdZ)
T . Thus,

with η = (g−1ġ)∨ = (VX , VY ,ΩZ)
T , we have:




V ′
X

V ′
Y

Ω′
Z


 =




VY KdZ

ΩZ − VXKdZ

K̇dZ


 . (48)

By modeling the contact at each point X by a CSFS model

(section VI-B), the constraints are simply written VY (X) = 0,
for ∀X ∈ [0, l] (the obstacles being fixed to space). Now, by
forcing these (non-sliding) constraints in (48), one obtains the

relations which must verify every motion compatible with the

supports: 


V ′
X

ΩZ

Ω′
Z


 =




0
VXKdZ

K̇dZ


 . (49)

From the first line of (49), we see that the axial speed of

the snake is constant relative to X and thus equal to that

 

 

 

(a)

 

 
 

(b)

Fig. 14. (a) Kirchhoff-snake; (b) Reissner-snake

of its head, which we will denote more simply Vo (every

function evaluated in X = 0 is indicated with a subscript
zero). From the second line, we see that ΩZ = VoKdZ , i.e. the

angular velocity along the snake’s backbone is only governed

by the forward speed Vo and the body curvature KdZ . Next,

taking account of lines 1 and 2 in the third, one obtains the

fundamental relation:

K̇dZ = VoK
′

dZ , (50)

which must be verified all along the snake so that its mobility

(axial propulsion) is assured. Finally, the solutions of (50) take

the general form:

KdZ(X, t) = f(X +

∫ t

0

Vo(τ)dτ), (51)

which corresponds to the propagation of a given curvature

profile along the backbone at a generally time-variable speed

Vo(t) (see Fig. 15). It follows that such a choice of the
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Fig. 15. Curvature profile along the snake’s backbone

curvature law ensures the thrust in the direction of −tX(0) at
the space-constant speed Vo(t). Moreover, for all X ∈ [0, l],
one can write:

ηo =

(
Vo

Ωo

)
=

(
1/K ′

dZ

KdZ/K
′

dZ

)
(X)K̇dZ(X, t), (52)

and, particularly, for X = 0:

ηo =

(
Vo

Ωo

)
=

(
1/K ′

o

Ko/K
′
o

)
K̇o, (53)

which generalizes the connection of the discrete case which

encodes the follower-leader kinematics of snakes in lateral

undulation. It is worth noting that, just as in the discrete case

where the first three axles (starting from the head) fix com-

pletely the motion of the head and that of the following links;

in the continuous case, the connection (53) involves at most

the third derivative of the position field (i.e.K ′
dZ(0) = r′′′(0)).

In the continuous setting, the principle of the follower-leader

kinematics can be stated as follows: once the curvature and its

derivative in ∀X are specified, the velocity of curvature must

adapt in each X so that the cross section X − dX follows
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the cross section X at the speed Vo(t). Thus, every cross

section X reoccupies at t∗ such that
∫ t∗

t
Vodτ = X , the same

configuration as that occupied by the head at t. This explains
the impression of lateral stasis and axial movement observed

in snakes, which makes their motion resemble a fluid line of a

steady flow. In addition, (53) shows that if the axial propulsion

is assured by K̇o/K
′
o it isKo that steers the snake in the plane.

Thus, we can approach the 2D snake by analogy with another

non-holonomic system, more familiar to the robotics engineer:

the car-like platform. In this case, the angular steering of

the (virtual) front wheels is ensured by Ko while the thrust

produced by the engine is assured by the relation K̇o/K
′
o.

Turning back to biology, in nature, the curvature along the

body of a snake changes according to the choices made by

its head, choices that depend on the obstacles that the snake

avoid and on which it laterally pushes to propel itself forwards.

Consequently such a situation may be represented by a steady

profile of curvature moving at the speed Vo(t) along the body,
represented here by the material segment [0, l] (see Fig. 15
where such a context is illustrated). Finally, for illustration

purpose, let us consider the case where V̇o = 0, then (50) turns
to be the one-dimensional propagation equation whose general

solutions are KdZ(X, t) = f(t+X/Vo), with Vo the constant

speed of the curvature waves. Then, for environments without

obstacles but where the ground plane has good properties to

prevent lateral sliding, the law of curvature:

KdZ(X, t) = a cos(ω(t+X/Vo)) (54)

+ b exp

(
−

(t− (to + To/2) + (X/Vo))
2

(t− (to + To/2) + (X/Vo))2 − (To/2)2

)
,

ensures, up to t = to, an axial speed −VotX(0) of average
constant direction, and from t = to generates a turning

maneuver of duration To. Next, note that these kinematics

are singular when KdZ = cte/X because, in this case, the

conditions of mobility (50) are not verified except in the

irrelevant case where the snake has a null motion. To overcome

this situation, one can consider the continuous homologue of

the discrete kinematics of the Fig. 14(b), i.e. by adding a

transverse shearing to the present context. In this case, the

kinematics become those of an actuated Reissner planar beam

and the continuous model of velocities is rewritten from (48),

replacing the first line by the following:

V ′

X = −KdZVXΓdY , (55)

so that we now have VX(X) = Vo e(−
∫

X

0
KdZΓdY dX) and the

mobility condition (50) becomes the following:

K̇dZ = (K ′

dZ −K2
dZΓdY )VX , (56)

where the presence of the control parameter ΓdY as a factor

of KdZ ensures the mobility of the snake in all cases where

KdZ(.) )= 0. Thus, we recover that the continuous homologue
of the discrete kinematics of the Fig. 14(b) is only singular

for the straight configurations as it is only in this case that

the internal movements of the odd and even joints cannot

produce external movement. Finally, in the case of snakes,

the transverse shearing models the movements of the skin

and the scales relative to the skeleton whose own movement

C
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C
3 Ci

C p

Ti

T 1

T2

T
3

T p

Fig. 16. 2D snake with p contacts

is modeled by the field of curvature. Also, if a snake finds

itself in a perfectly straight configuration, it can remove itself

from this singularity by: 1) sliding laterally, 2) leaving the
ground. However, if these two possibilities are forbidden (for

example, if the snake is made to pass through a straight narrow

tube), then only a mode of locomotion like that studied for the

earthworm in traction-compression becomes possible.

Finally, as for the net motions computation, taking account

of (53), the locomotion kinematics (34) of block0 (Fig. 5) can

be written as the system in SE(2):

ġo = goη̂o = go




1/K ′
o

0
Ko/K

′
o




∧

K̇o. (57)

For the forces, the algorithm integrates at each time-step t,
the system (25) from X = 0 to X = l initialized in space
by (go(t), ηo(t), 0, 0, 0). Then, knowing η̇o(t) from the time

derivative of (53), the algorithm computes in block1 (Fig. 5)

via (35) the resultant of the contact wrenches reduced to the

head i.e. Fc. Knowing this resultant, we must formulate a

hypothesis for the distribution of the contact forces in order

to compute the distribution of the internal forces and torques.

For example, assuming that the snake is permanently in contact

with the ground via p supports whose positions are fixed in
space as indicated on Fig. 16. Then the load is generally

hyper-static (when p > 3), and the determination of the lateral
contact forces distribution: Ti=1,2,..p, requires the generalized

inversion of the under-determined system:

Fc =

i=p∑

i=1

Ad∗k(Ci)




0
Ti

0


 , (58)

where we recall that k(Ci) = g−1(Ci)go(t), and we consider
the motion while the p points of contact C1,2,..p are contained

in ]0, l[ (see Fig. 16). Once these p forces are known, the
algorithm can integrate in block2 (Fig. 5) the internal dynamics

(23) with initial spatial conditions: (go(t), ηo(t), η̇o(t), 0) and
a distribution of external forces4: F =

∑p

i=1(0, Ti, 0)
T δ(X−

Ci).
Numerical results: In case of the 2D snake, an undulatory

gait of the type (54) is imposed as input of the algorithm

(of section VII). The undulation is provided with b )= 0 for

4This can be achieved by piece-wise integrating the internal dynamics on
[0, C1]∪ [C1, C2]∪ ...[Cp, l], using the jump conditions: N(Ci−) = −Ti+
N(Ci+) and M(Ci−) = M(Ci+) where (NT (Ci−),MT (Ci−))T and
(NT (Ci+),MT (Ci+))T respectively denote the material wrench of internal
forces Λ evaluated on the left and the right sides of the cross section Ci.
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certain period of time To which quantifies the amplitude of a

turning maneuver in SE(2), where a = 10, ω = 2πVo/λ and
Vo = −0.5m/s. Simulating for 10s, the 2D motion of the

snake in the xy plane is shown in Fig. 17. Furthermore, the

x

y

Fig. 17. Snake turning locomotion

locomotion and internal dynamics of the system are solved for

p = 5 to obtain the cross sectional reaction wrenches applied
at the contact points C1, C2, ...C5 (see Fig 16) and the internal

control torques, respectively. The Fig. 18(a) plots the reaction

force (ny) over the length. The Fig. 18(b) shows the torque

distribution over the length of snake at t = 2.0s.
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Fig. 18. (a) Contact force (ny) over the length; (b) Internal torque distribution
over the length

D. 3D snake in lateral undulation

Here we consider only the kinematic aspects of 3D crawl-

ing. The 3D snake is a priori modeled by Kirchhoff kine-

matics with torsion. In this case, we have G = SE(3) and
ξd = (1, 0, 0,KdX,KdY ,KdZ)

T so that the kinematic model

(7) is now written:



V ′
X

V ′
Y

V ′
Z

Ω′
X

Ω′
Y

Ω′
Z




=




VY KdZ −KdY VZ

ΩZ +KdXVZ − VXKdZ

−ΩY +KdY VX −KdXVY

K̇dX +ΩY KdZ − ΩZKdY

K̇dY +ΩZKdX − ΩXKdZ

K̇dZ +ΩXKdY − ΩY KdX




. (59)

On the basis of this model, we shall first research the 3D ho-

mologue of the gaits previously exhibited in 2D. This requires
establishing the constraints of non-sliding in 3D, which is

simply achieved by proposing that, for every material abscissa

X , the contact is modeled by a cross sectional follower support
so that using (32) with ΩcX = VcY = VcZ = 0, one has:

VY (X) = VZ(X) = 0 , ΩX(X) = 0, ∀X ∈ [0, l], (60)

which are 3 non-holonomic constraints that must verify each

of the cross sections in movement. Next, we introduce these

relations into the general kinematic model (59). As a straight-

forward consequence, the first three equations of (59) allows

one to write:

VX = Vo , ΩY = VoKdY , ΩZ = VoKdZ , (61)

where Vo is again the axial uniform speed along the backbone

while the two last of these relations translate the fact that the

internal angular velocity of the cross sections is entirely due

to the axial movement along a given profile of fixed curvature.

Now taking into account the above relations in the fourth

equation of (59) in which ΩX = 0 is forced, we simply find:

K̇dX = Ω′

X +ΩZKdY − ΩY KdZ

= 0 + Vo(KdY KdZ −KdZKdY ) = 0. (62)

Thus, if we assume that the robot starts (at t = 0) from a

straight untwisted configuration, one have KdX = 0 all along
its length and at any instant of the motion. Introducing this last

constraint as well as all the others into the two last relations

of (59) allows one to write with (62), the three independent

relations on the strain laws:




K̇dX

K̇dY

K̇dZ


 =




0
K ′

dY Vo

K ′

dZVo


 , (63)

where the first of these relations can be ensured by the design

(un-twistable kinematics) while the two others are imposed

by the curvature control laws. Finally (63) defines the 3D

counterpart of the planar mobility condition (50). Continuing

in the same way as for the 2D case, we find the 3D external

kinematic model in the form of the follower-leader connection:

ġo = go




Vo

03×1

ΩoY

ΩoZ




∧

= go




1/K ′
o

03×1

KoY /K
′
o

KoZ/K
′
o




∧

K̇o, (64)

with K̇o = ‖Kd‖
!(0) et K ′

o = ‖Kd‖
′(0).

Numerical results: In case of 3D snake, the undulatory

motion (54) along with:

KdX(X, t) = 0,KdY (X, t) =

by exp

(
−

(t− (to + To/2) + (X/Vo))
2

(t− (to + To/2) + (X/Vo))2 − (To/2)2

)
,

is given as input to the general algorithm, with a = 10, ω =
2πVo/λ, by = 0.5 and V o = −0.5m/s. Simulating for 10s,
the 3D motion of the snake in the xyz space is obtained as
shown in Fig. 19.
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Fig. 19. (a) Head turning locomotion; (b) Snapshots of snake 3D turning
locomotion

IX. GENERAL DISCUSSION AND CONCLUSION

In this article, we have proposed a general abstract frame-

work for modeling continuous style like robots at a macro-

scopic scale. The solution turns out to be a continuous coun-

terpart of the Newton-Euler dynamics of discrete multibody

systems, where the robot is here considered as a strain-actuated

Cosserat beam i.e. a serial continuous multi-body system.

Once embedded in the framework of locomotion theory on

fiber bundles, the approach is exploited to derive an algorithm

capable of computing the torques as well as the rigid net

motions involved in any locomotion task. The approach as

a whole is applied to the case of on ground locomotion where

the model of external forces is replaced by the kinematic

holonomic and/or nonholonomic constraints of a set of models

of contact of practical interest in terrestrial locomotion. It is

then applied to several examples inspired by natures. Through

these examples, it shows that it can be a useful tool of

investigation when it is applied to the analysis of mobility

or gait generations of snakes. In the case of earth-worm, the

Cosserat assumption of beam cross sections rigidity is removed

and replaced by the axial volume preservation constraint.

This allows with small efforts to extend the approach and

the algorithm to one dimensional hydrostats. The problem of

manipulation is illustrated indirectly through the example of

the climbing inchworm where at each step of the "walking"

the robot is a manipulator clamped into the ground.

Finally, in a second step the question of how applying

these results to real designs naturally arises. About this point,

the proposed approach being general, the cost to pay for

this generality is a certain idealization of the model. This

idealization essentially concerns two points: 1◦) the model

of the body as an internally actuated Cosserat beam. 2◦) the

model of the contacts between the body and its surroundings.

As regards the first point, we today suggest to proceed case

by case. For instance, for a specific technology among the

numerous designs of snake-like robots today developed [37],

[38], one could first ask the starting questions: does the basic

Cosserat assumption of rigid cross sections have a physical

reality? And also, how this assumption can be adapted to a

particular technological principle? As a first answer, let us

remark that in the case of designs inspired from vertebrate

animals where one can identify lateral rigid elements attached

to a body line axially articulated and mimicking the backbone,

the Cosserat model is more and more well adapted as the

number of vertebrae increases (big snakes like pythons can

have more than several hundred). In a design more inspired

from hyper-redundant arthropods, the rigid segments can also

be considered as being the cross sections of their macro-

continuous model. Finally, for robots inspired from hydrostats,

although the application of the approach seems less natural

since these animals do not contain any rigid element in their

principle, we saw in the article, how we could release the

Cosserat basic assumption of rigid cross sections in order to

adapt the model to a simplified version of one dimensional

hydrostats. Furthermore, some groups today exploring new

designs in soft robotics have chosen to mimic hydrostats

as a set of rigid cross-sections interconnected and through

actuated cables and refer explicitly to the Cosserat model as a

source of inspiration for their design [7]. Finally, as elasticity

plays an important role in continuous robots, the body model

proposed in the article could be improved in this sense. About

the second point (the model of the contacts), let us remind

that in the case of snake-like robots, we have modeled the

contacts through bi-lateral annular joints introducing a null

axial friction (along the vertebral axis) as well as an infinite

lateral friction force (perpendicular to the vertebral axis). In

spite of its ideal character, such a model is not so far from

what one can observe on real snakes. Indeed, the scales of

the snakes give to their skin a strong frictional anisotropy, the

axial friction being far lower than its lateral counterpart. In our

case, we pushed this tendency to its ideal asymptotic limit,

and also replaced the usual unilateral contacts by bi-lateral

constraints. This second simplification, which can be released

in future, requires a further discussion on the feasibility of a

motion. Indeed, once the net motions known by solving the

external kinematics, one has to check whether the real contacts

can generate the desired external wrench? Technically, the

answer to this question depends on the solutions of a linear

system of the form5 (58). In particular, if the joints are in

reality unilateral contacts (as this is the case of obstacle-aided

locomotion [37]), the reaction forces solutions of (58) should

have to keep a given sign all along the motion. At last, once

such a loading has been found, so validating the model of

contacts, one has to check whether the actuators can supply

the desired motions under such a loading. In order to address

this last problem, one can use the inverse dynamics of control

torques. Now, coming back to nature, for a snake moving

in a tree for instance, the animal permanently exploits the

redundancy of (58) in order to satisfy supplementary more

sophisticated conditions as maximizing the adherence while

minimizing the consumed energy... Among the degrees of

freedom of these solutions that the snakes exploit, they can

change the configuration of the contacts with time and play

with the internal control forces which do not produce any net

motion. Finally, if we seek a design of snake-like robot ideally

adapted to our model of robot and contacts, starting from [39],

this would be a multi-body system with a very high number

of very small length links connected through universal joints.

Each of these links would be equipped with many wheels

aligned along its greater length and placed radially on the

links, so bio-mimicking the scales of a 3D snake (see Fig.

20). Finally, as the number of the links increases, it becomes

5In fact its 3D generalization.
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Fig. 20. Proposed design of a 3D snake

more and more relevant to approximate the robot behavior with

continuous models [13], [40]. In this case, the Newton-Euler

formulation (as proposed in the article) allows solving the

dynamics without re-parameterizing the model through a set of

generalized coordinates (finite elements or assumed modes...),

as it is required by the Lagrangian approach of the same

problem. From a pure computational aspect, when the number

of d.o.f. dramatically increases, the recursive formulations of

chained systems dynamics, as that of Newton-Euler, become

more and more efficient since they lead to O(n) algorithms
with n the number of links. Furthermore, due to their implicit
character, the Newton-Euler algorithms are simple to program

on a computer. In the continuous case here presented, these

recursive computations are replaced by o.d.e.’s which are

solved through standard adaptive step numerical integrators

allowing to increase further the computational efficiency. Fi-

nally, these virtues have been exploited in the presented article

to implement simulators, which are faster than real time for

all the reported examples.

APPENDIX A

NOTATIONS

This appendix provides some basic insights of the notations

of geometric mechanics [31]. The element g ∈ SE(3) is a 4×4
homogeneous transformation matrix that defines the mapping

between two frames:

g =

(
R r
0 1

)
. (65)

Adg is a 6 × 6 matrix that once applied to a vector or twist
changes it from one frame to another frame separated by

transformation element g, where:

Adg =

(
R −R r̂
0 R

)
. (66)

For a given η = (V T ,ΩT )T ∈ R
6, adη is a 6× 6 matrix that

once applied to a vector (or twist), changes it from one frame

to another frame separated by the infinitesimal transformation

(1 + η̂):

adη =

(
Ω̂ V̂

0 Ω̂

)
. (67)

Passing to dual, Ad∗g and ad∗η define the 6 × 6 matrices that
change any dual vector (or wrench) from one frame to another

frame separated by gT and (1 + η̂)T , respectively. Where,
Ad∗g = AdTg and ad∗η = adTη .
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